Eastern Corridor Segment IV(a): SR 32 Eastgate Area Improvements (CLE-32-2.25 PID #82370)

CONCEPTUAL ALTERNATIVES STUDY

July 2, 2012

EASTERN CORRIDOR SEGMENT IV(A): SR 32 EASTGATE AREA IMPROVEMENTS (CLE-32-2.25 PID #82370)

CONCEPTUAL ALTERNATIVES STUDY

Prepared For: **ODOT District 8** 505 South State Route 741 Lebanon, OH 45036

PREPARED BY: **TranSystems Corporation** 1105 Schrock Road, Suite 400 Columbus, OH 43229

EXECUTIVE SUMMARY

This Conceptual Alternative Study (CAS) Report was prepared for the CLE-32-2.25 Project (Eastern Corridor Segment IV(a): SR 32 Eastgate Area Improvements) as part of Step 4 of the Ohio Department of Transportation's (ODOT's), Project Development Process (PDP) for Major Projects.

The CAS includes a summary of the previous documents submitted and approved by ODOT. Information and recommendations within the Eastern Corridor Tier I Environmental Impact Statement (EIS) were utilized as a strong foundation for this study of Segment IV(a). Project specific documents, including a Public Involvement Plan, Draft Purpose and Need, and Red Flag Summary, were used in the development and evaluation of several conceptual alternatives in Steps 3-4.

The subsequent section, Development of Conceptual Alternatives, summarizes the methodology utilized to develop the Conceptual Alternatives in Step 4 and provides a description of each.

The conceptual alternatives were evaluated based on design issues, traffic analyses, and preliminary environmental evaluations. The results of these analyses are summarized by issue in the Evaluation of Conceptual Alternatives section.

These analyses are summarized by alternative in the Comparison Matrices and Conclusion section. Based upon the provided evaluations and public comment, select alternatives are recommended for advancement. The Feasible Alternatives that are chosen for further work will be analyzed in greater detail, including further design based on certified traffic, environmental field studies and agency coordination, as well as an analysis of the local network improvements required as a result of the preferred alternative.

The alternatives recommended to be carried forward are:

- Alternative 2 Interchange East of Fayard Drive.
- Alternative 4 Interchange at Newberry Drive, with ramps at Glen Este-Withamsville Road.
- Alternative 4 Interchange at Newberry Drive, without ramps at Glen Este-Withamsville Road.
- Alternative 5 No Build.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	I
TABLE OF CONTENTS	II
INTRODUCTION Project History Study Area and Logical Termini	I
SUMMARY OF PREVIOUS REPORTS Draft Purpose and Need Existing and Future Conditions Red Flag Summary Public Involvement Plan	5 7 13
DEVELOPMENT OF CONCEPTUAL ALTERNATIVES Methodology Conceptual Design Designations Design Criteria Consideration of Design Exceptions Description of Alternatives Alternative 1 Alternative 2 Alternative 3 Alternative 4 Alternative 5	
EVALUATION OF CONCEPTUAL ALTERNATIVES	22 22 32 32 34 34 34 36 36 38 38 38 38 39 39 39
Public Input	

LIST OF FIGURES

FIGURE 1: EASTERN CORRIDOR PROJECTS	3
FIGURE 2: STUDY AREA MAP	
FIGURE 3: CENSUS TRACT MAP	9
FIGURE 4: ALTERNATIVE 1	
FIGURE 5: ALTERNATIVE 2	
FIGURE 6: ALTERNATIVE 3	
FIGURE 7: ALTERNATIVE 4	
FIGURE 8: ALTERNATIVE 1 CAPACITY ANALYSIS	
FIGURE 9: ALTERNATIVE 2 CAPACITY ANALYSIS	
FIGURE 10: ALTERNATIVE 3 CAPACITY ANALYSIS	
FIGURE 11: ALTERNATIVE 4 (WITH GLEN ESTE RAMPS) CAPACITY ANALYSIS	
FIGURE 12: ALTERNATIVE 4 (WITHOUT GLEN ESTE RAMPS) CAPACITY ANALYSIS	30
FIGURE 13: ALTERNATIVE 5 CAPACITY ANALYSIS	
FIGURE 14: INTERCHANGE PREFERENCES FROM OPEN HOUSE 2	42
FIGURE 15: GLEN ESTE RAMP PREFERENCES FROM OPEN HOUSE 2	42

LIST OF TABLES

10
11
11
12
14
14
15
24
33
35
35
35
37
37
40

APPENDICES

APPENDIX A:	EXHIBITS (PRINTED & ON CD)
APPENDIX B:	PUBLIC INVOLVEMENT (ON CD)
APPENDIX C:	TRAFFIC PLATES (ON CD)
APPENDIX D:	HIGHWAY CAPACITY SOFTWARE (HCS) OUTPUT (ON CD)
APPENDIX E:	PREVIOUS REPORTS (ON CD)

INTRODUCTION

The purpose of the Conceptual Alternatives Study (CAS) is to develop and evaluate alternatives that avoid or minimize impacts to design and sensitive environmental areas within the study area during Step 4 of the Ohio Department of Transportation's (ODOT's) 14-Step Project Development Process (PDP) for Major Projects. A graphic of ODOT's PDP has been included in Appendix A. The CAS is the combined design and environmental document that refines and analyzes the transportation improvements that were developed and evaluated in Step 4.

At this point in the PDP, the design of concepts and evaluation of their potential impacts are based upon: mapping from aerial photography, property information from the Clermont County Auditor, geotechnical research, and information on social, economic and environmental resources available from secondary sources. Because of the range of alternatives in Step 4, field studies have been limited to a red flag field visit (windshield survey) related to geotechnical issues, traffic analysis, ecological resources, Environmental Site Assessment screening, and field reviews as needed by planners and engineers to understand existing conditions.

This report does not reflect final design details nor complete environmental studies, coordination or mitigation. It is the first major submission for early consideration of these issues, which will be expanded upon in future steps of the process.

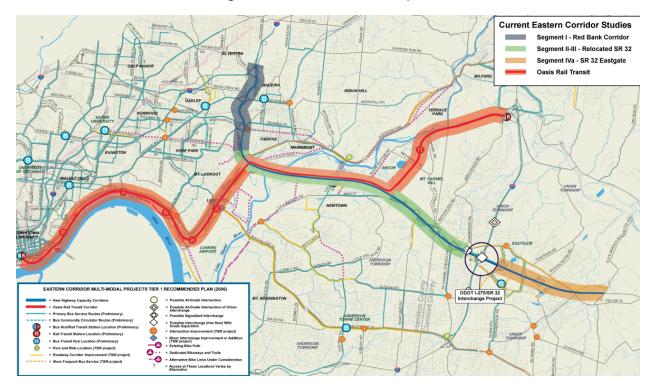
Project History

The SR 32 Eastgate Area Improvements, also known as the Eastern Corridor Segment IV(a) project, traces its roots to the Eastern Corridor Major Investment Study (MIS) completed in April 2000 by the Ohio-Kentucky-Indiana Regional Council of Governments (OKI), the regional planning organization in southwestern Ohio. The purpose of the MIS was to identify alternatives to meet the regional transportation needs while balancing cost, social and economic benefits, and environmental impacts. The MIS studied a 200-square-mile area and ultimately recommended a multi-modal plan for the Eastern Corridor area, including Transportation Management System improvements, new and expanded bus transit service, new rail service, and highway capacity improvements.

Building upon the recommendations of the MIS for the overall study area, a Tier I Environmental Impact Statement (EIS) was prepared to identify strategies for improving long-term travel mobility specifically between the City of Cincinnati and its eastern suburbs. With this refined geographic focus, the Tier I EIS was a detailed examination of the range of alternatives that would meet the four general recommendations of the MIS. Therefore, within a I4-square-mile study area roughly centered on SR 32, several feasible alternatives were presented by mode and geographic area, to be further developed in Tier 2 environmental analyses. Of the modes, highway capacity alternatives were divided into four segments within the study area (Segments I through IV). Specifically, alternatives in Segment IV focused on the consolidation and management of access points in order to establish an improved SR 32 as a limited access arterial roadway east of I-275 to Olive Branch-Stonelick Road. Later, the interchange at SR 32 and I-275 was broken out as a separate project, and Segment IV(a) was defined by Eastgate Boulevard to the west and Olive Branch-Stonelick Road to the east. The SR 32 corridor, including Segment IV(a), plays an important role in the Appalachian Development Highway System, serving the movement of raw materials, finished goods, and services to and from Interstates 71 and 75 via I-275. In addition to movement of goods and services, SR 32 serves as a direct route for employees from the eastern rural communities employed at Clermont County companies. Numerous businesses and residential developments are situated along the corridor and accessed directly or indirectly from SR 32.

The Eastern Corridor Study is a program of multi-modal transportation programs integrating land use, economic development, and environmental stewardship to address the growing travel demand between downtown Cincinnati and western Clermont County. The study area includes several political jurisdictions and communities, economic and employment centers, existing and future development zones, as well as sensitive environmental resources that are all being jointly considered to develop a long-term transportation solution for the area. A comprehensive two-year planning study led by the Ohio-Kentucky-Indiana Regional Council of Governments (OKI) was completed in 2000 and, since 2002, the Eastern Corridor has been following a tiered approach to fulfill NEPA requirements.

The Tier I work, as presented in the Tier I Final Environmental Impact Statement (EIS) for the Eastern Corridor Multi-Modal Projects, identified feasible alternatives for different multi-modal components, including:


- Transportation System Management (TSM) actions.
- Improved bus transit, including expanded bus routes, new community circulators, feeder routes to compliment rail transit, and new bus hubs.
- New rail transit capacity extending from downtown Cincinnati to Milford.
- New highway capacity from Red Bank Road at I-71 to SR 32/I-275 in the Eastgate area of Clermont County.
- New bikeway.

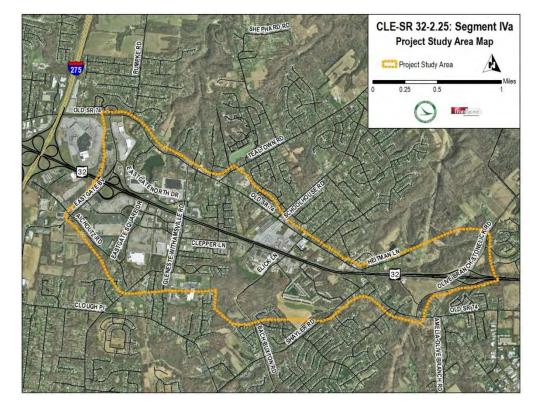
Five Eastern Corridor projects stemmed from the results of the Tier I Final EIS: Red Bank Corridor project (Segment I), Relocated SR 32 project (Segment II-III), I-275/SR 32 Interchange project (Segment IV); SR 32 Eastgate Area Improvements project (Segment IV(a)), and the Oasis Commuter Rail project. A graphic depicting the Eastern Corridor projects can be seen below followed by a description of each project.

Red Bank Corridor Improvement Project (Segment I). The Red Bank Expressway project extends 2.5 miles between US-50 in Fairfax and the I-71 ramp in Madisonville. The project includes modifications and improvements to the primary expressway, ancillary roads and key intersections to make it easier and quicker to travel through the corridor and among its businesses and neighborhoods.

Oasis Rail Transit. Approximately 17 miles in length, the proposed Oasis Rail Transit corridor extends between the Riverfront Transit Center in downtown Cincinnati and I-275 in the City of Milford. Currently under evaluation are feasible alignment and rail technology alternatives, travel demand and ridership projections, potential station locations and projected construction and operational costs.

Relocated SR 32 Project (Segment II-III). The SR-32 Relocation Project extends between US-50 in Fairfax to the I-275/SR-32 interchange in Clermont County. The project will establish a shared, multimodal transportation corridor that will feature a new and expanded SR-32, rail and bus transit, local roadway network improvements as well as bikeway and walkway components. The project will consolidate entrance and exit points along SR-32, improving safety and decreasing travel times through the region. Also, a new interchange at US-50 (Columbia Parkway) and Red Bank Road will provide a direct connection for eastern communities with the I-71 corridor.

Figure I: Eastern Corridor Projects


I-275/SR 32 Interchange (Segment IV). The I-275/SR 32 Interchange project (Segment IV) involves redesigning the existing interchange at this location to improve safety, congestion, and access in the Eastgate area. This project also includes the construction of a new SR 32 and Eastgate Boulevard interchange, which will include closing the access to Eastgate Square Drive from SR 32. Modifications and upgrades will also be made to Old SR 74, SR 32, and Aicholtz Road as part of the interchange improvements.

SR 32 Eastgate Area Improvements (Segment IV(a)). The SR-32/Eastgate Project will upgrade SR-32 to a limited access roadway between Eastgate Boulevard to Olive Branch-Stonelick Road. The project will replace existing intersections and driveways on SR-32 with a new interchange, overpasses and service drives where needed. When complete, the project will expand the roadway's capacity and make traveling through the area easier and safer.

Study Area and Logical Termini

Based upon the identified congestion and safety problems, the termini for the proposed improvements along SR 32 are Eastgate Boulevard to the west and Olive Branch-Stonelick Road to the east. These limits for Segment IV(a) are specified as part of the Tier I Record of Decision for the Eastern Corridor.

Because changes to SR 32 have the potential to affect the local network and vice versa, it will be important to consider local road improvements necessary as a result of changes to the operation of SR 32. Therefore, the initial study area will incorporate the area from Old SR 74 on the north and Aicholtz Road – Clough Pike – Shayler Road – Old SR 74 on the south. (See Figure 2, Study Area Map.) Traffic studies also extend to the nearby intersection of Bach Buxton Road and Shayler Road just south of the study area.

Figure 2: Study Area Map

SUMMARY OF PREVIOUS REPORTS

Prior to submission of the CAS, three reports regarding the Eastern Corridor Segment IV(a) project have been completed. The Public Involvement Plan was completed in July 2010, the latest draft of the Purpose and Need report was approved in September 2011, and the Red Flag Summary was approved in October 2010. Additionally, the Eastern Corridor Study was completed in September 2005. Each of these documents provided the foundation for the creation and determination of the project's conceptual alternatives. These are provided in Appendix E. A summary of each report follows.

Draft Purpose and Need

The Draft Purpose and Need document (see Appendix E) contains the written determination of the problems and establishes a need for the project. It provides the underlying data to support the creation of alternatives in the following steps of the PDP. The project purpose and the identified needs are summarized as follows:

Project Purpose. The purpose of the Segment IV(a) project is to serve current and projected travel demand, reduce congestion and delay, and improve roadway safety, consistent with local transportation and economic development goals. The identified needs forming the basis of this purpose are each described in detail below.

Travel Demand. SR 32 is an urban principal arterial throughout the Segment IV(a) study corridor. The SR 32 corridor provides two lanes in each direction, divided by a grassy median, and turn lanes at each intersection. The ADT for 2010 varies between 50,520 and 56,820, increasing with proximity to the I-275 interchange at the west end of the study corridor. There are three signalized intersections on SR 32 within the project limits: Glen Este-Withamsville Road, Elick Lane/Bach Buxton Road, and Old SR 74. Certified traffic for these intersections and the SR 32 corridor was provided by ODOT Office of Technical Services in 2007 under PID 76289.

With a mix of heavy commercial, industrial and residential development within the Eastern Corridor, combined with extensive commuter traffic along SR 32, a 1995 origin-destination survey reported in the Eastern Corridor MIS found that 50% of trips during peak periods were local and 50% were external. The result is a crossing configuration in traffic patterns in which through traffic is in conflict with heavy local traffic within the corridor.

Congestion and Delay. The standard criterion used to define quality of traffic flow is "level of service" (LOS). This is a qualitative assessment of factors such as speed, volume, geometry, delays, and ease of maneuvering. There are six level of service grades that represent all of the possible operating conditions; these levels range from LOS A, representing the best operating condition, to LOS F, representing the worst. Typically in urbanized areas, a roadway component is seen as acceptable if the corresponding level of service is LOS D or better.

Intersection capacity analyses for the AM and PM peak hours were performed at intersections within the study area using existing (year 2010) and 2030 no-build traffic volumes, assuming existing roadway configurations and traffic control.

Based upon analyses of existing counts, most of the intersections along the SR 32 corridor are operating at a poor LOS during either the AM, PM or both peak hours. These include the signalized intersections of SR 32 with Glen Este-Withamsville Road, Elick Lane/Bach Buxton Road, and Old SR 74, where the overall intersection is at LOS E or F with several or all approaches at LOS E or F. The outbound movement from the unsignalized side streets (Fayard Drive and Glen Willow Lake Lane) experience considerable delays and operate at LOS F during either or both peak hours.

Improve Safety. This corridor has regularly appeared on the ODOT high crash location list, known as the Highway Safety Program (HSP). ODOT's CLE-32 2.00-4.79 Corridor Safety Study, based on the 2007 HSP, states that CLE-32 2.00-4.00 is a Hot Spot location, ranked #22, while CLE-32 2.90-4.79, ranked #76, shows up as a congestion location. For purposes of this document, crash data for SR 32 was supplied by ODOT for the years 2007-2009. After review and mapping of the crash locations, 480 crashes were determined to be located within the study area.

ODOT has undertaken various safety studies and implemented improvements to address known safety problems on the SR 32 corridor. Specifically, signal timing adjustments were implemented as part of a 2007 signal timing and phasing study. The *Pilot for Systematic Signal Timing and Phasing Program, Final Traffic Signal Timing Report for SR-32* recommended and evaluated optimized and coordinated signal timing plans on SR 32 from Glen Este Withamsville Road to Cincinnati-Batavia Pike. Separate from the operational improvements, geometric modifications have also been considered including the recent construction of an eastbound right turn lane on SR 32 at the Elick Lane intersection.

Consistency with Local Transportation and Economic Development Goals.

State Transportation Planning. The State of Ohio's Long Range Multi-Modal Transportation Plan is titled Access Ohio 2004-2030. It includes a comprehensive analysis of existing transportation conditions, a 26-year projection of the needs and recommendations for Ohio's multi-modal transportation system, including roads, bridges, bicycle and pedestrian trails, rail systems, and air and water ports. Its vision and the projects and recommendations identified are distilled from long-range plans researched and compiled by regional Metropolitan Planning Organizations (MPO), ODOT's Safety and Congestion analysis, ODOT's Interstate Reconstruction Program, local public transit officials, the Ohio Rail Development Commission and many others, including hundreds of projects identified by state and local officials.

Macro-Highway Corridor 21 is a 200 mile east/west route that serves southern Ohio from Cincinnati to Marietta following routes SR 32, US 50 and SR 7. The corridor has been designated by the federal government as part of the Appalachian Development Highway System (ADHS). Due to the high cost of building roadways through the Appalachian's rocky terrain, most of the region had been bypassed by the Interstate Highway System and subsequently suffered economic implications. Prior to this important four-lane, limited access highway corridor being constructed, most counties within southern Ohio were serviced with only two-lane winding roads that were slow to drive and unsafe. Today thanks to the ADHS, southern Ohio residents and businesses have access to Interstates 70, 71, 75, and 77 from Corridor 21.

Local Transportation Planning. At the local level, the various project segments and actions outlined in the Eastern Corridor Tier I EIS are being coordinated with land use, development, preservation and transportation plans within the individual jurisdictions within the Eastern Corridor in Clermont and Hamilton counties. Specifically, the Eastern Corridor transportation recommendations are consistent with and are incorporated in the SR 32 Corridor Thoroughfare Plan and Access Clermont, which is Clermont County's Long Range Plan. Improvements to the local network will affect how traffic accesses SR 32. Likewise, changes in access to the local network from SR 32 will affect how traffic utilizes the local network.

Direct local public investment in water, sewer and road infrastructure projects within the SR 32 corridor totals \$89 million in completed and planned improvements. A total of \$9.5 million in local road projects have recently been completed in the study area, and at least \$4.8 million in planned roadway projects adjacent to the SR 32 corridor will affect SR 32.

Other local studies that are relevant to SR 32 include: Green Infrastructure Concept Master Plan, February 2005; Eastgate Market Study, December 2007; and studies provided in support of the funding application to the Transportation Review Advisory Council (TRAC) for the adjacent project CLE-275-8.90.

Preserve and Support Local Economic Development. In addition to addressing critical safety, travel demand and congestion issues, transportation solutions for Segment IV(a) should also strive to preserve the economic vitality of the area. While SR 32 serves as a travel corridor for east-west commuters, it also provides local access to important commercial and retail development. The goods and services provided to local residents are as vital as the economic contributions are to the County as a whole. While the interface between the through-traffic and local traffic is the heart of the transportation problem, the challenge is to solve the problem in such a way as to minimize impact to the business community along SR 32.

Existing and Future Conditions

Safety

Following a review of the OH-1 reports, 13 of the 480 crashes could not be specifically logged on SR 32 or defined as intersection-related. Therefore, while the summary below captures all 480 crashes, the calculations have been based on only the 467 crashes that were verified as intersection or non-intersection related. The resulting crashes have been categorized as intersection or non-intersection crashes and were further broken down by type, location and year. The summary below indicates a trend of rear end crashes driven largely by congestion resulting from the high traffic volume and existing at-grade intersections, signalized and unsignalized, within this stretch of highway. The number of crashes by year shows a slightly higher frequency in 2007, but a generally similar trend in terms of number in each of the three years evaluated.

Crash Type

- 77.29% Rear End (371)
- 9.79% Side Swipe (47)
- 4.58% Angle (22)
- 3.33% Collision w/ Fixed Object (16)
- 5.00% Other (24)

Crash Location

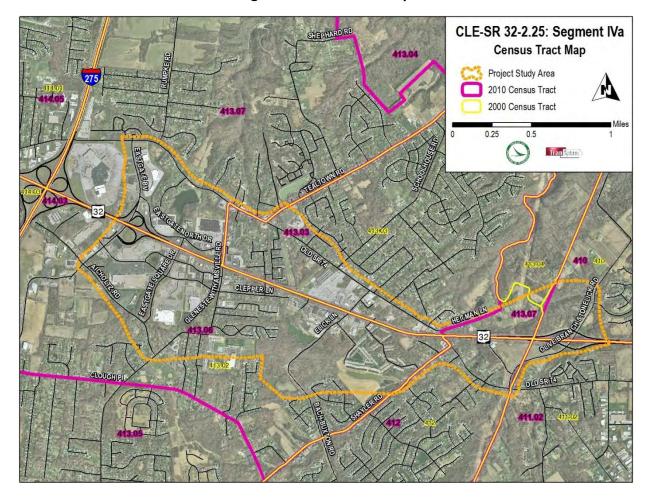
- 58.75% Nonintersection (282)
- 40.21% Intersection (193)
- 0.63% Driveway Access Related (3)
- 0.42% Not Stated (2)

Number of Crashes by Year

- 36% in 2007 (174)
- 32% in 2008 (152)
- 32% in 2009 (154)

Crash Rates

Section Crash Rate. As part of the crash analysis, the study corridor was divided into five sections between Eastgate Square and Olive Branch-Stonelick Road, and a crash rate per million vehicles was calculated for each section. Table 4 (seen in the "Purpose and Need Statement" in Appendix E) shows the crash rates and severity index for five segments along the study corridor. The severity index is intended to highlight the proportion of severe crashes, that is, those involving injury or fatality. Severity index is computed by dividing the sum of the injury and fatality crashes by the total number of crashes on the segment. Average crash rates were obtained from ODOT's 2009 report, covering the years 2007-2009. These statewide rates exclude intersection and intersection-related crashes. The segment crash rates calculated in Table 4 below adhered to this same methodology. Four of the five segments ranked above the statewide average, while the remaining one had a severity index higher than the mean + standard deviation for the sections in this study. These entries have been highlighted in Table 4. Because the segment crash rates can be compared against the statewide averages, these results suggest that the SR 32 corridor is experiencing a substantially higher rate of crashes compared to other similar roadways in Ohio. In essence, this points to a safety problem. The severity index shows that on average 30% of the SR 32 segment crashes resulted in injury or fatality, with the easternmost segment experiencing this outcome in nearly half of the recorded crashes.


Intersection Crash Rate. The SR 32 study corridor has seven intersections that were determined to be evaluated for intersection crash rates. Table 5 (seen in the "Purpose and Need Statement" in Appendix E) shows the crash rates for the six intersections, as well as the mean + standard deviation for the sample set. It should be noted that ODOT does not have statewide intersection crash rates available for comparison on an accidents per million entering vehicles basis. Two intersections (Glen Este-Withamsville Road and Elick Lane/Bach Buxton Road) have crash rates higher than the mean + standard deviation value of 1.09 and are thus highlighted in the table as critical crash locations. This indicates that these two intersections have experienced an unusually high rate of crashes as it relates to the SR 32 study corridor.

Social and Economic Conditions

Social and economic data were collected for the nine Census Tracts that are within the study area: 410, 411.02, 412, 413.02, 413.03, 413.04, 413.05, 413.06, and 413.07. (Because of changes to the boundaries of the Census Tracts between 2000 and 2010, there are some differences between the 2000 and 2010 Census Tract boundaries so more Census Tracts were included to accurately compare the 2000 and 2010 data; this is why nine Tracts are included in the analysis even though currently there are only seven Census Tracts within the study area.) Additionally, two cities, Batavia and Milford, along with Clermont County and State of Ohio data were collected for comparison. Data collected was from the 2000 and 2010 United States Decennial Census and the 2010 American Community Survey (ACS) 5-year estimates to establish current conditions and determine population trends.

All the Census Tracts are within Batavia and Union Township in Clermont County. Census Tracts 410 and 411.02 are both located at the eastern end of the study area and are in Batavia Township. Census

Tracts 412, 413.02, 413.03, 413.04, 413.05, 413.06, and 413.07 are located in Union Township. The map below shows the locations of each Census Tract and the differences between the 2000 and 2010 boundaries.

Population Characteristics. According to the 2000 and 2010 Census, the average population in the study area went up by 17.88%. This is more of an increase than was seen by any Batavia, Milford, Clermont County, or the State of Ohio. Census Tract 410 had the highest population change at 47.80% while Census Tracts 413.04 and 413.07 had the lowest at a 5.90% decline (compared to 2000 Census Tract 413.04). The average percentage of the population under the age of 18 for the study area is 24.39%, which is relatively similar to Batavia, Milford, Clermont County, and Ohio. The average percentage of the population age 65 and over in the study area, at 9.76%, is lower than the averages in Batavia, Milford, Clermont County, and Ohio, all of which are over 11%. The male/female ratio in the study area (48.21% male and 51.79% female) is also consistent with the larger areas, all of which have a higher percentage of females than males.

Census Tract / Location	2000 Population	2010 Population	% Change (2000-2010)	% Under 18 (2010)	% 65 + (2010)	% Male (2010)	% Female (2010)
410	5,079	7,507	47.80%	25.18%	11.62%	50.86%	49.14%
411.02	4,199	4,656	10.88%	32.26%	6.59%	45.98%	54.02%
412	7,165	8,350	16.54%	24.54%	13.05%	48.62%	51.38%
413.02	6,974	*	25.49%*	n/a	n/a	n/a	n/a
413.03	4,628	5,028	8.64%	27.88%	7.72%	49.34%	50.66%
413.04	5,183	37**	-5.90%**	21.62%	2.70%	43.24%	56.76%
413.05	*	4,466	25.49%*	21.97%	11.93%	48.88%	51.12%
413.06	*	4,286	25.49%*	18.74%	12.58%	49.25%	50.75%
413.07	**	4,840	-5.90%**	22.93%	11.90%	49.46%	50.54%
Study Area Tract Total / Average	33,228	39,170	17.88%	24.39%	9.76%	48.21%	51.79%
Deterrie	1717	1 500	(() %	24 52%	13 539/	47 109/	52.88%
Batavia	1,617	1,509	-6.68%	24.52%	13.52%	47.12%	52.88%
Milford	6,284	6,709	6.76%	21.40%	21.87%	45.24%	54.76%
Clermont County	177,977	197,363	10.89%	25.63%	11.78%	49.31%	50.69%
Ohio	11,353,140	11,536,504	1.62%	23.67%	14.06%	48.82%	51.18%

Table I: Population Characteristics

Source: United States Census Bureau

* 2000 Census Tract 413.02 was split into Tracts 413.05 and 413.06 for the 2010 Census. Although Tract 413.05 is not in the study area, it was included to get an accurate comparison to the 2000 numbers for Tract 413.02. The "% Change" for these Tracts were calculated from 2000 Tract 413.02 population versus 2010 Tracts 413.05 and 413.06 populations combined.

** 2000 Census Tract 413.04 was split into Tracts 413.04 and 413.07 for the 2010 Census. 2010 Tract 413.04 is no longer in the study area but was included to get an accurate comparison to the 2000 numbers. The "% Change" for these Tracts were calculated from 2000 Tract 413.04 population versus 2010 Tracts 413.04 and 413.07 populations combined.

Housing Characteristics. The average household size in the study area is 2.54, which is above most of the comparables (Batavia, Milford, and Ohio) and only slightly lower than the average for Clermont County (2.61). The percentage of occupied units (93.76%) is higher than the averages of the others, especially Batavia (88.20%) and the state average (89.80%). The average percentage of owner occupied units in the study area (64.18%) is higher than Batavia (59.90%) and Milford (52.40%), but lower than the county (74.60%) and state (67.60%) averages. The median home value for the study area is \$157,388 which is on par with Milford (\$157,300) and Clermont County (\$162,000) and somewhat higher than Batavia (\$132,000) and Ohio (\$136,400). Additionally, many of the individual Census Tracts have a median home value that is above the median home value for Clermont County with the exception of Census Tract 413.04 that is substantially lower than all the rest (at \$99,500); however, this Census Tract only contains 14 units.

Census Tract / Location	Total Units / Households	Avg. HH Size	Total Families	% Units Occupied	% Units Vacant	% Owner Occupied	% Renter Occupied	Median Home Value
410	2,645	2.81	1,949	93.60%	6.40%	86.80%	13.20%	\$185,500
411.02	I,868	2.59	I,264	93.70%	6.30%	41.90%	58.10%	\$161,200
412	3,660	2.47	2,267	92.50%	7.50%	71.70%	28.30%	\$175,100
413.03	1,920	2.76	1,352	94.90%	5.10%	80.20%	19.80%	\$161,000
413.04	14	2.64	10	100.00%	0.00%	64.30%	35.70%	\$99,500
413.05	1,962	2.4	1,242	94.60%	5.40%	61.00%	39.00%	\$154,400
413.06	2,180	2.14	952	88.60%	11.40%	35.20%	64.80%	\$179,700
413.07	2,071	2.54	1,358	92.20%	7.80%	72.30%	27.70%	\$142,700
Study Area Tract Total / Average	16,320	2.54	10,394	93.76%	6.24%	64.18%	35.83%	\$157,388
Batavia	713	2.37	411	88.20%	11.80%	59.90%	40.10%	\$132,000
Milford	3,291	2.12	1,572	91.70%	8.30%	52.40%	47.60%	\$157,300
Clermont County	80,656	2.61	53,800	92.80%	7.20%	74.60%	25.40%	\$162,000
Ohio	5,127,508	2.44	2,991,629	89.80%	10.20%	67.60%	32.40%	\$136,400

Table 2: Housing Characteristics

Source: United States Census Bureau

Racial Characteristics. The racial characteristics for the study area are relatively similar to the larger, surrounding geographic areas, except for the state which has a much lower overall percentage of white (Caucasian) residents and a higher minority population. This difference is predominately seen in the lower average percentage of black residents in the study area (at 1.43%) compared to the state average of 12.04%. Two Census Tracts with higher percentages of minority populations were 411.02 and 413.06. Census Tract 411.02 had a substantially higher percentage of residents with two or more races (3.46%) compared to the average for the entire study area (1.36%) and the larger, surrounding areas. Census Tract 413.06 had a much higher Asian population (3.15%) than the study area (1.38%) is higher than that of Batavia (0.86%) and Milford (1.15%) and about the same as that of Clermont Count (1.47%), but is less than half of the state (3.07%).

Table	3:	Racial	Characteristics
-------	----	--------	-----------------

Census Tract / Location	2010 Population	% White	% Black	% American Indian / Alaskan	% Asian	% Hawaiian / Pacific Islander	% Other	2 or More Races	% Hispanic*	% Minority
410	7,507	95.74%	1.07%	0.27%	0.87%	0.00%	0.03%	0. 99 %	1.05%	4.26%
411.02	4,656	91.19%	2. 9 0%	0.24%	0.60%	0.04%	0.09%	3.46%	I.48%	8.81%
412	8,350	94.79%	0.83%	0.13%	1.56%	0.02%	0.07%	1.14%	1.46%	5.21%
413.03	5,028	93.60%	1.19%	0.10%	1.77%	0.00%	0.10%	1.27%	l.97%	6.40%
413.04	37	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
413.05	4,466	92.39%	1.99%	0.07%	I.86%	0.00%	0.13%	1.57%	1.99%	7.61%

Census Tract / Location	2010 Population	% White	% Black	% American Indian / Alaskan	% Asian	% Hawaiian / Pacific Islander	% Other	2 or More Races	% Hispanic*	% Minority
413.06	4,286	91.02%	2.05%	0.44%	3.15%	0.05%	0.14%	1.35%	1.80%	8.98%
413.07	4,840	95.08%	1.45%	0.17%	0.76%	0.02%	0.10%	1.14%	1.28%	4.92%
Study Area Tract Total / Average	39,170	94.23%	1.43%	0.18%	1.32%	0.02%	0.08%	I. 36 %	1.38%	5.77%
Batavia	1,509	92.91%	3.45%	0.40%	0.60%	0.00%	0.00%	I. 79 %	0.86%	7.09%
Milford	6,709	93.95%	2.30%	0.12%	0.85%	0.01%	0.12%	1.51%	1.15%	6.05%
Clermont County	197,363	94.92%	1.13%	0.18%	0.96%	0.03%	0.10%	1.22%	1.47%	5.08%
Ohio	11,536,504	81.13%	12.04%	0.18%	1.65%	0.03%	0.13%	1.76%	3.07%	18.87%

Source: United States Census Bureau

*% Hispanic population includes multiple races (other races listed don't include Hispanic population) and is included in the Minority percentage.

Economic and Labor Force Characteristics. The breakdown of employment by industry within the study area is similar to the breakdowns in Batavia, Milford, Clermont Count, and Ohio. Management, business, science, and arts occupations are the most predominate in the study area at an average of 31.1% followed closely by sales and office occupations at 31.0%. Production, transportation, and material moving occupations are the next prominent in the study area at 15.2%, closely followed by service occupations (15.1%). Natural resources, construction, and maintenance occupations hold the fewest employees at 7.7%. The average unemployment rate within the study area is 5.4%, which is lower than Batavia, Milford, Clermont County, and Ohio.

Census Tract / Location	Total Employed	% Unemployed	% Management, business, science, and arts occupations	% Service occupations	% Sales and office occupations	% Natural resources, construction, and maintenance occupations	% Production, transportation, and material moving occupations
410	3,471	6.9%	34.8%	16.5%	23.6%	10.8%	14.4%
411.02	2,158	14.5%	28.3%	20.5%	32.2%	10.1%	8.9%
412	4,840	6.0%	41.9%	14.7%	27. 9 %	5.0%	10.5%
413.03	2,824	4.7%	35.7%	13.9%	35.7%	5.0%	9.7%
413.04	54	0.0%	22.2%	0.0%	38.9%	0.0%	38.9%
413.05	2,223	3.2%	31.2%	11.2%	33.6%	10.6%	13.4%
413.06	2,040	5.0%	29.8%	19.0%	27. 9 %	12.6%	10.7%
413.07	3,007	3.0%	24.9%	24.8%	28.2%	7.1%	15.1%
Study Area Tract Total / Average	20,617	5.4%	31.1%	15.1%	31.0%	7.7%	15.2%
Batavia	729	7.3%	33.9%	17.2%	29.4%	11.8%	7.7%

Table 4: Economic and Labor Force Characteristics

Census Tract / Location	Total Employed	% Unemployed	% Management, business, science, and arts occupations	% Service occupations	% Sales and office occupations	% Natural resources, construction, and maintenance occupations	% Production, transportation, and material moving occupations
Milford	3,275	7.0%	33.2%	14.4%	29.9%	5.8%	16.6%
Clermont County	101,712	6.9%	34.2%	15.5%	26.2%	10.4%	13.7%
Ohio	5,889,779	8.6%	33.4%	17.1%	25.3%	8.2%	16.0%

Source: United States Census Bureau

Red Flag Summary

A Red Flag Summary (found in Appendix E) was developed in order to document previously identified critical issues that would need to be considered in the development and evaluation of alternatives. The Red Flag Summary was completed in October 2010.

A comprehensive records review determined that three parks, three reservoirs, and three cemeteries were found to be in or adjacent to the study area. None of the alternative should impact the cemetery or the parks. One of the reservoirs may potentially be impacted by Alternative 2. Additional Red Flag Summary research was done through the Ohio Environmental Protection Agency and Ohio State Fire Marshal Bureau of Underground Storage Tank Regulation (BUSTR) and identified numerous hazardous material and UST/LUST sites of concern located throughout the study area that will require further investigation to determine if they are impacted by any alternative. There were no mapped landfills, superfund sites, or other large hazardous material sites of concern noted in the study area. The study area also falls within an ODOT MS4 Regulated Area as well as a basic non-attainment area.

Public Involvement Plan

In ODOT's Project Development Process (PDP), involving the public early and often is critical to helping the surrounding community understand transportation studies so it can, in turn, provide meaningful input to help shape the study. Two basic objectives include disseminating information and soliciting input. The Public Involvement Plan must address both. The Public Involvement Plan for the Segment IV(a) project will:

- Solicit public input to identify problems and solutions to project objectives.
- Provide the public with information on the decision-making process.
- Provide information on the potential impacts and benefits of each transportation solution under consideration.
- Solicit input on the conclusions and recommendations of the alternatives analysis.

In order to achieve these goals, the Project Team continues to use several methods during the planning phase of the project. Methods used include utilizing mailing lists to send out notifications, identifying Implementation Partners to help with decision making, forming a Stakeholder Committee to help represent communities in or near the study area, holding public open house meetings to present ideas to the public and get their feedback, and posting updates on the existing website for the overall Eastern

Corridor project. These methods are detailed within the Public Involvement Plan (available in Appendix E).

DEVELOPMENT OF CONCEPTUAL ALTERNATIVES

Methodology

The Eastern Corridor Tier I EIS recommended the addition of a new interchange on SR 32 at the intersection with Bach Buxton Road. The Tier 2 phase of work reopened the development of concepts and explored the interchange options that would be feasible in this area along SR 32. Following these evaluations, five interchange alternatives were carried forward to be considered and evaluated in Step 4. The following table lists the alternatives that were carried forward to Step 4.

Alternative	Description
Alternative I	Widen existing SR 32 and improve existing at-grade intersections along SR 32.
Alternative 2	Interchange East of Fayard Dr.
Alternative 3	Interchange at Elick/Bach Buxton.
Alternative 4	Interchange at Newberry Drive and ramps at Glen Este-Withamsville.
Alternative 5	No improvements to SR 32 (no build).

Table 5: Alternatives Studied in Step 4

In addition to the alternatives listed above, the option to include partial-access at Glen Este-Withamsville Road was added in Step 4. These partial access ramps were added as a concept for Segment IV(a) due to the public's preference (81% in favor) to maintain additional access to/from SR 32 in the heavily commercialized Glen Este-Withamsville corridor. Design criteria applied in the development of alternatives is shown in the sections below. The design approach is consistent with the LDM and AASHTO A Policy on Geometric Design of Highways and Streets 2004 (hereafter referred to as the "Green Book") for given roadway classifications and design speeds. Geometric layouts were developed using design-level aerial mapping supplied by ODOT Office of Aerial Engineering as well as the model TIN (terrain model) used to generate profiles and cross sections.

Conceptual Design Designations

The following table summarizes the project design designations.

Table 6: Design Designations

	SR 32	Ramps	Side Roads	
Design Element:	Value	Value	Value	Value
Design Functional Class	Principal Arterial	Urban Ramp	Local	Collector
Access Permit	State	State	Local	Local
Design Speed	55 MPH	45 MPH	40 MPH	45 MPH
Design Year	2030	2030	2030	2030
Design Vehicle	WB-62	WB-62	WB-62	WB-62
Desirable Design LOS	D	D	D	D
Minimum Design LOS	Existing	Existing	Existing	Existing

	SR 32	Ramps	Side Roads	
Design Element:	Value	Value	Value	Value
Projected Traffic Volumes	Refer to Traffic Analysis section.			

Notes: The Design Vehicle used shall be a WB-62 based on roadway classification.

Design Criteria

A basis for design must be assumed even though ODOT may not have approved design criteria for the project at the initial steps of the PDP. In order to design to specific standards of the LDM, values for curvature, grades, transitions, lane and shoulder widths, etc. were determined based upon known or assumed design designations. The following table summarizes the LDM criteria used for project conceptual design:

Design Element:	SR 32	Ramps	Local Side Roads	Collector Side Roads	L&D Ref.			
Horizontal Alignment								
Max Deflection without Horizontal Curve	۱°00'	l °45'	2°15'	l °45'	Fig. 202-1			
Maximum Degree of Curve	5°30'	8°00'	10°45'	8°00'	Fig. 202-2			
Max Curve without Superelevation	0°39'	5°40'	7°42'	5°40'	Fig. 202-3			
Maximum Superelevation	0.06	0.08	0.08	0.08	Fig. 202-7			
Vertical Alignment	Vertical Alignment							
Maximum Grade	6%	7%	8%	7%	Fig. 203-1			
Maximum Vertical Deflection without Vertical Curve	0.40%	0.55%	0.75%	0.55%	Fig. 203-2			
K-Values								
Crest Vertical Curve	114	61	44	61	Fig. 203-3			
Sag Vertical Curve	115	79	64	79	Fig. 203-6			
Clearances								
Vertical Clearance	16.5'	16.5'	16.5'	16.5'	Fig. 302-1			
Lanes								
Number of Thru Lanes	6-10	I-3	(existing)	2-4				

Table 7: Design Criteria

Notes: (1) Vertical alignment maximum grade assumes arterial rolling terrain. (2) Lane configuration given is a range covering the current design configurations for all of the alternatives.

Consideration of Design Exceptions

At this stage in the project, no design exceptions were needed in designing any of the interchange alternatives. As designs are further refined in future steps, design exceptions may be considered and evaluated.

Description of Alternatives

The proposed interchange location will be coordinated with other Eastern Corridor projects including the Relocated SR 32 Project (Segment II/III) and the I-275/SR 32 Interchange Reconstruction Project (Segment IV) as part of the overall Eastern Corridor Study.

Based on the recommendations from the Eastern Corridor Tier I EIS, a variety of interchange configurations and locations were considered along the SR 32 Eastgate corridor. After meetings with ODOT, the CCTID, and stakeholders, certain interchange concepts were considered and dismissed and ultimately narrowed down to five alternatives. These interchange alternatives are discussed in detail under this section. For an overview image of each alternative, see the figures following each alternative description below; for detailed drawings of each alternative, see Appendix A.

Alternative 1

This alternative does not involve any grade separation or a new interchange on SR 32. Instead, this alternative widens the footprint of SR 32 to accommodate future traffic volumes. This requires up to five through lanes in each direction on SR 32 throughout the majority of the corridor. Additionally, three left-turn lanes and two right-turn lanes are needed on SR 32 eastbound at the Glen Este-Withamsville Road intersection. The footprint required with this alternative would also require a large amount of right-of-way acquisition the whole length of the corridor. Due to the extensive addition of through lanes and excessive turn lanes required to meet operational and geometric standards, Alternative I is not being recommended for further study.

Figure 4: Alternative I

Key features of Alternative I are:

- Major lane additions on SR 32.
- Major lane additions and at-grade intersection upgrades at:
 - Glen Este-Withamsville Road.
 - **Old SR 74**.

• Elick Lane.

Advantages of Alternative 1 include:

• No structure costs.

Disadvantages of Alternative I include:

- Requires median barrier installation on SR 32.
- Extensive right-of-way/property impacts because of large footprint.
- Major roadway widening on both the mainline and cross roads.
- Dual and triple left- and right-turn lane movements.
- Inadequate horizontal and stopping sight distances.

Alternative 2

This alternative involves the construction of a new classic diamond interchange with a north-south connector road (the "Bach Buxton extension") that extends from the existing Bach Buxton Road on the south and connects to Old SR 74 to the north. The interchange would be located near Fayard Drive, between the existing Glen Este-Withamsville Road and Elick Lane/Bach Buxton Road (Figure 5). Glen Este-Withamsville Road and Old SR 74 would be overpasses over SR 32 and all other intersections along SR 32 in the Eastgate corridor would be closed off. This alternative would require SR 32 to be three lanes in each direction throughout the corridor. This option also includes two new access roadways: the Heitman Lane extension (which would extend Heitman Lane east until it met Olive Branch-Stonelick Road at Lexington Run Drive) and the Aicholtz Road extension (which extends Aicholtz Road east of Glen Este-Withamsville Road, tying into the southern end of the Bach Buxton extension).

Figure 5: Alternative 2

Key features of Alternative 2 are:

- New interchange at Bach Buxton extension.
- Overpass at Glen Este-Withamsville.
- Overpass at Old SR 74.
- Future Aicholtz Road extension.
- Heitman Lane extension.

Advantages of Alternative 2 include:

- Low-speed ramp curves.
- Avoids weaving segments with the SR 32 exit ramps.
- All routes from/to SR 32 are supported.
- Grade separation at Glen Este-Withamsville.
- Grade separation at Bach Buxton Extension.
- Grade separation at Old SR 74.
- New east-west roadway connection with the Aicholtz Road widening/extension south of SR 32.
- New east-west roadway connector with the Heitman Lane extension north of SR 32.

Disadvantages of Alternative 2 include:

- Too close to Glen Este-Withamsville Road to allow for partial access to/from SR 32.
- Close proximity to apartments west of interchange.

Alternative 3

This alternative involves the construction of a new interchange at the existing location of Elick Lane/Bach Buxton Road. Proposed SR 32 entrance and exit ramps would be installed east of the Elick Lane/Bach Buxton Road overpass with access to/from Old SR 74 to the north and to/from the Clepper Lane extension to the south (Figure 6). The Clepper Lane extension would begin at Glen Este-Withamsville Road at the existing Clepper Lane and, going east, tie in with the Elick Lane/Bach Buxton Road overpass and on to the new interchange ramps. The Clepper Lane extension would primarily be a 2-lane road, widening to 3 lanes at the intersections. Glen Este-Withamsville Road and Old SR 74 would be overpasses over SR 32 and all other intersections along SR 32 in the Eastgate corridor would be closed off. This alternative would require SR 32 to be three lanes in each direction throughout the corridor.

This alternative also has the potential for partial access to/from SR 32 at Glen Este-Withamsville Road. If this access is included, westbound traffic on SR 32 could get off at Glen Este-Withamsville Road through a ramp that ties in to Ryan's Way and Wyler Park Drive (going under the elevated Glen Este-Withamsville Road); this would also provide a connection to neighborhood off of Fayard Drive to the north. Vehicles wanting to go eastbound on SR 32 would have a connection off of Clepper Lane, just east of Glen Este-Withamsville Road.

Figure 6: Alternative 3

*Note: Displays of Alternative 3 shown at public meetings did not show the optional partial-access ramps at Glen Este Withamsville Road (they were shown with Alternative 4). This is the case in the graphic above as well as in the graphic in Appendix A.

Key features of Alternative 3 are:

- SR 32 entrance and exit ramps east of Elick Lane/Bach Buxton Road.
 - Ramps tie into Old SR 74 to the north.
 - Ramps tie into Mirian Drive and the new Clepper Lane extension to the south.
- Overpass at Elick Lane/Bach Buxton Road.
- Overpass at Old SR 74.
- Overpass at Glen Este-Withamsville Road.
- New east-west roadway connection to new interchange with the Clepper Lane extension.
- Future Aicholtz Road extension (to be done by Clermont County).
- Possibility for partial-access ramp option at Glen Este-Withamsville Road:
 - Entrance ramp to SR 32 EB via Clepper Lane.
 - Exit ramp from SR 32 WB to Eastgate North Drive.

Advantages of Alternative 3 include:

- Low-speed ramp curves.
- Avoids weaving segments with the SR 32 exit ramps.
- All routes from/to SR 32 are supported.
- Grade separation at Glen Este-Withamsville.
- Grade separation at Elick Lane/Bach Buxton Road.
- Grade separation at Old SR 74.
- New east-west roadway connection to new interchange with the Clepper Lane extension.
- Possibility for partial access at Glen Este-Withamsville Road.

Disadvantages of Alternative 3 include:

• Ramps do not tie into grade separation/overpass at Elick Lane/Bach Buxton Road.

Alternative 4

This alternative would involve the construction of a new interchange along SR 32 between near Newberry Drive. The connector road would be just east of the existing Newberry Drive and would connect to Marian Drive and Bach Buxton Road on the south and curves into Old SR 74 to the north (Figure 4). A new T-intersection is formed on the east of the connector road with Old SR 74. The north movement is continuous and curves westward tying into the existing Old SR 74 with an 8-degree horizontal curve. The completed interchange would provide for full movements at the new connector road with straight ramps. The ramp intersections would be closely spaced and signals would be coordinated. Glen Este-Withamsville Road and Old SR 74 would be overpasses at SR 32 and all other intersections along SR 32 in the Eastgate corridor would be closed off. This alternative would require SR 32 to be three lanes in each direction throughout the corridor.

An east-west roadway connection south of SR 32 would also be constructed. This connection of Clepper Lane would begin at Glen Este-Withamsville Road at the existing Clepper Lane, going east to Bach Buxton Road/Elick Lane, and then tying into the new interchange (Figure 4). The extension would primarily be a 2-lane road and would widen to 3 lanes at the intersections.

This alternative also has the potential for partial access to/from SR 32 at Glen Este-Withamsville Road. With this access, westbound traffic on SR 32 could get off at Glen Este-Withamsville Road through a ramp that ties in to Ryan's Way and Wyler Park Drive (going under the elevated Glen Este-Withamsville Road); this would also provide a connection to the neighborhood off of Fayard Drive to the north. Vehicles wanting to go eastbound on SR 32 would have a connection off of Clepper Lane, just east of Glen Este-Withamsville Road.

Figure 7: Alternative 4

Key features of Alternative 4 are:

• New interchange between Elick Lane/Bach Buxton Road and Old SR 74.

- Overpass at Old SR 74.
- Overpass at Glen Este-Withamsville Road.
- New east-west roadway connection to new interchange with the Clepper Lane extension.
- Future Aicholtz Road extension (to be done by Clermont County).
- Possibility for partial-access ramp option at Glen Este-Withamsville Road:
 - Entrance ramp to SR 32 EB via Clepper Lane.
 - Exit ramp from SR 32 WB to Eastgate North Drive.

Advantages of Alternative 4 include:

- Avoids weaving segments with the SR 32 exit ramps.
- All routes from/to SR 32 are supported.
- Reduces extent of limited access restrictions on the arterial network.
- Left turn storage provided outside of ramp intersections.
- Grade separation at Glen Este-Withamsville Road.
- Grade separation at Newberry Drive.
- Grade separation at Old SR 74.
- New east-west roadway connection with the Clepper Lane extension.
- Possibility for partial access at Glen Este-Withamsville Road.

Disadvantages of Alternative 4 include:

- Low speed ramp curves are eliminated.
- Requires retaining walls (which results in increased costs).
- Old SR 74 is no longer continuous but now tees into new interchange.

Alternative 5

This is the "no build" scenario, which would not include any roadway/geometric improvements. The roadways would remain in existing condition regardless of increased projected traffic and crashes. Alternative 5 will be carried forward for further evaluation.

EVALUATION OF CONCEPTUAL ALTERNATIVES

The following sections summarize the engineering and red-flag environmental issues associated with the proposed project. Where the impacts vary by alternative, the impact of each option is discussed.

Design Guidelines & Issues

The proposed interchange location for the Eastern Corridor Segment IV(a) project between Eastgate Boulevard and the existing interchange at Olive Branch-Stonelick Road has been carefully selected and analyzed based on various factors such as the proximity to the adjacent existing and proposed interchanges. Distances between acceleration/deceleration lanes and the adjacent interchanges have also been evaluated in order to provide sufficient distances for the new interchange and ramp locations. Traffic impacts have been analyzed for every different geometric layouts and alternatives (for detailed traffic analyses, see Appendices C & D).

Design Guidelines. Design speed for local roads are 45 mph, low speed urban collector per ODOT L&D Volume I. Design speed for SR 32, urban principal arterial, is 60 mph. Curb and gutter installation for local roads. No design exceptions were necessary at this conceptual stage. The lanes were assumed 12 feet with 4 feet offset to face of curb. Limited access will extend minimum 600' from center of ramp. An 8 degree max horizontal curve was used at local roads and interchange arterial. The lane configurations for each alternative were based on design year 2030 traffic information.

Design Issues. Some of the design issues encountered within the project are maintaining existing drives on Glen Este-Withamsville based on the raised profile for new construction of the overpass structure. A few drives have been removed or closed due to the higher profile. In addition, a few properties have been identified as potential property takes due to being landlocked and having their driveway access removed. These same impacts also occur on Old SR 74 with the construction of the overpass at SR 32. In addition, the proposed skewed structure/alignment at OLD SR 74 creates an undesirable intersection with existing Heitman Lane.

Traffic Analysis

The travel demand model was utilized to develop traffic volumes for the various Segment IV(a) alternatives. The improvements at the Eastgate Boulevard interchange as part of CLE-275-10.15 project were incorporated in all the alternative evaluations. Capacity analyses were performed using Highway Capacity Software (HCS, Version 5.5). Traffic volumes and capacity analyses results for various alternatives are discussed below. Traffic volumes are included in Appendix C and the HCS printouts have been provided in Appendix D.

Traffic Volumes

Traffic volumes for the No-Build and the Build alternatives for the design year (2030) were obtained in July 2011 from the travel demand models prepared by HNTB. Five alternatives were analyzed as shown in the table below with a brief description and the volume source. Manual adjustments were made for two of the alternatives and are explained later.

Alternative	Description	Volume Source – 2030 HNTB Synchro Model
I	Improvements at existing at-grade intersections.	No-Build
2	Interchange east of Fayard Drive.	Alt 7
3	Interchange at Elick/Bach Buxton.	Alt 8 L1 modified*
4	Interchange near Newberry Drive and ramps at Glen Este-Withamsville.	Alt 8 A1 modified*
5	No improvements.	No-Build

*Traffic volumes provided by HNTB were adjusted manually.

Alternative I is where the existing at-grade intersections are retained and improvements required to achieve an overall level of service (LOS) D were determined. **Alternatives 2, 3, and 4** assume that all the existing at-grade intersections from Eastgate Boulevard to Olive Branch-Stonelick Road are eliminated and a new interchange is provided between Glen Este-Withamsville Road and Old SR 74. In addition to a full interchange at Elick/Bach Buxton and Newberry Drive, Alternatives 3 and 4 have ramps at Glen Este-Withamsville Road providing access to and from SR 32 east of Glen Este. **Alternative 5** is the no-build condition with the existing at-grade intersections without improvements. The traffic analyses methodologies and results for the five alternatives are discussed below.

Traffic volumes for Alternatives 1, 2, and 5 were used as-is from the HNTB models shown above. Traffic volumes for Alternatives 3 and 4 were manually adjusted.

Modifications made to Alternative 3 Volume Network include:

- Removed Heitman Road extension.
- Provided overpass at Old SR 74.
- Provided eastbound on ramp from the new interchange location at Elick Lane/Bach Buxton Road.

Modifications made to Alternative 4 Volume Network include:

- Removed Heitman Road extension.
- Provided overpass at Old SR 74.
- Provided westbound off-ramp and eastbound on-ramp at Glen Este-Withamsville Road.
- Assumed Clepper Road extension connected to new interchange.

The table below shows the AM and PM peak hour traffic volumes along various segments on SR 32 for the different alternatives. Detailed traffic volume plates are contained in Appendix C.

			Alternatives	Alternative 2	Alternative 3	Alternative 4
	2030 HNTB Volume Model Name →		No-Build	Alt 7	Alt 8-L1*	Alt 8-A I*
Direction	SR 32 Segment	Peak Hour	Volume (vph)	Volume (vph)	Volume (vph)	Volume (vph)
	Eastgate Entrance to Glen Este Rd	AM	2329	_	_	_
		PM	3386	—	—	—
	Eastgate Entrance to Bach Buxton/Elick	AM		2289		
	Exit	PM	_	4006	—	—
P		AM	—	—	2380	2380
Eastbound	Eastgate Entrance to Glen Este Entrance	PM	_	_	4025	4030
astb	Glen Este Entrance to Bach Buxton/Elick Exit	AM			2580	2580
2 E		PM			4365	4370
SR 32	Bach Buxton/Elick Exit to Bach Buxton/Elick Entrance	AM		1747	2240	2130
<u>v</u>		PM	—	3040	3745	3670
	Old SR 74 to Olive Branch-Stonelick Exit	AM	2404			_
		PM	3699	—	—	—
	Bach Buxton Entrance to Olive Branch- Stonelick Exit	AM	_	1992	2450	2400
		PM	_	3346	4045	4145
	Olive Branch-Stonelick Entrance to Old SR 74	AM	2290			
		PM	1915	—	—	—
	Olive Branch-Stonelick Entrance to Bach	AM	_	3327	4155	3905
	Buxton/Elick Exit	PM	_	2270	3125	3100
SR 32 Westbound	Bach Buxton/Elick Exit to Bach Buxton/Elick Entrance	AM		2823	3605	3255
		PM	—	1911	2765	2600
	Bach Buxton/Elick Entrance to Glen Este Exit	AM			4205	4200
		PM	_	—	3200	3200
	Glen Este Exit to Eastgate Exit	AM		—	3940	3935
		PM	_	—	2795	2790
	Bach Buxton/Elick Entrance to Eastgate	AM	—	3906	—	—
	Exit	PM	—	2664	—	—
	Glen Este Intersection to Eastgate Exit	AM	3478	—	—	—
× 14 110 1		PM	2738	—	—	—

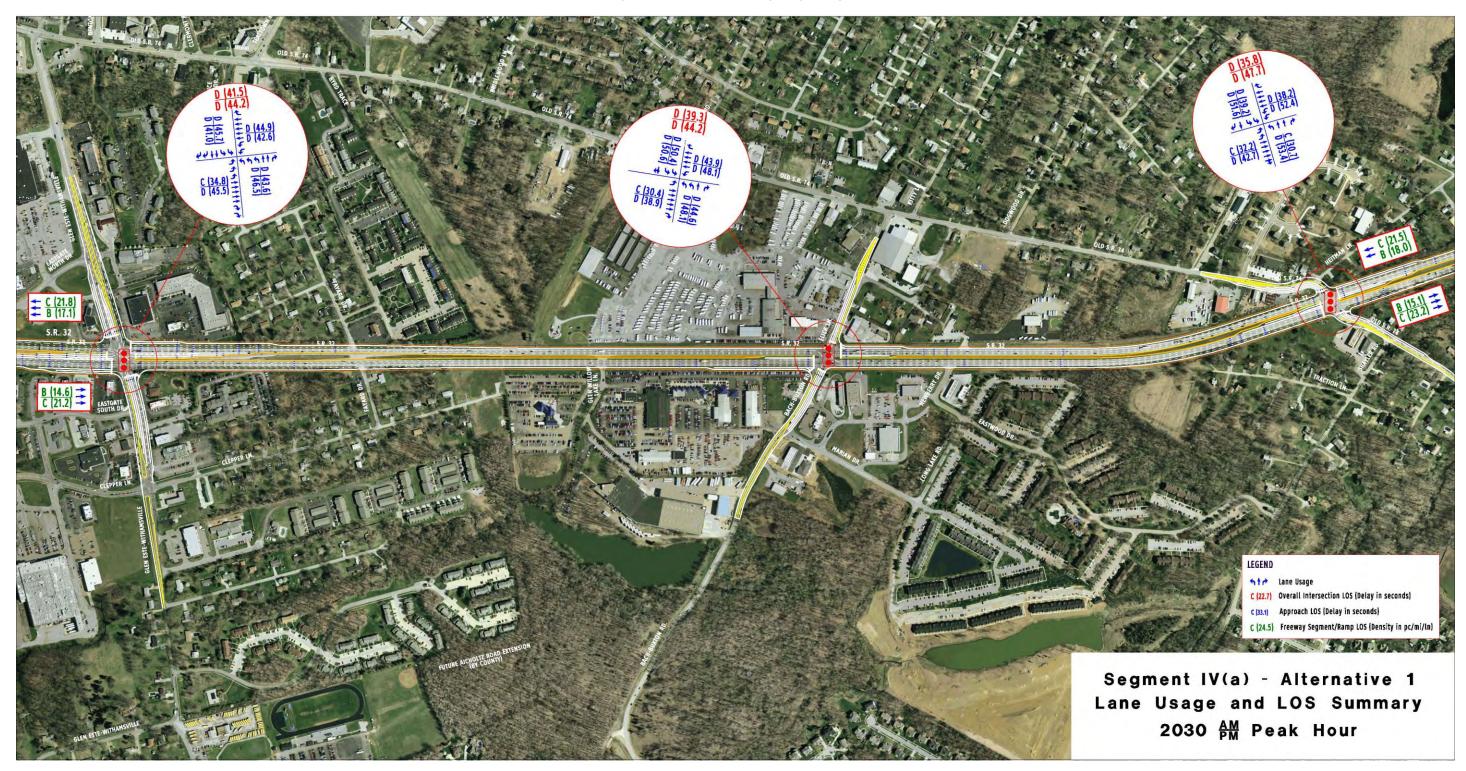
Table 8: 2030 Peak Hour Traffic Volumes along SR 32

* Modified

Capacity Analysis

HCS analyses were performed for each of the alternatives. Figures 8 through 12 summarize the level of service (LOS) and lane usage for each of the five alternatives based on design year traffic volumes computed by the travel demand model. Results are being included for freeway segments, ramp junctions, and key intersections for each alternative. The truck percentage used in the analyses is 3% on SR 32.

Alternative I – Figure 8 shows the improvements required at the existing at-grade signalized intersections along SR 32 with 2030 traffic volumes. In order to achieve LOS D, extensive lane improvements will be required, including four to five through lanes on SR 32 and double or triple lefts at the major signalized intersections.


Alternative 2 – Figure 9 shows the lane usage and traffic operations for Alternative 2 interchange layout. Freeway segments, ramp junctions, and ramp intersections are shown. SR 32 will need to have three through lanes in each direction.

Alternative 3 – Traffic operations and required lane usage for Alternative 3 are shown in Figure 10. SR 32 will need to be three through lanes in each direction. This alternative has ramps at Glen Este-Withamsville Road providing access to and from SR 32 east of Glen Este-Withamsville. All the ramp junctions and freeway segments will operate at LOS D or better.

Alternative 4 – Figure 11 shows the LOS summary and lane usage for Alternative 4, which is a tight diamond interchange east of Elick Lane/Bach Buxton Road with partial ramps at Glen Este-Withamsville Road. As with Alternatives 2 and 3, SR 32 will need to have three through lanes in each direction. All the ramp junctions, freeway segments, and ramp intersections will operate at LOS C or better.

Alternative 5 – Figure 12 shows the 2030 level of service and delay at intersections with existing lane usage and traffic control (no build). All the three signalized intersections on SR 32 between Eastgate Boulevard and Olive Branch interchanges will operate at failing condition (LOS F) with excessive delays.

Figure 8: Alternative I Capacity Analysis

Figure 9: Alternative 2 Capacity Analysis

Figure 10: Alternative 3 Capacity Analysis

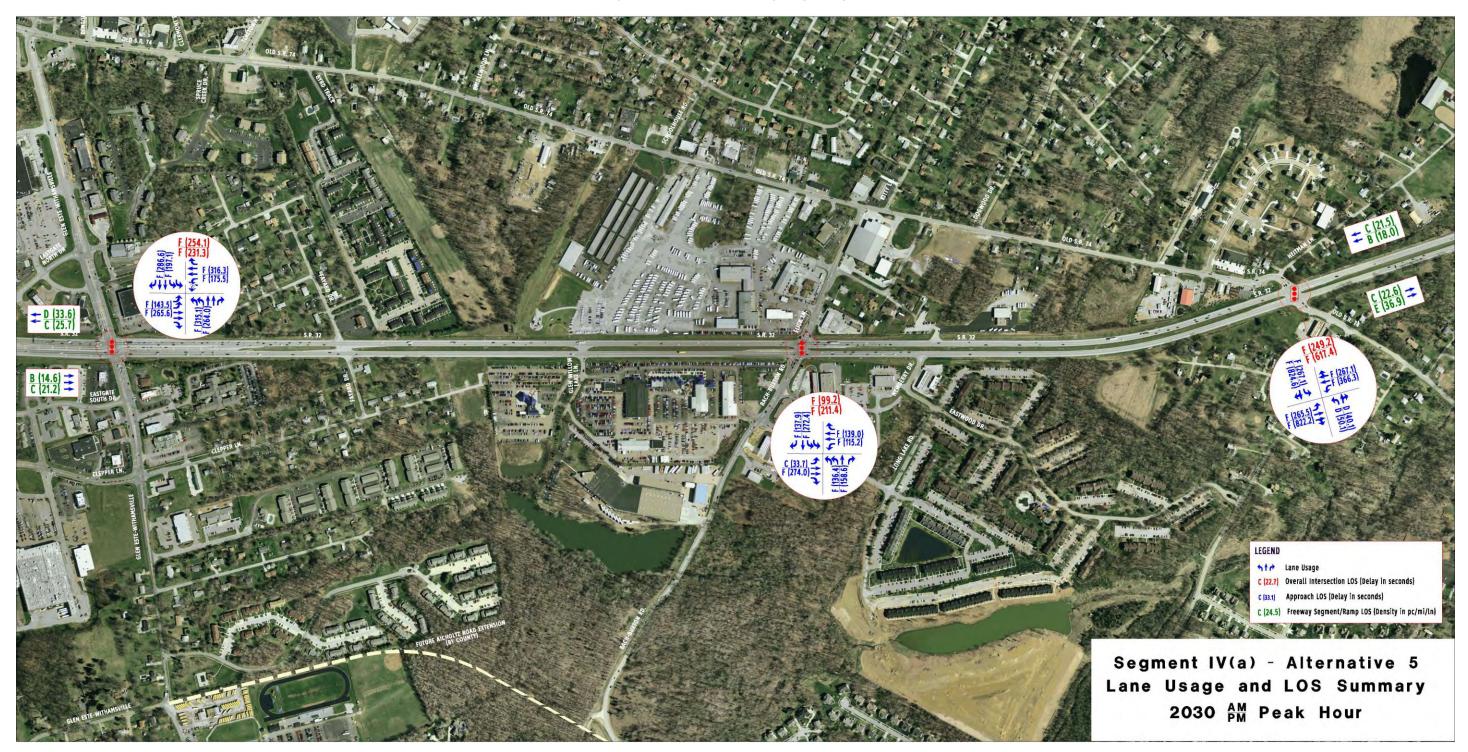


Figure 12: Alternative 4 (without Glen Este ramps) Capacity Analysis

Figure 13: Alternative 5 Capacity Analysis

Social and Community Impacts

The Segment IV(a) project study area extends through Union and Batavia Townships. The primary impacts to the communities within the study area are expected to be realized due to access changes and potential property impacts and relocations. However, the impacts from this project will mostly be felt by the neighborhoods in Union Township that are within the study area. This section will focus on the community impacts of proposed changes to access. Each of the remaining impacts is discussed in greater detail elsewhere in this document.

Union Township. Union Township was established in 1811 and is located centrally in Clermont County along the western border with Hamilton County. The township has a population of almost 46,500 (as of 2010) within 29 square miles. SR 32 essentially bisects the township. Union Township consists of predominately residential and agricultural land uses, with some commercial and industrial areas that are mostly found within the project area, along SR 32.

Access to many of the residential streets that currently intersect SR 32 in the Eastgate area will experience some changes as part of this project. Because the project aims to make SR 32 limited access, many of the existing intersections along SR 32 between Eastgate Boulevard and the Olive Branch-Stonelick interchange will be closed off; access to these streets will instead be through the new interchange, or one of the existing interchanges at either end of the study area. Access to all streets in the area will still be maintained.

Batavia Township. Batavia Township is just over 41 square miles in area with a population of slightly over 17,503 (as of 2000). Batavia Township is centrally located within Clermont County and borders Union Township to the west. Batavia Township consists primarily of agricultural land uses with some residential, commercial, and industrial land uses around the township.

Because the part of the Segment IV(a) study area that falls within Batavia Township is the area surrounding the Olive Branch-Stonelick interchange off of SR 32, there will be few access impacts to those in the township. The biggest change in access that drivers in Batavia Township will experience is that they will no longer being able to access Old SR 74 to or from SR 32; instead, they will have to use the new interchange or the existing Olive Branch-Stonelick interchange to access Old SR 74.

Environmental Justice

Environmental justice (EJ) laws, regulations, and policies are found in Title VI of the Civil Rights Act of 1964, the National Environmental Policy Act of 1969, Title 23 of the United States Code, Section 109(h), the Uniform Relocation and Real Properties Acquisitions Policy Act of 1970, and, most recently, Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low Income Populations (1994).

The Federal Highway Administration (FHWA) and Executive Order 12898 specifically identify minority (racial and national origin, including black, Hispanic, Asian American, and American Indian and Alaskan Native) and low-income populations as disadvantaged populations. OKI also includes elderly, disabled,

and households without a personal vehicle in their EJ analyses. EJ principles, as defined by the FHWA are in place to:

- Avoid, minimize, or mitigate disproportionately high and adverse human health and environmental effects, including social and economic effects, on minority populations and lowincome populations.
- Ensure the full and fair participation by all potentially affected communities in the transportation decision-making process.
- Prevent the denial of, reduction in, or significant delay in the receipt of benefits by minority and low-income populations.

EJ data was collected for each Census Tract in the study area from the 2010 United States Census Bureau. For this analysis, minority persons include any person who is not solely a non-Hispanic Caucasian. Low-income populations are those households with incomes at or below the U.S. Department of Health and Human Services (HHS) poverty guidelines. In this case, this would be a median household income at or below \$16,620 for the average household size in the study area of 2.54 persons (this is the average of the 2011 HHS Poverty Guidelines for a 2-person family and a 3-person family, to get close to a 2.54-person family). The following table shows the key disadvantaged populations within each Census Tract as well as the larger surrounding areas of Batavia, Milford, Clermont County, and the State of Ohio.

Census Tract / Location	% Minority	Median HH Income	Per Capita Income	% Persons Poverty	% 65 +	% Disabled	% No Vehicles
410	3.21%	\$66,617	\$29,857	8.30%	11.62%		1.92%
411.02	7.32%	\$35,911	\$15,549	38.00%	6.59%		2.50%
412	3.75%	\$63,140	\$26,292	4.70%	13.05%		0.44%
413.03	4.44%	\$68,859	\$29,086	4.20%	7.72%	Data not available	0.56%
413.04	0.00%	\$59,375	\$35,231	0.00%	2.70%	from 2010 Census.	0.00%
413.05	5.62%	\$62,315	\$34,006	2.20%	11.93%	Census.	0.80%
413.06	7.19%	\$43,382	\$28,870	10.10%	12.58%		0.96%
413.07	3.64%	\$64,342	\$29,506	4.50%	11.90%		0.00%
Study Area Tract Total / Average	4.40%	\$57,993	\$28,550	9.00%	9.76%	n/a	0.90%
Batavia	6.23%	\$42,583	\$23,430	14.50%	13.52%		1.37%
Milford	4.90%	\$39,898	\$28,504	11.20%	21.87%	Data not available	4.45%
Clermont County	3.62%	\$58,472	\$27,900	9.30%	11.78%	from 2010 Census.	1.55%
Ohio	15.80%	\$47,358	\$25,113	14.20%	14.06%	Census.	2.81%

Table 9: Environmental Justice Characteristics

Source: United States Census Bureau

Based upon the information obtained from the 2010 United States Census, no Census Tract has a median household income below the Department of Health and Human Services poverty guidelines. The study area average for each remaining EJ population (minorities, persons in poverty, age 65+, and

without a vehicle) is well below the corresponding state percentages. However, 38% of people in Census Tract 411.02 are in poverty, which is more than double the state average of 14.20%. Additionally, 2.50% of the population in this same Census Tract has no vehicle, which is just below the state average at 2.81%. While these EJ statistics make this Census Tract notable, the Tract is located on the far east end of the study area and no of its population should be adversely impacted through this project.

Parks and Recreation (Section 4(f))

Section 4(f) refers to consideration of property that is publicly owned parks and recreational lands, wildlife and waterfowl reserves and historic properties. From the initial Red Flag review and project area mapping, Section 4(f) areas were identified. This includes two parks and three reservoirs in or near the study area. Three cemeteries were also identified within the study area. This section of this report is not intended to serve as a Section 4(f) evaluation, but merely to present information on the resources present within the project area based on secondary source research. Should any of these resources be impacted, the Section 4(f) process will be used to ensure that no feasible and prudent alternative to the use of the land exists and that the action includes all possible planning to minimize harm to the property.

Veterans Park is a recreational park with ball fields and other sports facilities located in the northeast quadrant of the Clough Pike and Glen Este-Withamsville Road intersection. Ivy Point Park is located at Ferguson Drive near Clough Pike. Both parks are owned by Union Township and are just outside the study area, so they should not be impacted by any of the alternatives. Recreational fishing occurs at three reservoirs: Glen Willow Lake and Wuerdeman Lakes are located off of Bach Buxton Road, and Jackson Lake is located at Old State Route 74 near Eastgate Mall. Alternative 2 may potentially affect the western end of Glen Willow Lake. All three cemeteries are adjacent to the study area, along or adjacent to Olive Branch-Stonelick Road. None of the cemeteries will be impacted by the proposed alternatives.

Through this phase of the project, no Section 4(f) determinations have been made. A Section 4(f) evaluation will be conducted during the next step of the ODOT PDP.

Cultural Resources

The study area was examined through on-line resources for previously identified cultural resources. The Ohio State Historic Preservation Office's (OSHPO) on-line mapping service was used to identify any historic structures, archaeological sites, or National Register of Historic Places (NRHP) registered sites within the study area. The interchanges at either end of the Segment IV(a) study area (the Eastgate Boulevard and Olive Branch-Stonelick Road interchanges) were previously surveyed, but none of the conceptual alternatives between them have been surveyed. This mapping identified three previously recorded cemeteries, eight previously recorded history/architecture sites and seven previously identified archaeological sites. No properties on the National Register of Historic Places are known to exist in the study area; however, the study area has not been previously surveyed for cultural resources. A cultural literature review map can be found in the Red Flag Summary (see Appendix F). The following tables list the Ohio Historical Inventory (OHI) buildings, the Ohio Genealogical Society (OGS)

cemeteries, and the Ohio Archaeological Inventory (OAI) sites that have been identified in or near the study area.

OHI #	Present Name	Address	Style	Use	Date	Condition
CLE0053006	Rose House	947 Old SR 74	Vernacular	Single Dwelling	1865	Destroyed
CLE0052906	William Jones Bldg	951 Old SR 74	Vernacular	Unknown Use	1860	Destroyed
CLE0067606	null (formerly West Property)	1378 Old SR 174	Vernacular	Single Dwelling	1945	Destroyed
CLE0067807	Hunt Property	Stonelick-Olive Branch Rd	Vernacular	Barn	1840	In use
CLE0067907	Potrafke Property	4409 Stonelick-Olive Branch Rd	Vernacular	Single Dwelling	1865	Destroyed
CLE0068007	Hunt Property	Stonelick-Olive Branch Rd	Vernacular	Single Dwelling	1945	Destroyed
CLE0057907	Lake Allyn of Camp Allyn	Amelia-Olive Branch Rd	null	Other Use	1902	Partially destroyed
CLE0067707	West Property	1 384 Old SR 74	Vernacular	Single Dwelling	1945	Occupied

Table 10: OHI Buildings

Table 11: OGS Cemeteries

OGS #	Present Name	Address	Condition
1753	Old Apple-German-Old Olive Branch	End of Old Depot Road	Destroyed/moved
1767	Olive Branch	4225 Olive Branch-Stonelick Road	Active
14498	Old Cemetery	Nine Mile Road	Destroyed/moved or mislocated

Table 12: OAI Sites

OAI #	Name	Time Period	Туре	Condition
CT0596	null	Prehistoric	Open Site	Partially destroyed
CT0597	null	Prehistoric	Open Site	Destroyed
CT0547	null	Prehistoric	Open Site	Partially destroyed
CT0548	null	Historic	Open Site	Partially destroyed
CT0581	null	Prehistoric	Open Site	Partially destroyed
CT0170	Wiederhold Mound / Pfarr Site	Prehistoric	Open Site	Destroyed
CT0172	Wiederhold Site	Prehistoric	Open Site	Destroyed

None of the history/architecture or archaeological sites are known to be eligible for the NRHP. As of now, none of these sites are located within the boundaries of the alternatives. When the exact right-of-way limits are defined for the preferred alternative, a Phase I archaeological reconnaissance survey and history/architecture survey will be completed. Should any historic properties be identified, Section 4(f) coordination will be completed.

Ecological Resources

The aquatic resources and terrestrial habitats, as well as endangered and threatened species were examined according to the Ohio Department of Transportation (ODOT), Ecological Manual (2005a). Preliminary findings are presented below. During the next phases of this project, the ecological impacts for the feasible alternatives will be refined and presented in the Ecological Survey Report for review by regulatory agencies. Subsequent coordination will determine appropriate mitigation for impacts.

Aquatic Resources. The project area is within the East Fork Little Miami River watershed. Salt Run and Shayler Run are also within the study area and are designated WWH-aquatic life use, AWS & IWS-water supply use, PCR-recreation use. Salt Run is a Section 303(d) impaired water. Numerous unnamed streams also exist within the area. There are no designated Wild or Scenic Rivers located within one mile of study area. The Little Miami River, a state and national scenic river, is over 3 miles from the project study area.

There are possible impacts to wetland areas and cat tails within the study area. NWI and soil survey maps indicate a presence of wet areas throughout the study area. Previous field investigations indicate the presence of wet areas throughout the study area. Wetland and soil mapping can be found in the Red Flag Summary (see Appendix E). Cat tails are also present in potential areas of disturbance (i.e. roadside ditches as well as potential wetland areas and retention pond fringes).

Terrestrial Habitats. The study area consists mostly of existing right-of-way and residential/commercial lands with some wooded riparian corridors and open riparian corridors, oldfield and newfield land uses, and upland woodlands and wooded fence row. Since the exact right-of-way impacts are not yet known, it is not known how much of each terrestrial habitat will be affected. In the next phase, the terrestrial habitats for necessary new right-of-way can be calculated.

Endangered and Threatened Species. Based on information from the US Fish and Wildlife Services, there are seven (7) federally listed species in Clermont County. This list includes Indiana bat (endangered), running buffalo clover (endangered), pink mucket pearly mussel (endangered), fanshell (endangered), rayed bean (candidate), sheepnose (candidate), and snuffbox (species of concern). Potential Indiana bat habitat may be present throughout portions of the study area. Based on correspondence with the Ohio Department of Natural Resources (ODNR), there are no records of rare or endangered species within the study area. Coordination with ODNR is available in the Red Flag Summary (see Appendix E).

Hazardous Materials

Preliminary research, including online reviews of the US Environmental Protection Agency's Enviromapper and the Ohio State Fire Marshal Bureau of Underground Storage Tank Regulation (BUSTR) database, was completed to identify suspect parcels within the Segment IV(a) study area. Through this research, no mapped landfills or superfund sites were identified; however, numerous hazardous material and UST/LUST sites of concern were identified as being located throughout the study area. The identified sites of concern are listed in the tables below.

Site Name	Address
Civacon A Dover Resources Co.	4595 E. Tech Drive, Cincinnati
Custom Colors Auto Service	I 124A Old SR 74, Batavia
Dynamics Corp of America Ellis & Watts Div.	4400 Glen Willow Lake Lane, Batavia
Eastgate Motors Inc.	4468 Eastgate Boulevard, Cincinnati
Environmental Chemical Corp.	3235 Omni Drive, Cincinnati
Firestone	4625 Eastgate Boulevard, Cincinnati
Hempleman's Auto Body	4413 Kitty Lane, Batavia
Holman Motors, Inc.	4387 Elick Lane, Batavia
Jeff Wyler Buick Pontiac	III7 SR 32, Batavia
Jerry's Autobody Carstar Inc.	4425 Aicholtz Road, Cincinnati
Kroger #902	4530 Eastgate Boulevard, Cincinnati
Lucas Automotive	3241 Omni Drive, Cincinnati
Meijer #148 (gas station)	887 Eastgate North Road, Cincinnati
Meijer #148 (store)	4445 Glen Este-Withamsville Road, Cincinnati
Midwest Auto Exchange	4584 Summerside Road, Cincinnati
Pep Boys #260	4436 Glen Este-Withamsville Road, Cincinnati
Sam's Club #6528	815 Clepper Lane, Cincinnati
Sears #1810	4595 Eastgate Boulevard, Cincinnati
Summer's Body and Paint	I 107 Old SR 74, Batavia
Tealtown Exxon	1006 Cincinnati-Batavia Pike, Batavia
Terminix Branch 2020	4440 Glen Este-Withamsville Road, Cincinnati
Trentec Inc.	4600 E. Tech Drive, Cincinnati
Vivi-Color Inc	665 Cincinnati-Batavia Pike, Cincinnati
Wal-Mart #1443	4370 Eastgate Square Drive, Cincinnati
West Clermont	4342 Glen Este-Withamsville Road, Cincinnati
Wyler Jeff Nissan Inc.	861 Wyler Park Drive, Cincinnati

Table 13: Hazardous Waste Sites of Concern

Table 14: UST/LUST Sites of Concern

Facility ID	Site Name	Address
13000126	Sunoco #0043-8820	1006 Cincinnati-Batavia Pike, Batavia
13010072	Tealtown Exxon	1006 Old SR 74, Batavia
I 3004027	Saul's Construction Co., Inc.	1077 Cincinnati-Batavia Pike, Batavia

Facility ID	Site Name	Address
13000113	Glen Este Marathon	1098 Cincinnati-Batavia Pike, Batavia
13000010	Jeff Wyler Auto Center	1117 SR 32, Batavia
13010103	Big Mike's Gas-N-Go	1147 Marian Drive, Batavia
13000026	Clermont Distributing Co.	1155 Old SR 74, Batavia
13002579	Speedway #9674	1269 Old SR 74, Batavia
13002615	United Dairy Farmers #139	957-961 Cincinnati-Batavia Pike, Batavia

In the next phases/step of the project, an ESA Screening will be undertaken in accordance with the ODOT Environmental Site Assessment Guidelines (April 2009) to further determine the potential of encountering hazardous substances from the suspect parcels prior to construction activities.

Traffic Noise

The purpose of Part 772 of the Code of Federal Regulations (CFR) is to provide procedures for noise studies and noise abatement measures in order to help protect the public health and welfare, to supply noise abatement criteria and to establish requirements for information to be given to local officials for use in the planning and design of highways approved pursuant to title 23 of the United States Codes (USC) (23 CFR 772.1). The noise analysis for this project will be conducted in accordance with the FHWA Federal Aid Policy Guide, Subchapter H, Part 772, Procedures for Abatement of Highway Traffic Noise and the ODOT guidelines contained in its Analysis and Abatement of Highway Traffic Noise document dated June 7, 2011 and subsequent clarifications dated January 27, 2012.

There are several single-family and multi-family residential developments within the project study area as well as a school, cemetery, and park. Noise abatements may be feasible but a more detailed analysis determining what exactly is needed will be completed during the next phases of the project.

Air Quality

Part 81 of the CFR provides procedures on air quality matters, which affect the public health and welfare and environmental quality of the natural and built habitat. The 1990 Clean Air Act is the cornerstone of these procedures and enforced by the U.S. Environmental Protection Agency (USEPA). Ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, particulate matter and lead are the six pollutant defined as indicators of air quality by the USEPA. Threshold concentrations are established for these pollutants and designated as National Ambient Air Quality Standards (NAAQS).

USEPA air quality designations are categorized by area as: non-attainment, attainment or unclassifiable. When an area does not meet the air quality it is designated as a non-attainment area. The I-Hour Ozone Standard and the new 8-Hour Ozone Standard require monitoring of pollutant concentration being released into the atmosphere. Clermont County is a basic non-attainment county – it is in the $PM_{2.5}$ nonattainment area and the 8-hour ozone nonattainment area.

The OEPA/ODOT agreement states that a quantitative CO analysis is recommended for projects that modify existing facilities that cause an increase in Average Daily Traffic of more than 10,000 vehicles between project completion and ten years hence. Based on preliminary traffic numbers, it appears that the ten-year traffic increase will exceed the 10,000-vehicle maximum. As a result, it is anticipated that a quantitative CO analysis will be required. A Qualitative MSAT Analysis will be required to be prepared and coordinated with OEPA. PM2.5 coordination with approval from OEPA, USEPA, and FHWA will be required as well. The preparation of a PM 2.5 Hotspot Analysis is not anticipated to be required.

Geotechnical Issues

There are few geologic hazards that have been noted within the project area: evidence of rock strata, the possibility of unsuitable materials, and the possibility of subgrade stabilization or an undercut appearing to be needed. Existing geologic and subsurface information indicated that bedrock in the area is relatively shallow, and rock is exposed in the streambeds. Since the area is highly developed, it is anticipated that fill soils will be encountered. Subgrade stabilization or an undercut may potentially be needed based on a review of existing subsurface explorations which indicated that the near surface native soils were typically wetter at the time the borings were drilled. The appendices of the Red Flag Summary include further information.

Utility Issues

While specifics have not yet been identified, it has been assumed that pole lines, sewers, and water lines that run along the anticipated work area will need to be relocated. Utilities that are currently within the existing right-of-way will likely require additional right-of-way to accommodate their relocation. These details will be coordinated throughout the design process in later phases of the project, regardless of which alternative is chosen.

Cost

Alternative I involves only widening SR 32 and intersection improvements (i.e., no involve gradeseparations or interchange) and is estimated at \$22,550,000. Because Alternatives 2-4 all involve two grade-separations (at Glen Este-Withamsville and at Old SR 74), a new interchange and a third lane on SR 32 in each direction, the costs for each alternative are roughly the same at Step 4 level of detail. Therefore, the costs for Alternatives 2-4 are estimated at \$65,850,000. Funding is expected to come from local, state, and federal levels.

Public Input

Two public open houses have been held for the Segment IV(a) project: one on October 6, 2010 and one on September 28, 2011.

The first open house was held at the Union Township Civic Center to introduce the public to the Segment IV(a): SR 32 Eastgate Area Improvements study and to obtain their initial comments. Representatives from Clermont County, the Clermont County Transportation Improvement District (CCTID), Ohio Department of Transportation (ODOT) District 8, and TranSystems Corporation were

available to answer questions about the project and solicit feedback from attendees. The open house was held from 5:00 to 7:00 PM. Sign-in sheets from the meeting listed 70 people as being in attendance. Exhibits displayed at the meeting included boards explaining the purpose of the meeting and describing the comment procedure, the SR 32 Eastgate Area Improvements Study Area, environmental impacts, current and future levels of service (LOS) in the study area, crash data from the study area for the past three years, and the overall Eastern Corridor project improvements. Following the public meeting, there was a two-week period for the public to submit comments; the study team received comments from 21 people.

The second open house was also held at the Union Township Civic Center and was presenting the five conceptual alternatives for this project to the public to gain their feedback on them. Representatives from Clermont County, the Clermont County Transportation Improvement District (CCTID), Ohio Department of Transportation (ODOT) District 8, and TranSystems Corporation were available to answer questions about the project and solicit feedback from attendees. The open house was held from 5:00 to 7:00 PM. Sign-in sheets from the meeting listed 251 people as being in attendance. Exhibits displayed at the meeting included boards explaining the purpose and need of the project, environmental impacts, displays of Alternatives 1-4, a detailed display of the optional ramps at Glen Este-Withamsville Road, boards about the 1-275/SR 32 interchange project, and the overall Eastern Corridor project improvements. Following the meeting, there was a four-week public comment period; the study team received comments from 82 people. The biggest issue brought up at this open house was concern over possible impacts of this project on the new Union Township Library branch located on Glen Este-Withamsville Road, just north of SR 32.

Both meetings were held in an open house style, so members of the public could attend at any time during the open house hours and browse the exhibits at their leisure; there was no formal presentation given at either open house. Exhibits from both meetings are available in Appendix A and comment forms received from both meetings are included in Appendix B. A table showing the general feedback regarding the study area (received at the first open house) followed by figures showing the public's preferences on the alternatives examined in this step of the project (received at the second open house) are below.

Important Problems in Study Area			
Respondent is concerned with traffic congestion on SR 32. (8 comments)			
Respondent is concerned with speed and congestion on Old SR 74 and Olive Branch-Stonelick Road now that Old SR 74 goes through to the UC branch campus. (2 comments)			
Respondent is concerned with turning across traffic [on local roads feeding to SR 32]. (2 comments)			
Respondent is concerned with traffic signals not corresponding with the volume of traffic – suggests access roads with no signals along SR 32, which would allow for bypassing SR 32 and still being able to access businesses. (I comment)			
Respondent is concerned with the traffic signal at Old SR 74 and SR 32, at the Speedway. (I comment)			
Respondent is concerned with the disturbance that will be created. (I comment)			
Respondent is concerned about still being able to provide access to existing businesses. (I comment)			
Respondent is concerned with noise issues. (I comment)			

Table 15: Comments from Open House I

Respondent believes that there are too many lights within the study area. (I comment)

Respondent believes an overpass at SR 32 and Old SR 74 by the Speedway and Heitman Lane will alleviate some of the back-up for people, especially those living on Heitman Lane. (I comment)

Respondent believes that growth in the area will be inhibited due to congestion on SR 32 and safety issues. (I comment)

Respondent believes overpasses will alleviate traffic problems currently caused by traffic lights. (I comment)

Respondent notes that there are not safe sidewalks in the area. (I comment)

Respondent is concerned with the cost to tax payers, the feasibility of the project, and the impact to the flow of traffic in the area. (I comment)

Respondent is concerned with the traffic lights in the study area and believes that they contribute to the traffic and accidents in the area. (I comment)

Ideas to Consider When Developing Alternatives

Respondent would like service roads next to SR 32 to access businesses. (4 comments)

Respondent suggests overpasses at the intersections over SR 32. (3 comments)

Respondent is concerned with the impact to businesses. (2 comments)

Respondent is concerned with the impact this will have on the local homeowners and does not want to have a highway next to their house. (I comment)

Respondent suggests closing the Old SR 74 intersection with SR 32, or at least making it a RIRO. (I comment)

Respondent suggests closing off Old SR 74 or making it one-way. (I comment)

Respondent suggests developing Old SR 74, Aicholtz Road, and Clough Pike to handle traffic before starting SR 32 construction. (I comment)

Respondent suggests opening a ramp/interchange at Armstrong Boulevard and SR 32. (I comment)

Respondent suggests sitting at each driveway off Old SR 74 to check of safety regarding clearance for viewing. (I comment)

Respondent believes that safety of the citizens needs to be a top concern (re: speeding, congestion). (I comment)

Respondent likes the proposed Elick/Bach Buxton extension interchange as a way to move people across SR 32 while allowing a convenient access point to SR 32. (I comment)

Respondent would like to see sidewalks. (I comment)

Respondent would like to see a better flow for through traffic. (I comment)

Other General Comments/Concerns

Respondent feels that closing the at-grade intersection of Glen Este-Withamsville will be very detrimental to the established businesses currently being served by that intersection. (I comment)

Respondent commented that the maps were ok, but having someone explain would be better; stated that with larger groups, it was difficult to get close enough to see details. (I comment)

Respondent was concerned that the alternatives looked at in the original study were not shown at this meeting and that it seemed to focus on spreading the construction. They also noted that collectors work well in other cities. (I comment)

Respondent thinks that the service roads should be at least 2 lanes in each direction; begin at I-275 and extend beyond the congested demography; have a speed limit of 35 MPH; and provide opportunity for plenty of curb cuts. (I comment)

Respondent believes that Fayard Drive and Clepper Lane need to be part of this redevelopment plan. (I comment)

Respondent is concerned with the impact this project will have to their home/o-property value as well as the resale potential of it in the future. Respondent also wants to know if the county will purchase their property for this project. (I comment)

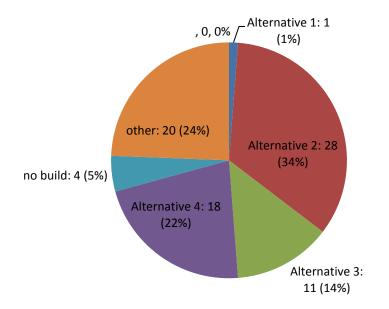
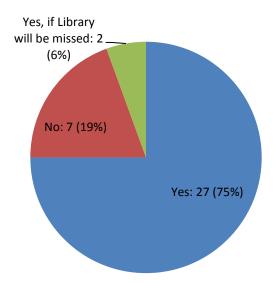



Figure 14: Interchange Preferences from Open House 2

CONCLUSIONS AND COMPARISON MATRIX

The five Conceptual Alternatives were further developed and evaluated during Step 4 of the Project Development Process. The findings of the evaluations were presented by discipline in the preceding section of this document ("Evaluation of Conceptual Alternatives"). This section will summarize the conclusions by alternative, with a matrix at the end of this section summarizing the evaluation factors for each option.

Alternatives

Alternative I – This alternative would maintain the access points along SR 32, including signals at the intersections with Glen Este-Withamsville Road, Elick Lane/Bach Buxton Road, and Old SR 74. It would upgrade the roadway to handle future traffic volumes, adding a number of through and turn lanes in all directions. The number of lanes required to handle traffic volumes, however, would not do much to improve safety conditions in the area. There would be some impacts associated with this alternative because of how much wider the road would need to be in order to handle the traffic volumes. Construction costs would potentially be less than other alternatives because there are no structures (overpasses) involved with this alternative, but exact costs and property impacts are not yet known.

Alternative 2 – This alternative adds a classic diamond interchange along SR 32 between Glen Este-Withamsville Road and Elick Lane/Bach Buxton Road. It makes SR 32 limited access by adding overpasses at Glen Este-Withamsville Road and Old SR 74 and closing the remaining intersections along SR 32. Consolidating the existing access points on SR 32 into one new interchange would result in SR 32 being able to better handle future traffic volumes. While access points along SR 32 are closed, access to all these areas is still maintained; Heitman Lane and Aicholtz Road extension projects help provide access to areas affected by intersection closures. It also improves safety in the corridor as there are fewer conflict points. One reservoir (used for recreational fishing) may potentially be impacted. Exact property impacts and construction costs are not yet known.

Alternative 3 – This alternative adds an overpass at Elick Lane/Bach Buxton Road that functions with entrance/exit ramps that are added just east of the overpass along SR 32. It makes SR 32 limited access by also adding overpasses at Glen Este-Withamsville Road and Old SR 74 and closing the remaining intersections along SR 32. Consolidating the existing access points on SR 32 into one new interchange would result in SR 32 being able to better handle future traffic volumes. While access points along SR 32 are closed, access to all these areas is still maintained; Clepper Lane and Aicholtz Road extension projects help provide access to areas affected by intersection closures on SR 32. Additionally, partial access may still be provided at Glen Este-Withamsville Road from SR 32 westbound and to SR 32 eastbound. This alternative improves safety in the corridor as there are fewer conflict points. Exact property impacts and construction costs are not yet known.

Alternative 4 – This alternative adds a full-movement TUDI on SR 32 between Elick Lane/Bach Buxton Road and Old SR 74. It makes SR 32 limited access by also adding overpasses at Glen Este-Withamsville Road and Old SR 74 and closing the remaining intersections along SR 32. Consolidating the existing access points on SR 32 into one new interchange would result in SR 32 being able to better handle future traffic volumes. While access points along SR 32 are closed, access to all these areas is still maintained; Clepper Lane and Aicholtz Road extension projects help provide access to areas affected by intersection closures on SR 32. Additionally, partial access may still be provided at Glen Este-Withamsville Road from SR 32 westbound and to SR 32 eastbound. This alternative improves safety in the corridor as there are fewer conflict points. Exact property impacts and construction costs are not yet known.

Alternative 5 – This alternative would not provide any improvements to SR 32 in the Eastgate area. Roadway capacity and safety issues will not be improved in the area. Access through the study area will not be changed. There are no property impacts or construction costs with this alternative.

Conclusions

Based upon the evaluations and public comment, select alternatives are recommended for advancement. The Feasible Alternatives that are chosen for further work will be analyzed in greater detail, including further design based on certified traffic, environmental field studies and agency coordination, as well as an analysis of the local network improvements required as a result of the preferred alternative.

The alternatives recommended to be carried forward are:

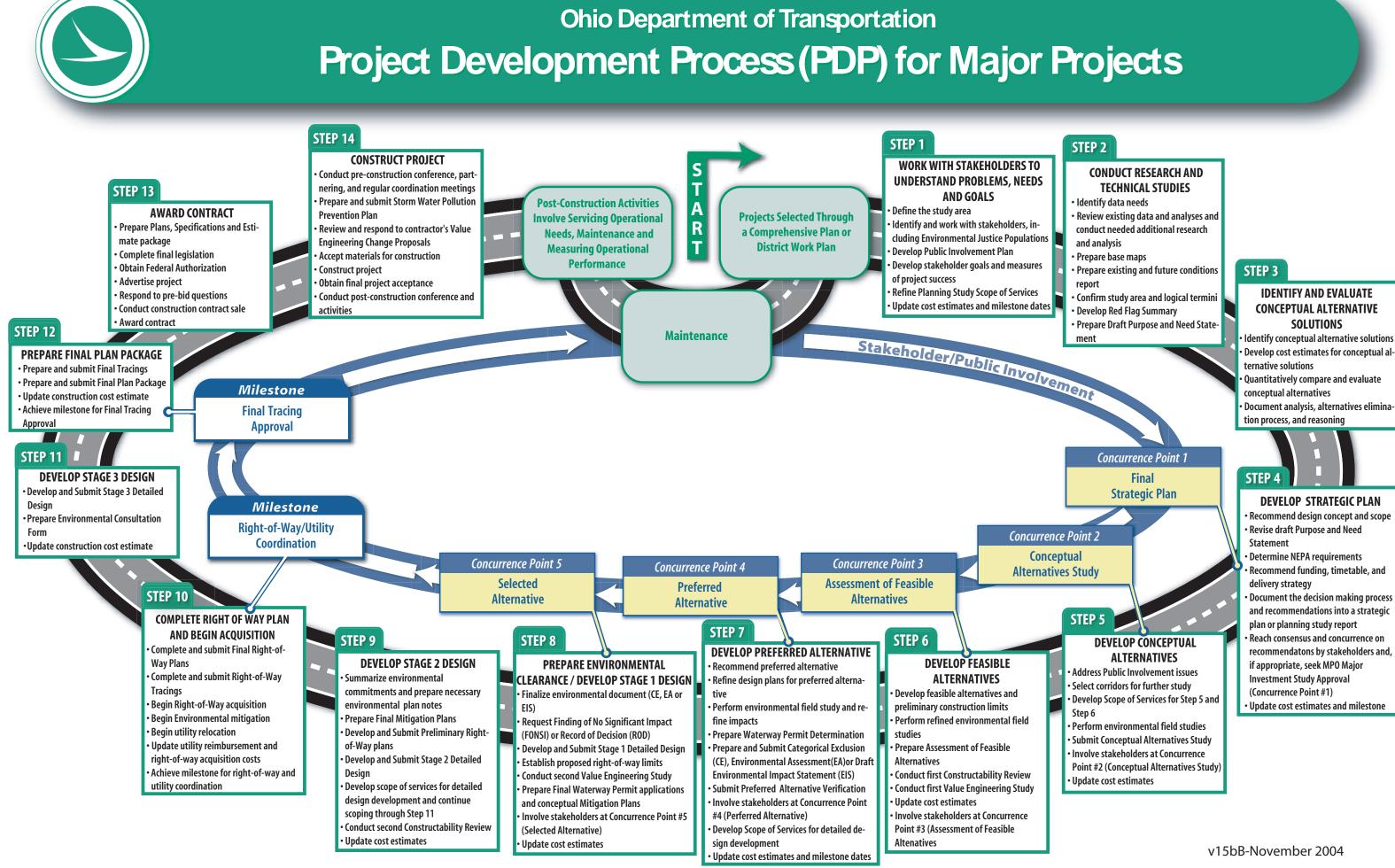
- Alternative 2 Interchange East of Fayard Drive.
- Alternative 4 Interchange at Newberry Drive, with ramps at Glen Este-Withamsville Road.
- Alternative 4 Interchange at Newberry Drive, without ramps at Glen Este-Withamsville Road.
- Alternative 5 No Build.

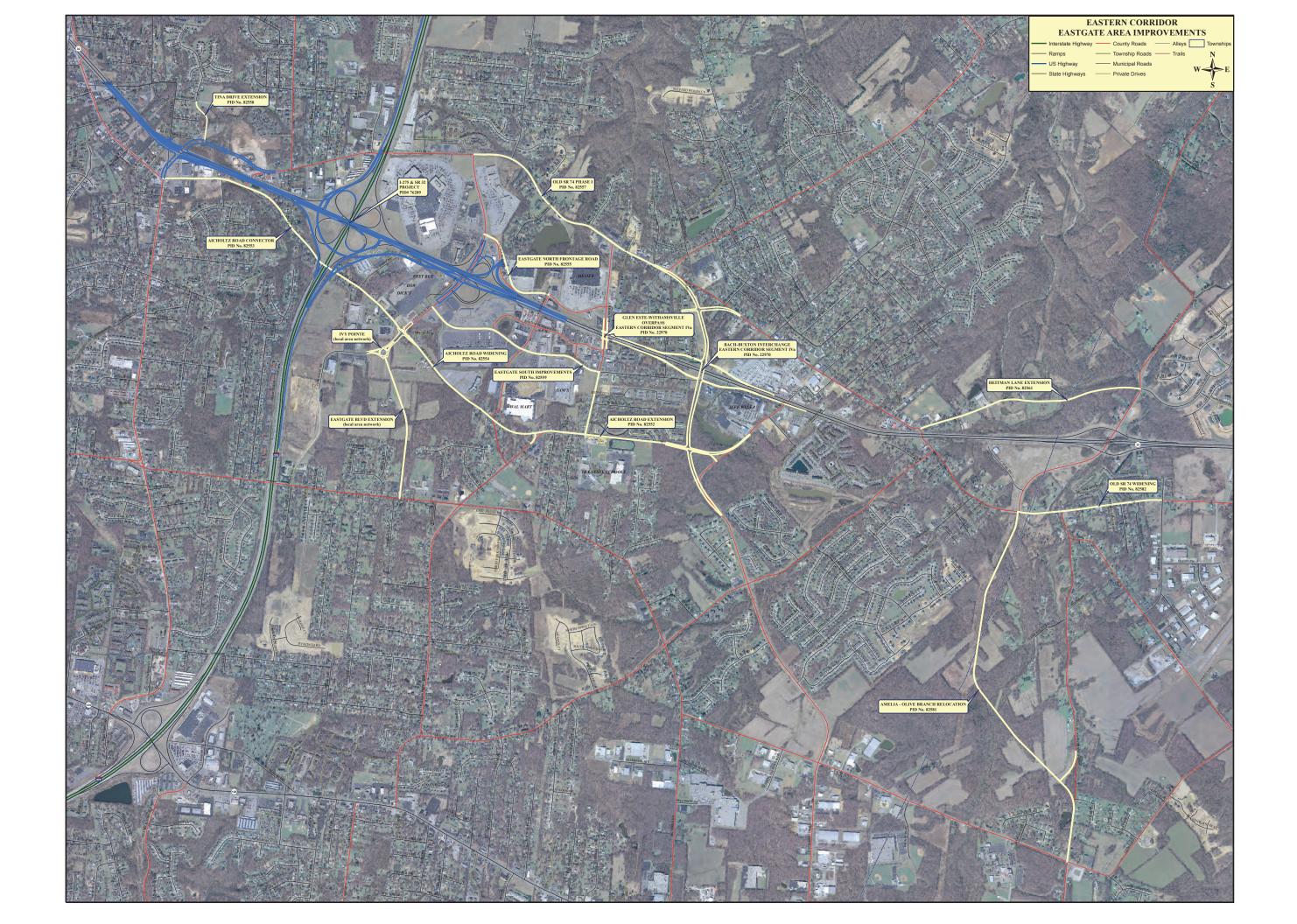
Alternative I is not being carried forward because of the increased number of lanes needed throughout the corridor. Furthermore, maintaining (larger) at-grade intersections would not improve safety along the SR 32 corridor as outlined in the Purpose and Need. Alternative 3 is not being carried forward as there are no major benefits over Alternative 2 or Alternative 4, Alternative 3 has the highest ROW impacts and there is lack of public support for this alternative.

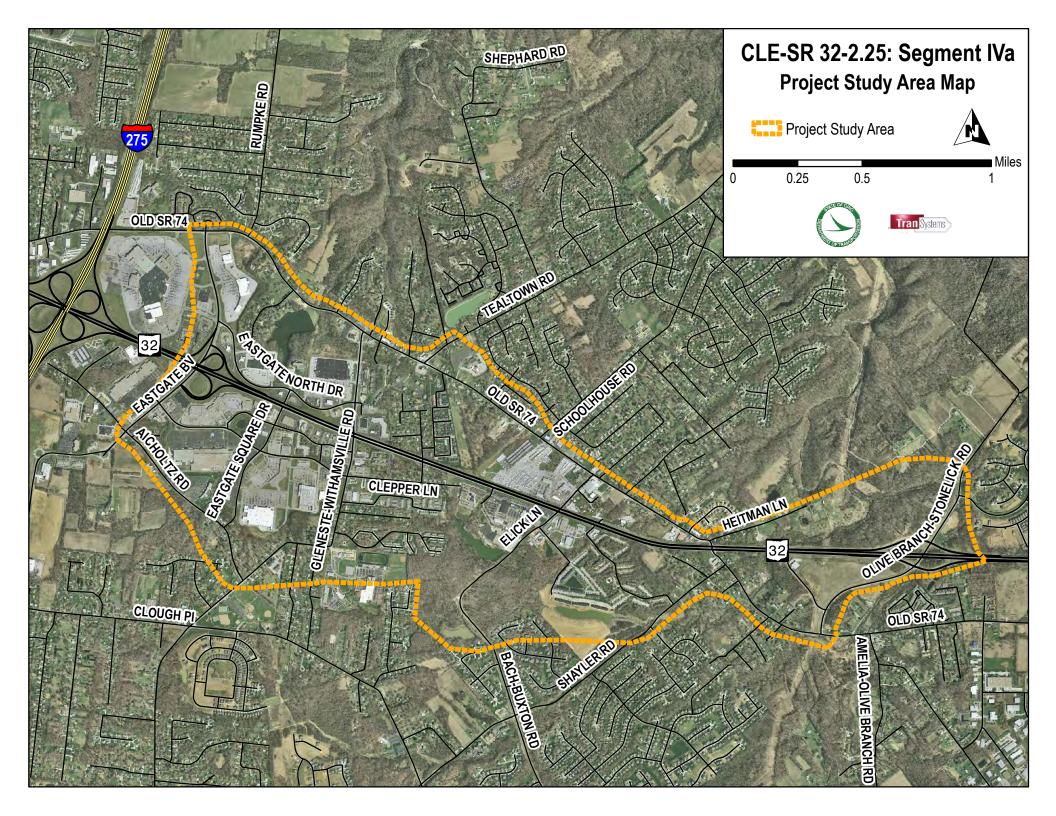
Alternatives

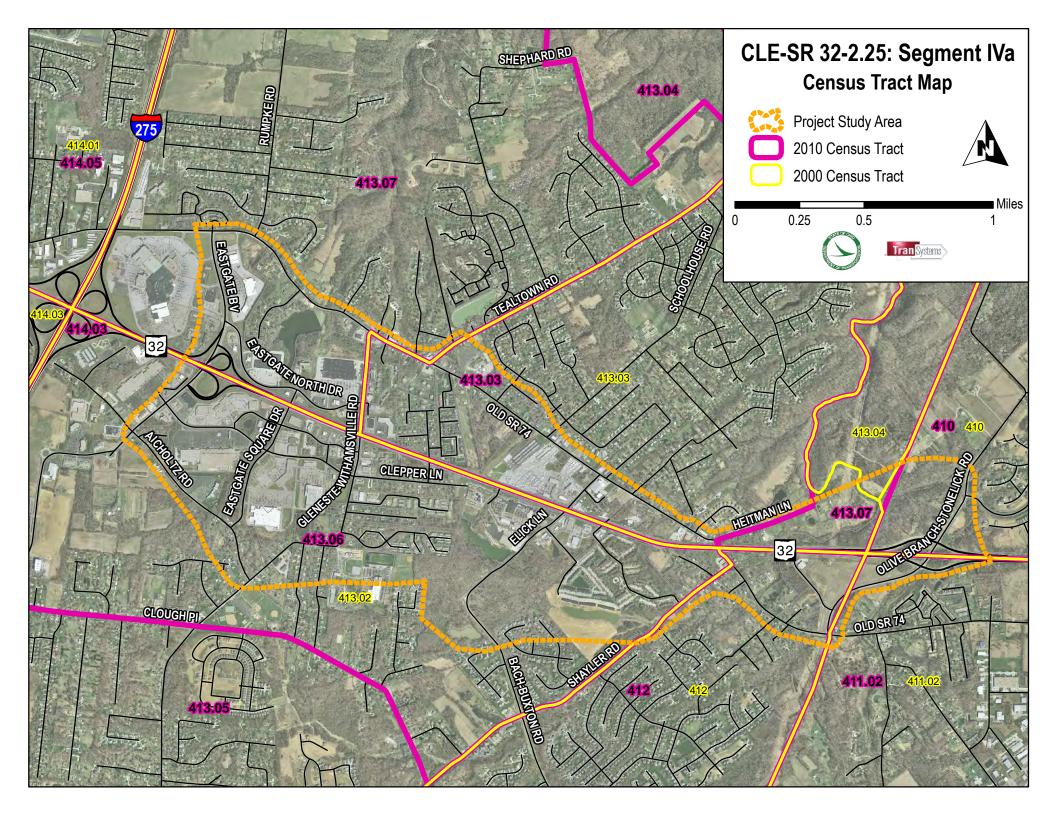
Comparison Matrix

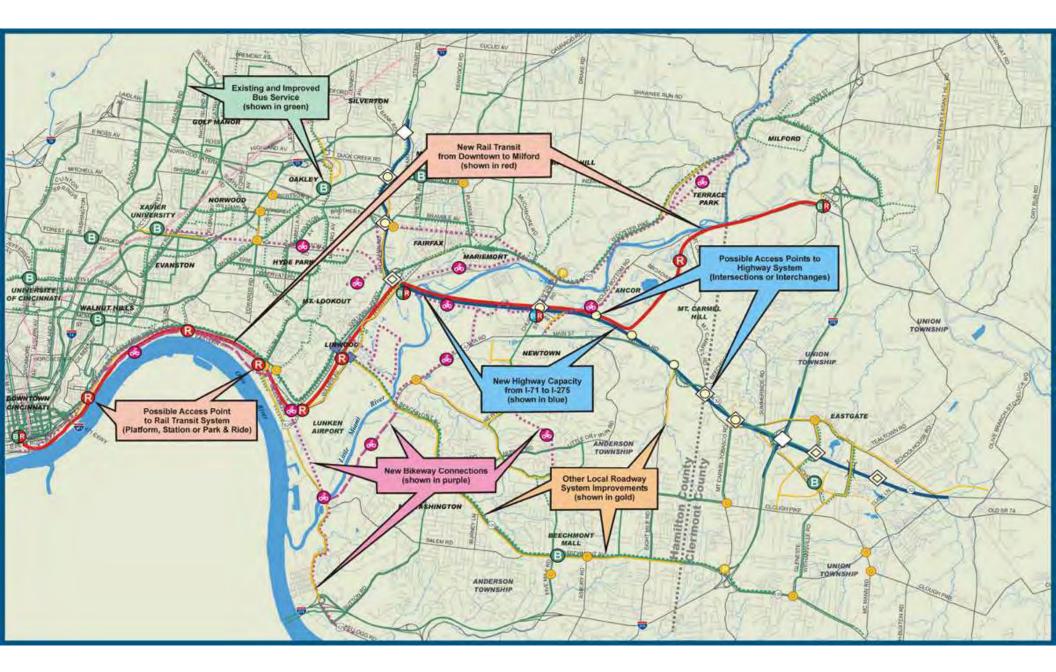
Conceptual Alternatives Study


		Alternative 1	Alternative 2	Alternative 3*	Alternative 4*	Alternative 5
Impacts/Issues	Impact/Issue Description	Widen Existing SR 32	Interchange East of Fayard Drive	Interchange at Elick/Bach- Buxton	Interchange at Newberry Drive	No Build
Key Design Issues	The Key Design Issue(s) for each alternative.	1) Major lane additions throughout corridor	1) New interchange between Glen Este & Elick/Bach Buxton. 2) Overpasses at Glen Este & Old SR 74.	1) SR 32 entrance/exit ramps east of Elick/Bach Buxton. 2) Overpasses at Glen Este, Elick/Bach Buxton, & Old SR 74. 3) Possible partial access at Glen Este.	1) New interchange between Elick/Bach Buxton & Old SR 74. 2) Overpasses at Glen Este & Old SR 74. 3) Possible partial access at Glen Este.	None.
Traffic Analysis	2030 with Improvements – there are a different number of segments with each alternative; this represents the furthest east & west segments, AM & PM (& total).	LOS B - 4 segments; LOC C - 4 segments	LOS B - 3 segments; LOS C - 4 segments; LOS D - 1 segment	LOS B - 3 segments; LOS C - 4 segments; LOS D - 1 segment	LOS B - 3 segments; LOS C - 5 segments	LOS B - 2 segments; LOS C - 4 segments; LOS D - 1 segment; LOS E - 1 segment
Social & Community Impacts	This includes primarily the impacts to the communities due to proposed access changes.	No potential impacts.		access, so some streets may no lo ess to all streets in the area will s		No potential impacts.
Environmental Justice	This includes the impacts to environmental justice populations in the study area.	While the project is propose	ed to affect residential parcels in	n several census tracts, no one tra effects.	act or environmental justice popul	ation bears disproportionate
Parks & Recreation - Section 4(f)	The consideration of property that is publicly owned parks and recreation lands, wildlife and waterfowl reserves and historic properties.	No potential impacts.	1 reservoir (used for recreational fishing) may potentially be impacted.	No potential impacts.	No potential impacts.	No potential impacts.
ROW Impacts	The additional amount of ROW necessary to meet ODOT standards per alternative.	Approximately 57 parcels.	Approximately 85 parcels.	Approximately 113 parcels.	Approximately 108 parcels.	No potential impacts.
Potential Relocations	The number of residential & commercial properties affected by each alternative.	The number of residential & commercial properties that will be affected are not known at this point.			No potential impacts.	
Cultural Resources	Those properties determined to be history/architecture sites requiring further study to determine eligibility for NRHP status.	To be determined when preferred alternative is selected. No poter			No potential impacts.	
Ecological Resources	Those ecological resources, including aquatic resources, terrestrial habitats and endangered and threatened species potentially impacted.	There are numerous wetland areas and streams throughout the study area and the exact impacts to these are not yet known.			No potential impacts.	
Hazardous Materials	Sites recommended for Phase I ESA.	5 potential haz-mat and 2 potential UST/LUST sites of concern.	6 potential haz-mat and 3 potential UST/LUST sites of concern.	9 potential haz-mat and 4 potential UST/LUST sites of concern.	10 potential haz-mat and 4 potential UST/LUST sites of concern.	No potential impacts.
Traffic Noise	Noise impacts resulting from this project.				t study area as well as a school, o is needed will be done in later st	
Air Quality	Air quality impacts resulting from this project.	The OEPA/ODOT agreement states that a quantitative CO analysis is recommended for projects that modify existing facilities that cause an increase Average Daily Traffic of more than 10,000 vehicles between project completion and ten years hence. Based on preliminary traffic numbers, it appears t the ten-year traffic increase will exceed the 10,000-vehicle maximum. As a result, it is anticipated that a quantitative CO analysis will be required. A Qualitative MSAT Analysis will be required to be prepared and coordinated with OEPA. PM2.5 coordination with approval from OEPA, USEPA, and FHWA will be required as well. The preparation of a PM2.5 Hotspot Analysis is not anticipated to be required.			affic numbers, it appears that nalysis will be required. A from OEPA, USEPA, and	
Geotechnical Issues	Significant geologic hazard within the project area.	The majority of the study ar		m-till soil and landslides may occu of bedrock in the study area.	ur in oversteepend, wet areas.	No potential impacts.
Utility Issues	Utilities that may require relocation as part of this project.	Many utilities exist within		ject study area and will most likel ecifics beyond this are not known		No potential impacts.
Costs	Step 4 level of detail estimates	\$22,550,000		\$65,850,000		None.

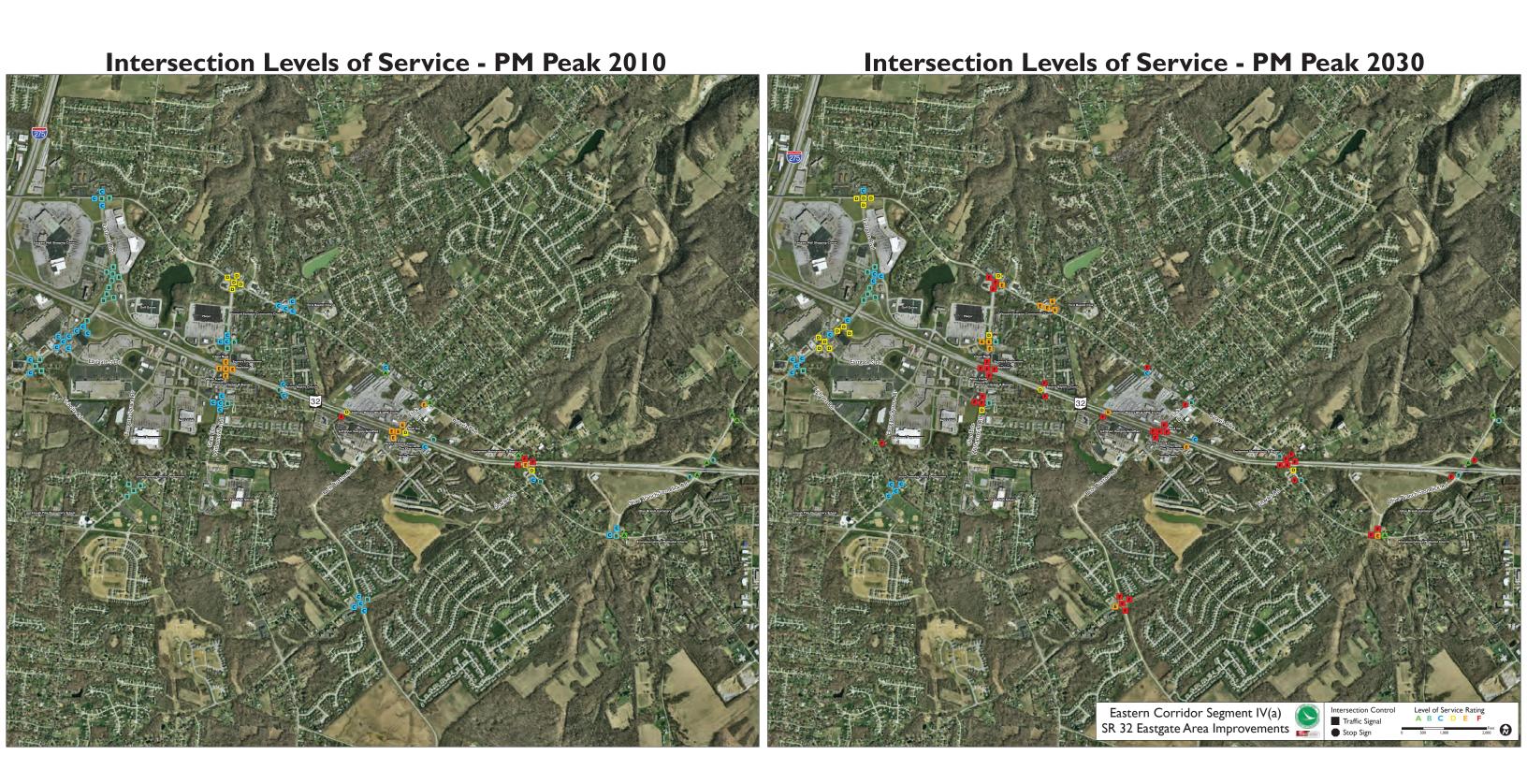

March 2012


APPENDIX A: EXHIBITS (ALSO ON CD)


- ODOT Project Development Process (PDP) for Major Projects
- Eastgate Area Improvements
- Segment IV(a) Project Study Area
- Segment IV(a) Census Tract Map
- Open House I Displays
 - Eastern Corridor Improvements
 - Crash History
 - o Environmental Features
 - Level of Service (LOS)
 - Level of Service (LOS) Definition
 - Purpose of Meeting
 - o Study Area
- Open House 2 Displays
 - $\circ \quad \text{Purpose \& Need} \\$
 - $\circ \quad \text{Alternative I}$
 - \circ Alternative 2
 - o Alternative 3
 - o Alternative 4
 - o Glen Este-Withamsville Road Ramp Options


Ohio Department of Transportation



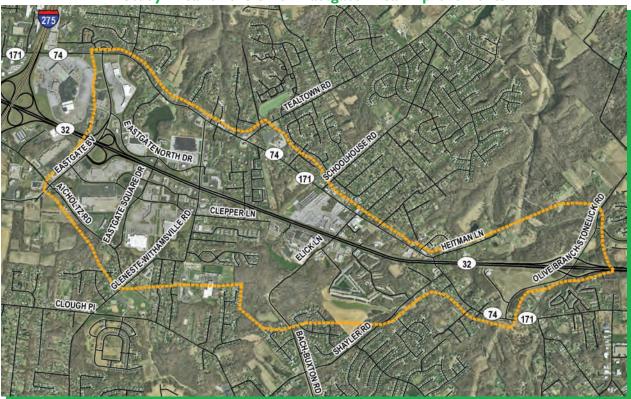


Environmental Features

Levels of Service

Level of Service (LOS) is a tool that measures the quality of operations for different roadway types, features, and controls. The Level of Service is computed from variables including speed, geometry and traffic volume.

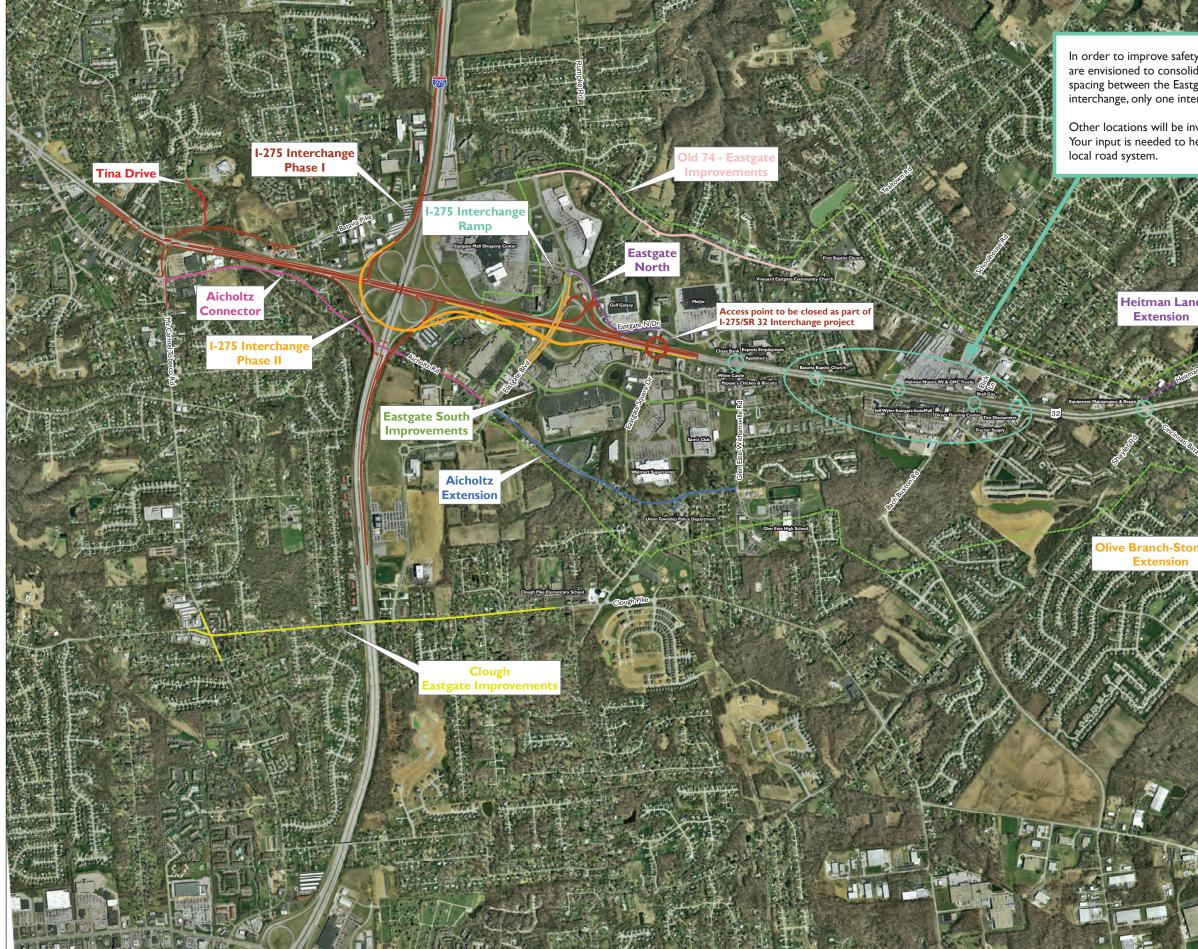
There are six level of service grades that represent all of the possible operating conditions; these levels range from LOS A, representing optimum operation, to LOS F, representing congested or unstable flow. Typically, in urbanized areas, a roadway component is seen as adequate if the corresponding level of service is D or better, while LOS results E and F indicate near failure and failure, respectively.


L	OS	Definition
	A	Represents a free-flow operation. Vehicles are almost completely unimpeded in their ability to maneuver within the traffic stream.
Acceptable	В	Represents reasonably free-flow operation. The ability to maneuver within the traffic stream is slightly restricted.
Accep	С	Represents a traffic flow with speeds near or at free-flow speed. Ability to maneuver within the traffic stream is noticeably restricted.
	D	Represents speeds that begin to decline with increased density. Ability to maneuver within the traffic stream is noticeably limited.
Unacceptable	Е	Represents operation at its capacity. Vehicles are closely spaced within the traffic stream and there are virtually no useable gaps to maneuver.
Unacce	F	Represents a breakdown of vehicle flow. This condition exists within queues forming behind the breakdown points.

Purpose of the Meeting

The purpose of this open house is to introduce you to the SR 32 Eastgate Area Improvements study and seek your feedback on the issues that should be considered before we develop alternatives. The area under study is along State Route 32 from Eastgate Boulevard to Olive Branch-Stonelick Road.

The goals of the study are to reduce congestion and improve safety, consistent with local transportation and economic goals. The project will coordinate with regional plans regarding rail, public transit, community development, and environmental restoration.


This meeting is your opportunity to learn more about the project and provide the study team with your input, which will be used to help guide the alternatives being developed.

Study Area for the SR 32 Eastgate Area Improvements

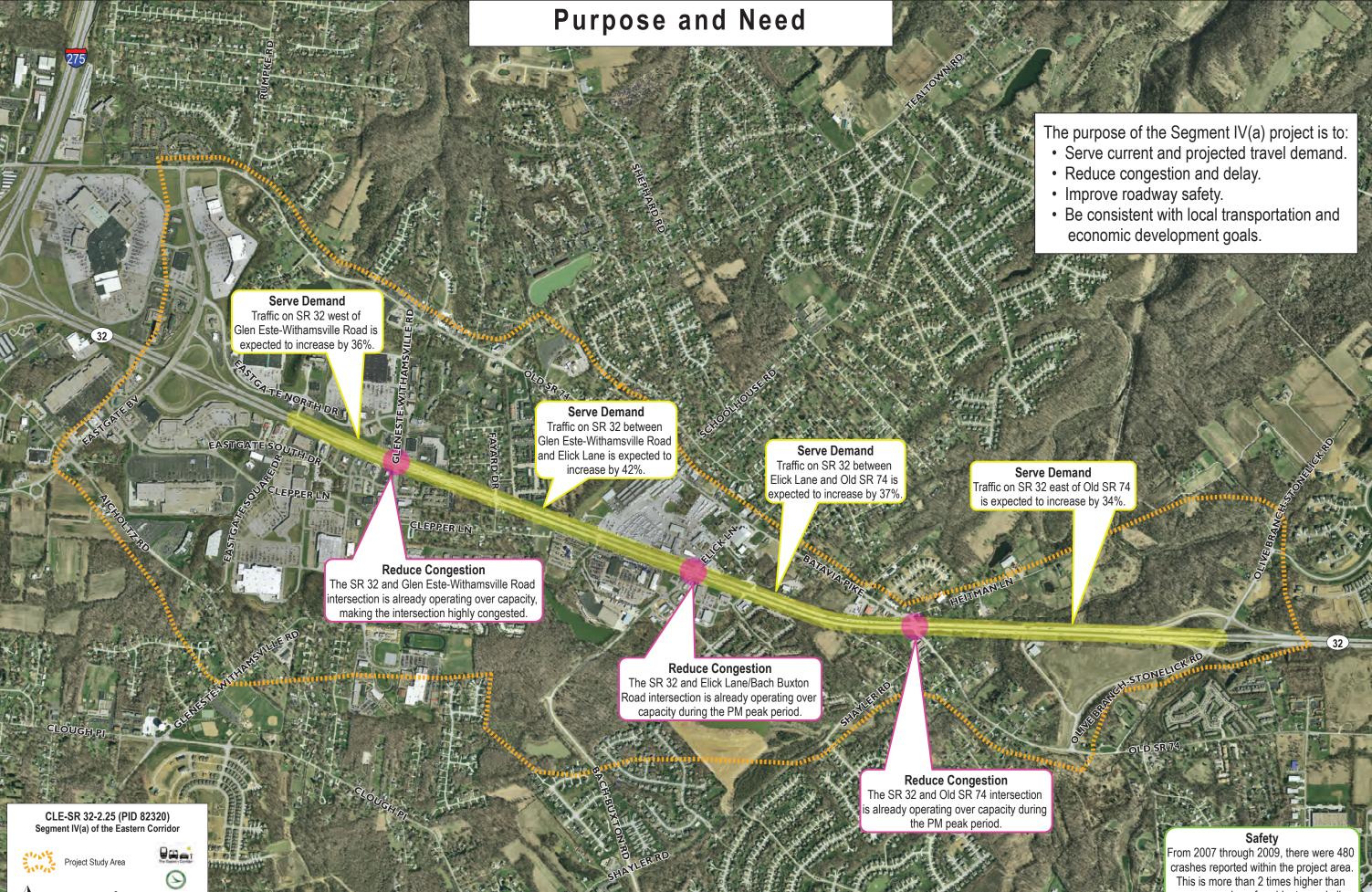
Please Sign In!

Study Area

In order to improve safety and reduce congestion, the SR 32 Eastgate Area Improvements are envisioned to consolidate and manage access points along SR 32. Based upon required spacing between the Eastgate Boulevard Interchange and the Olive Branch-Stonelick Road interchange, only one interchange can be provided, somewhere within this area.

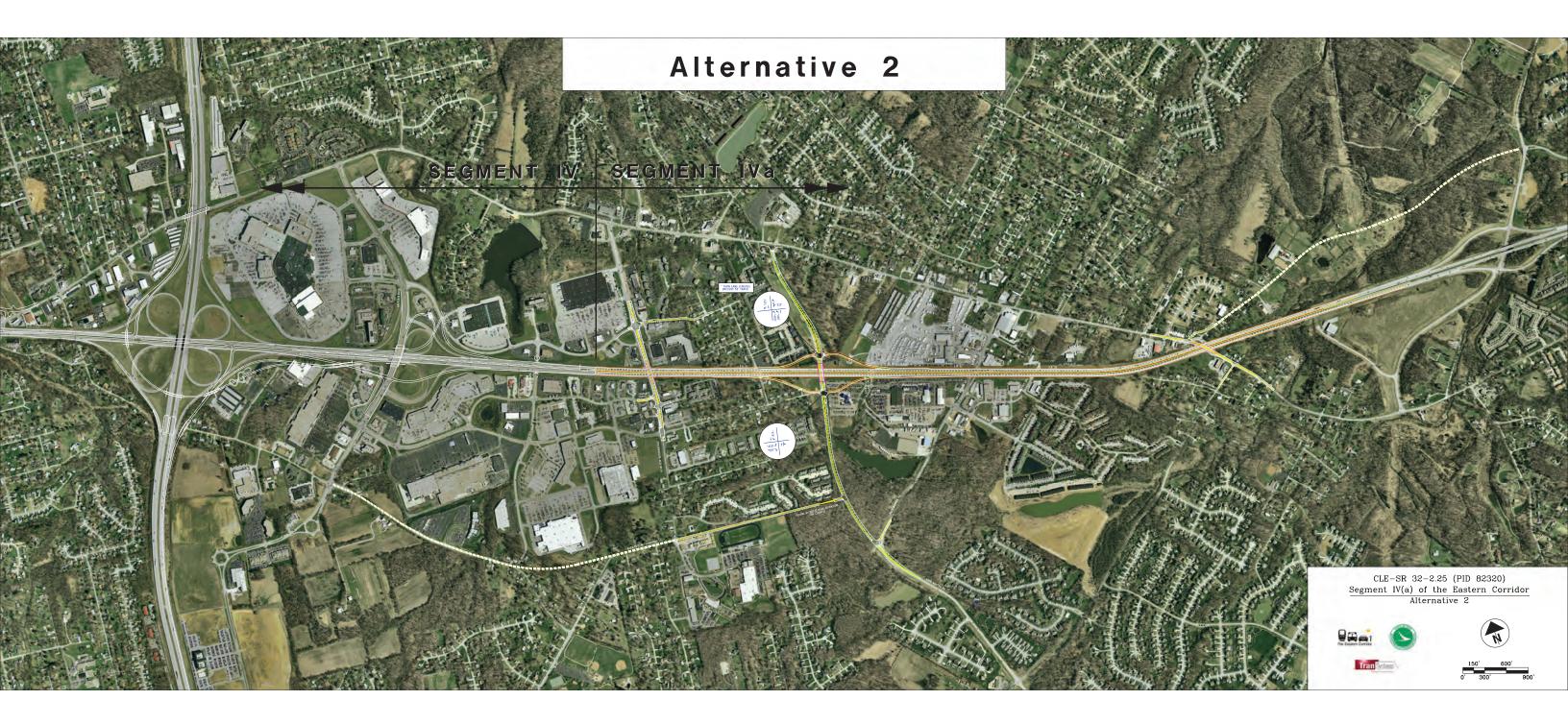
Other locations will be investigated for overpasses or reconnecting to other local roads. Your input is needed to help reach the best combination of solutions for SR 32 and the

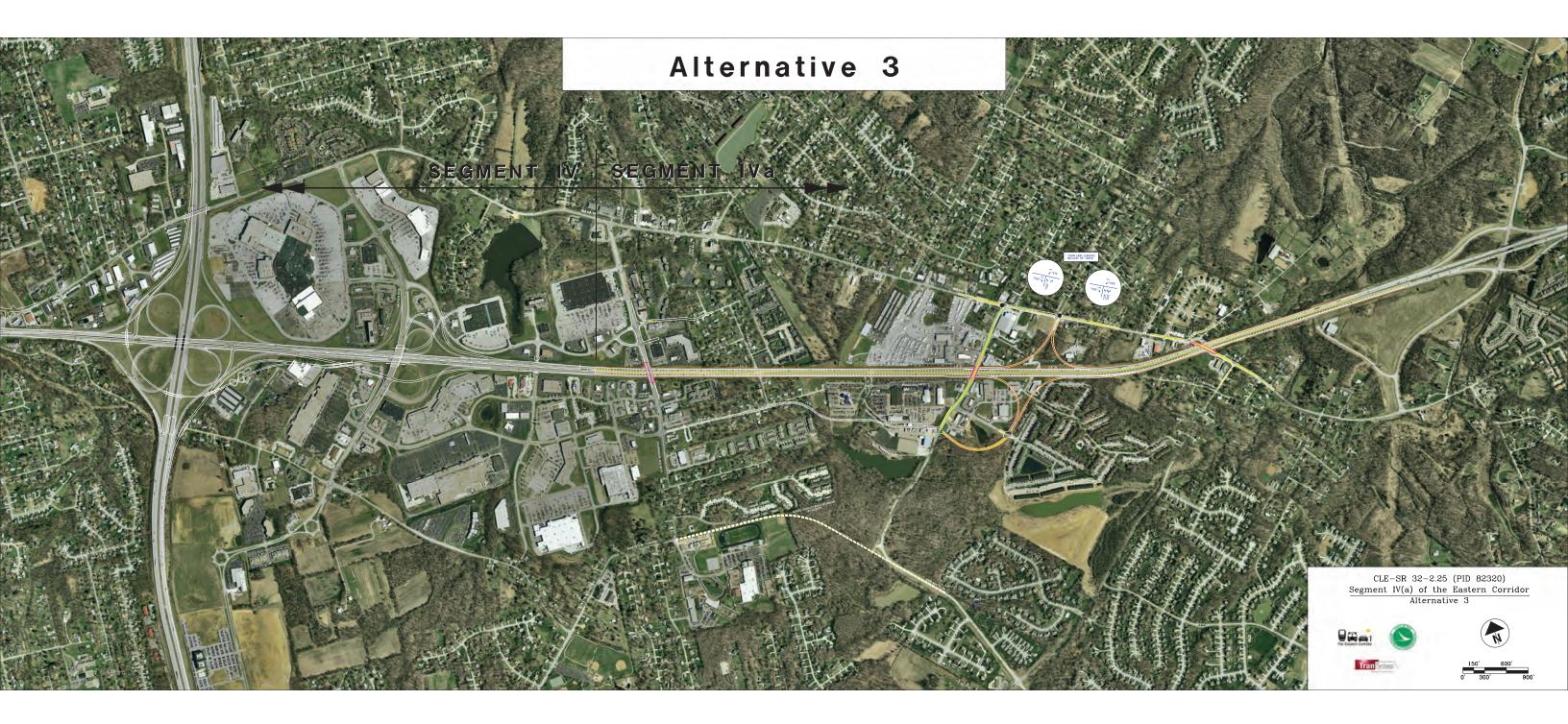
> Eastern Corridor Segment IV(a) SR 32 Eastgate Area Improvements

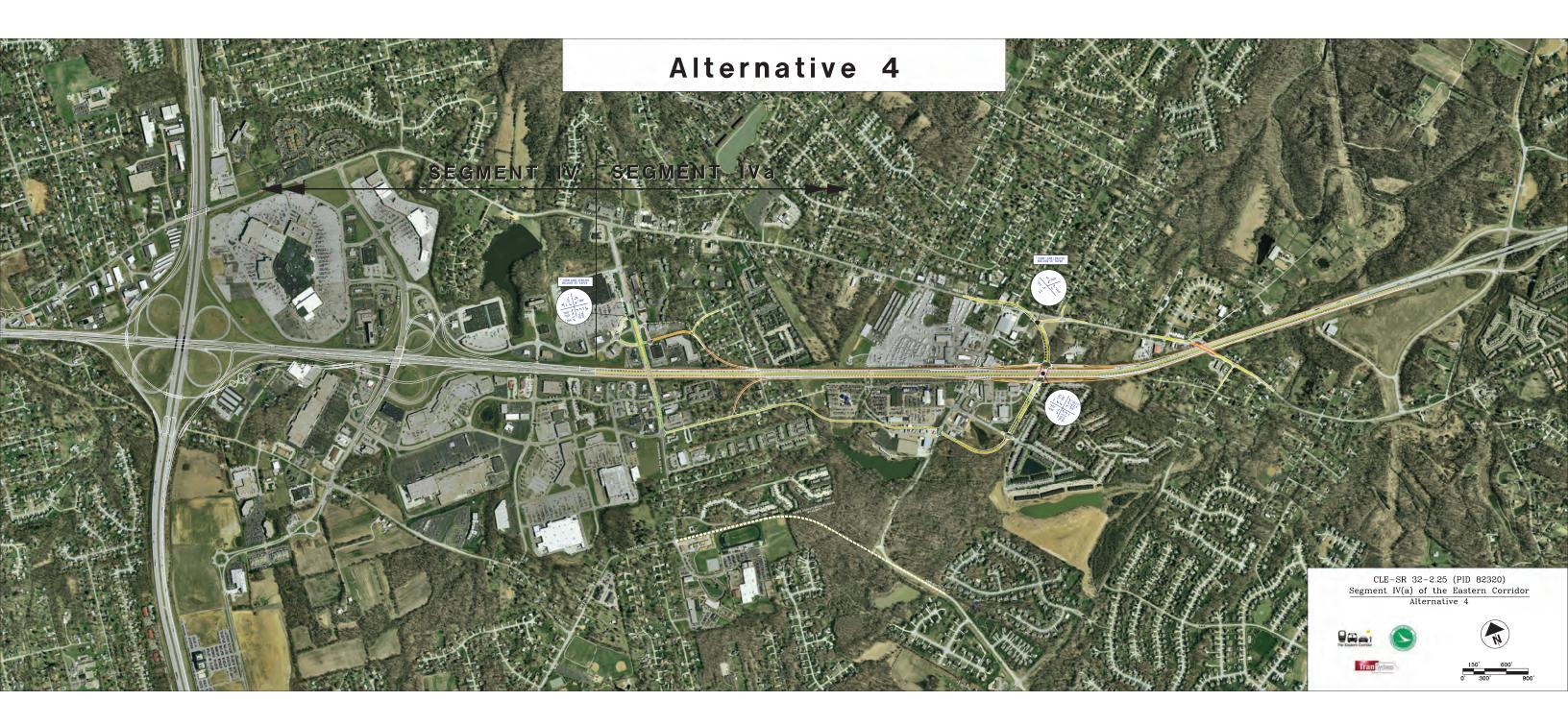

> > 625

1,250

2,500


6.





average number of accidents on similar roadways across Ohio.

APPENDIX B: PUBLIC INVOLVEMENT (ON CD)

- Open House I October 6, 2010
 - Meeting Handout
 - Questionnaire
 - $\circ \quad \text{Sign-in Sheets} \quad$
 - o Comments Received
 - o Resident's Requests & Responses
- Open House 2 September 28, 2011
 - Meeting Handout
 - \circ Comment Sheet
 - o Sign-in Sheets
 - o Comments Received
 - Resident's Requests & Responses

SR 32 Eastgate Area Improvements

Eastgate Boulevard to Olive Branch-Stonelick Road Eastern Corridor, Segment IV(a) – CLE-32-2.25, PID 82370

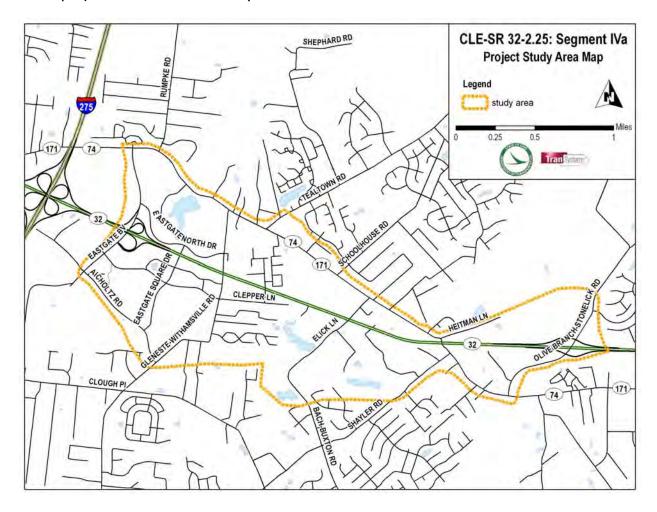
Public Open House October 6, 2010

Purpose of the Meeting

The purpose of this open house is to introduce you to the State Route 32 Eastgate Area Improvements Study and seek your feedback on the issues that should be considered before we develop alternatives.

Project Purpose and Goals

The goals of the SR 32 Eastgate Area Improvements are to reduce congestion and improve safety, consistent with local transportation and economic goals. The project will coordinate with regional plans regarding rail, public transit, community development and environmental restoration.


DID YOU KNOW?

Within the SR 32 corridor from Eastgate Boulevard to Olive Branch-Stonelick Road, 480 accidents were logged from 2007 through 2009. These crashes included two with fatalities and 129 with reported injuries.

The high frequency of traffic accidents coupled with high traffic volumes further intensifies the problem of congestion.

Study Area

The current study is focused on SR 32 from the Eastgate Boulevard interchange to the Olive Branch-Stonelick Road interchange. Improvements to local roads or the construction of new local connectors may be included as part of the project. Therefore, the study area also includes areas north and south of SR 32 as shown.

Background

In November 2004, the Ohio Department of Transportation (ODOT) published Access Ohio 2004-2030, Statewide Transportation Plan. The statewide plan recognized SR 32 as an important trade and travel corridor. In 2006, ODOT completed the Eastern Corridor Study, in cooperation with Clermont County, Hamilton County, and the City of Cincinnati. The Eastern Corridor Study was a comprehensive look at the transportation needs between Cincinnati and western Clermont County.

DID YOU KNOW?

Previous studies for the Eastern Corridor are available at **www.easterncorridor.org**.

Materials from this open house are available on ODOT's website. A link is provided at www.tid.clermontcountyohio.gov.

As part of a multi-modal transportation strategy, this study included a recommendation to consolidate and manage access points to establish SR 32 as a limited access arterial roadway, including elimination of access at SR 32/Glen Este-Withamsville Road, with planned local road improvements implemented separately in support of this improvement. The current SR 32 Eastgate Area Improvement Study seeks to build upon the previous study by evaluating solutions for this area in detail.

PROJECT SCHEDULE

Summer 2006

Federal Highway Administration issues a Record of Decision for the Tier 1 Eastern Corridor Environmental Impact Statement, which includes recommendations for SR 32 Corridor in the Eastgate area

Spring 2009

Funding Identified and Programmed thru TRAC

Spring 2010

ODOT Assembles Consultant Team and Implementation Committee

Fall/Winter 2010/2011

Technical Studies Conducted and Alternatives Developed

Summer 2011 – Fall 2012

Preliminary Design and Environmental Approvals

Next Steps

The project team will collect public comments and begin development of alternatives, including evaluation of effects on travel patterns and traffic volumes. In early 2011, a second open house will be held to get your input on the alternatives.

Your Opinions are Needed

This is an opportunity to provide input before alternatives are developed. Written comments may be submitted at the meeting, e-mailed, faxed or mailed to the study team. Please submit your comments by October 22, 2010 to:

SR 32 Study Team

TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Phone:	513-621-1981, ask for extension 32103
Fax:	5 3-62 -290
E-mail:	ssdaniels@transystems.com

Materials are available on the ODOT website, via a link at: www.tid.clermontcountyohio.gov

SR 32 Eastgate Area Improvements Questionnaire

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

Address	
E-mail	
Organization (if any)	
 What forms of transportation do you use in the study area? Choose all that apply. Walk 	5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area?
 Bicycle Bus Automobile Carpool Other	 Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway) Olive Branch-Stonelick Road Interchange
 2. What are your destinations within the study area? Choose all that apply. o Home o Work o School o Shopping o Restaurants o Medical appointments o Other 	 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32
	6. How concerned are you about roadway safety within the study area?
	 Very concerned Somewhat concerned Neither concerned nor unconcerned
3. How satisfied are you with the time it takes to travel through the study area?	 Somewhat unconcerned Not at all concerned
 Very satisfied Somewhat satisfied Neither satisfied or unsatisfied 	 When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important.
 Somewhat unsatisfied Completely unsatisfied 	 Safety Traffic flow and travel time
4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?	 Environmental impacts Impacts on property and businesses Opportunities for new development Other travel modes (bus, bike, etc.)
 Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road 	 Impacts on local roads Aesthetics or appearance Construction impacts (noise, traffic, etc.)
Old SR 74 (Speedway)	 Constituction impacts (noise, trainc, etc.) Cost Other
 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 	
 None – I rarely use SR 32 	

8. What do you think are the most important transportation problems within this study area?

9. What ideas should we consider when developing alternatives?

10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.)

11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them?

Thank you for completing the survey questions. Please feel free to provide additional comments.

Please return completed surveys to:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Or contact the team:

Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

1027 CLEPPER IN 9483 Forest Prail 2381 Currow Ch. Drie 853 EASTGATE N. Dr. White Getteraston te DR.	Email/Phone, 513 347,3470 RICH@ RICHWHELEN. COM @ 688-1716 772-8068 947-8882 513-615-3035	Conty 12 LONGHORN
9483 Firest Pland 2381 Currow Chr. Drie 853 EASTGATE N. Dr. White Gatterasten ter Dr.	0.688-1716 772-8068 947-8882	
2381 Currour Chr. prive 853 EASTGATE N. Dr. White Gatterasten ten Dr.	947-8882	
White Cast East on the DR,		LONGHORN
White Cast East on the DR,		
	Tail for the	White Cas
5377 St. Kt. BATAVA	513-753-6944	
	513-753-6944	
r		McGill Smith Ru
	752.3388	
4589 GREENSBURY CT. BATAN'A ON	湮	
4350 Hichola	947-7323	UT
4880 Rumphe Rd		
1848 Summit Rd.	dosporre @ entran.us	EMRAN
8427 SCHWALLIE ROAD	937-446-2160	
1843 Summit RD	Schooliz Centron. US	ENTRAN
9760 Winnebago Tra.	SMC931R5mail.Com	Self
	1289 012 St 74 H317 Sten Este With answelle 4344 Glenosk With answelle 300 PARK 42 DR Switz 100 B CINTI 4433 Fargard Da Batavia OH 45103 4589 GREENSBURY CT. BATAVIA OH 4350 Hich olt 4880 Rumphe Rd 1848 Summit Rd. \$427 Schlurghe Kot \$427 Schlurghe Kot	1001 Joyce Dr. Batava 45/03 1289 01d S+74 752-0519 4317 Illen Boto-Withomivelle 753-5789 4317 Illen Boto-Withomivelle 753-8924 300 Paren 42 DR Switch 100 B CINTI 759-3247 300 Paren 42 DR Switch 100 B CINTI 759-3247 4433 Fanard Da Batavia OH 45103 752:3388 4589 Greensburger CT. Batavia OH 45103 4589 Greensburger CT. Batavia OH 845703 488 Summit Rd. dostavire Q entron.us 8427 Schlunghe Rd 937-446-260 1848 Summit Rd 937-446-260 1848 Summit Rd Schwick Centron.us

f any)	How did you hear of this meeting?
	POSTCARD
enje	
N	POSTCAPED
astle	Postcare P Newspaper
	POSTCARD
	POSTCARD
	POSTCARD
	7 1
	14
Runshou	email
	Email POSTCARD
	POST CARD
	Post Carb

1/

Name	Address	Email/Phone	Organization (if a
Mary Stone	4206 M. Gensen Loop	mstoned sibcy cline. Co	m Siber
Kaven Meyer	1	Kmeyer @ sebey dine co	
Rout Trene Gade	1= 1390 Old St. Rt. 74	732-1099	
LED GES	4350 Aicho/ 72	513- 752-1741	UNIA FA
Win Woodword	424 Words Corner Rd	Bille Cincinnancon.com	
Scot Lahrmer	101E Main st	SLATTRMER CO. LERMON	oltus De
LY dia WARD	996 PAUL St. BATAVIA OH	barneysmond fuse.net	
RON ROEWER	768 MELCREST DR		
Zillanner Roliver	768 moluest Du		
HOWARD SPURLOCK	1303 OSR 74	(513)732-0394	
abus form	1DI ENOUNZY Botave	513-732-7300	CETID
Fang 9 Jm	1307 AUTUMINVIEW DR	513-732-1430	MT CARMEL
JEFF BAUMGARTH	1077 S.R.28 ste 202 Milfrd	513 - 248-8350	Myers Y. C
STEVE Borconow	6336 DUSTYWIND LN. LOUDIAND	5 2505. Bonanne CHORINC. Com	use
ion Bacolde	4393 Aichalty Ad		
RayAn	640 SONNY	Ayon-newestcler.org	
ANITA NEFF	1234 OLD STATEROUTE 74	anitad netflandscape.com	
Clevil Strucher our			Clermon An
Willes un fuckett	11 Grouse Dr		
James & Babara Kattive	4465 Aicholtz Rd	Barb. Kattine & Kroger. com	

any)	How did you hear of this meeting?
Cliwe	E-mail
Cliwe line Easta	ate 11
0	mail
inp	1010211
J.	
CC	encil
	Mail
	mail
	Mail MAIL
BATIST	MAIL
Coope	Mail Mail
	1
	MAI
	nail
ninal Hosp	Client
0	
	IA Groend
-	

2/

Name	Address /	Email/Phone	Organization (if a
JILL ACHLEY	1326 OLS 74	732-1100	
	4396 Aicholts . 209		
Fran Predlare	4404 Tayard Dr.	753-3555	
Charles It Hirschausen	1290 Heitman Jane	752-3840	
Randy Cooper	1077 SR28 Saite 202 45150	248-8350	
Cost + april Frasure	1244 Traction Ln Batavin, OH	753 - 3411	
JOANN MONTGOMERY	993 Joyce DR BATAVIAO.	752-9054	
PETER EDDINGLITON	431) GLEN ESTE WITHAMSVILL	E peter eddington @	ucg.org
Robert Cooper	1035 CLERREY 2N Batavin 1570.	513-617-0860	
Steve Wharton	1035 CLEPPER LN Batavi, "4570. 175 E. MAIN- BATABAOH	edge @ Fuse, net	CCTID
Duane Ferguson	901 TREVINO CT	FERGDEV @ YAHOU. COM	
SAMANTHA HARVer	GUI TRAVINO CT		
Brian Lawson	11240LD ST. RJ. 74		
			and a second

any)	How did you hear of this meeting?		
	POST CARD		
	Post Cand		
	Post Cand		
	Post CARO POSTCARD Post cand		
	Post card		
	NEWSPAPEN DUNE Fergerson		
	MAL		

3/

Name	Address	Email/Phone	Organization (if a
alta Murchly	4404 hickoltz Rd	V752-3560	
Repard Huebert	1020 Cleppor	MARKet PRO 107 @ ADI. Ca	
JAMES L COX	4340 Ai CHULM Rd	7523817	
Edward Willen mich	1038 Clepper Lare	Cwillenbrink I ct cinci. 11. com	
Jane Deckerson	892 CINT. BATO	752-1557	
Leoreard & Dieperson	892 anter Bata Pri	11	
mary Swood	463 Breezy Sn	528-1443	
Ruby gals	480 BLOSSOMLA.		
Bethley	4689 Deurth Rol, Franklin OH 45005	bhshop @ woherr.com	
Dury young	3900 Filton Grave Ro.		
may Masse/	4404 Glericale Wiehansnie	le	Cin neurol
Amanda Schott	1039 Clepper In	aschottazoomtorun.com	NA

any)	How did you hear of this meeting?
	forthat
	Mail
	MAIL
	mail
	<i>i</i> .
_	
	Mail
	Valk
quat	75 Spine mail
0	Valk 25 Spine maré Mail

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record

area. Flease note that all comments become part of the publi				
Name Kelly + Jeff Bond Address 4344 Gleneste - Withamsville Rol, Cink, ott 45245				
E-mail				
Organization (if any)				
 What forms of transportation do you use in the study area? Choose all that apply. Walk 	 When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area? 			
 Bicycle Bus Automobile Carpool Other 	 Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway) 			
2. What are your destinations within the study area? Choose all that apply.Home	 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32 			
 Work School Shopping 	6. How concerned are you about roadway safety within the study area?			
 Restaurants 	 Very concerned 			

- Restaurants
- Medical appointments
- o Other
- 3. How satisfied are you with the time it takes to travel through the study area?
 - Very satisfied
 - Somewhat satisfied
 - Neither satisfied or unsatisfied
 - Somewhat unsatisfied
 - o Completely unsatisfied
- During periods of heavy traffic, what intersections 4. or interchanges do you use to access SR 32 in this area?
 - Eastgate Boulevard Interchange .
 - Eastgate Square Drive
 - Glen Este-Withamsville Road
 - o Elick Lane
 - Old SR 74 (Speedway) 0
 - Olive Branch-Stonelick Road Interchange 0
 - Other 0
 - None I travel through this area on SR 32 0
 - None I rarely use SR 32 0

- Please rank in order, with 1 being most important.
- 🕰 Safety
- Traffic flow and travel time

Somewhat concerned

Somewhat unconcerned

Not at all concerned

Neither concerned nor unconcerned

7. When considering alternatives for improving SR 32,

what issues should be considered most important?

- (1) Environmental impacts
- Impacts on property and businesses
- (5) Opportunities for new development
- \bigcirc Other travel modes (bus, bike, etc.)
- Impacts on local roads
- Aesthetics or appearance
- Construction impacts (noise, traffic, etc.)
- Cost
- □ Other

8. What do you think are the most important transportation problems within this study area?

Rappic eights do not correspond with traffic volume. An access vi 32 and not mulue 32 busines Dichte run anim MO by pess All other 32 driver aspects di

9. What ideas should we consider when developing alternatives? <u>The impact it is going to have on homeormers</u>. We do not want to have a histoway next to our house.

10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.)

Dodlar

11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them?

Newspaper

Thank you for completing the survey questions. Please feel free to provide additional comments.

Please return completed surveys to:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Or contact the team:

Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

Name JAMes R Cole Address 9760 Winnebacyo Trail E-mail SMC9310 Gmail Cor	Cincinsati OH 45241
E-mail	n
Organization (if any)	
 What forms of transportation do you use in the study area? Choose all that apply. Walk 	5. When traffic is lighter , what intersection or interchange do you use most often to access SR 32 in this area?

- o Bicycle
- o Bus
- 📈 Automobile
- o Carpool
- o Other___
- 2. What are your destinations within the study area? Choose all that apply.
 - 🧟 Home
 - o Work
 - o School
 - o Shopping
 - Restaurants
 - Medical appointments
 - o Other _____
- 3. How satisfied are you with the time it takes to travel through the study area?
 - o Very satisfied
 - o Somewhat satisfied
 - o Neither satisfied or unsatisfied
 - o Somewhat unsatisfied
 - Completely unsatisfied
- 4. During **periods of heavy traffic**, what intersections or interchanges do you use to access SR 32 in this area?
 - 🙇 Eastgate Boulevard Interchange
 - Eastgate Square Drive
 - o Glen Este-Withamsville Road
 - o Elick Lane
 - 💉 Old SR 74 (Speedway)
 - 2 Olive Branch-Stonelick Road Interchange
 - o Other ___
 - o None I travel through this area on SR 32
 - None I rarely use SR 32

- o Eastgate Boulevard Interchange
- o Eastgate Square Drive
- o Glen Este-Withamsville Road
- o Elick Lane
- A Old SR 74 (Speedway)
- Nive Branch-Stonelick Road Interchange
- o Other _____
- None I travel through this area on SR 32
- \circ None I rarely use SR 32
- 6. How concerned are you about roadway safety within the study area?
 - 📈 Very concerned
 - o Somewhat concerned
 - o Neither concerned nor unconcerned
 - o Somewhat unconcerned
 - o Not at all concerned
- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with **1** being most important.
 - 🗶 Safety
 - Set Traffic flow and travel time
 - □ Environmental impacts
 - □ Impacts on property and businesses
 - Z Opportunities for new development
 - □ Other travel modes (bus, bike, etc.)
 - □ Impacts on local roads
 - □ Aesthetics or appearance
 - Construction impacts (noise, traffic, etc.)
 - □ Cost
 - Other

8. What do you think are the most important transportation problems within this study area? Rt32 at old 74 and Light Way Specal 9. What ideas should we consider when developing alternatives? 74 Close th on min 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) Lot. an e-mail 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? that I know. Most wou Con None Thank you for completing the survey questions. Please feel free to provide additional comments.

Please return completed surveys to:Or contact the team:SR 32 Study TeamSusan DanielsTranSystemsssdaniels@transystems.com4555 Lake Forest Drive, Suite 540513-621-1981 - extension 32103

Fax to: (513) 621-2901

Attn: SR 32 Study Team

Blue Ash, OH 45242

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

Name <u>JAMES L. COX</u> Address <u>H340 A; CHOLTZ Rd</u> C	NT1 45246
E-mail	
Organization (if any)	
 1. What forms of transportation do you use in the study area? Choose all that apply. o Walk o Bicycle o Bus o Automobile o Carpool o Other 	 interchange do you use most often to access SR 32 in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane
 What are your destinations within the study area? Choose all that apply. Home 	 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32
 Work School Shopping Restaurants Medical appointments Other 	 Somewhat unconcerned
 How satisfied are you with the time it takes to travel through the study area? Very satisfied 	 Not at all concerned 7. When considering alternatives for improving SR 32, what issues should be considered most important?
 Somewhat satisfied Neither satisfied or unsatisfied Somewhat unsatisfied Completely unsatisfied 	Please rank in order, with 1 being most important. Safety Traffic flow and travel time
4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?	 Environmental impacts Impacts on property and businesses Opportunities for new development Other travel modes (bus, bike, etc.)
 Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway) Olive Branch-Stonelick Road Interchange Other 	 Impacts on local roads Aesthetics or appearance Construction impacts (noise, traffic, etc.) Cost Other

- None I travel through this area on SR 32
- None I rarely use SR 32

8. What do you think are the most important transportation problems within this study area? to many cars - me anguist wa do 9. What ideas should we consider when developing alternatives? PEYSLUPE OLD 74, AILHORTZ BC - (LOUGH PIKE TV HANDLE FIRE TRAFFE AE FOR2 CONSTRUCTION OF 32 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. Please return completed surveys to: Or contact the team: SR 32 Study Team Susan Daniels TranSystems ssdaniels@transystems.com 513-621-1981 - extension 32103 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242 Fax to: (513) 621-2901 Attn: SR 32 Study Team

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

area. Thease note that all commonte become part of the p	
Name PETER EDDINGTON	2
	UITHAMSVILLE
E-mail <u>peter</u> eddington &	pulg-org
Organization (if any)	
 What forms of transportation do you use in the study area? Choose all that apply. Walk 	5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area?
 Walk Bicycle Bus Automobile Carpool Other 	 Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway)
 What are your destinations within the study area? Choose all that apply. 	 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32
 ➢ Home ○ Work ➢ School ➢ Shopping 	 None – I rarely use SR 32 6. How concerned are you about roadway safety within the study area?
 A Shopping A Restaurants A Medical appointments Other	 Very concerned Somewhat concerned Neither concerned nor unconcerned

- 3. How satisfied are you with the time it takes to travel through the study area?
 - o Very satisfied
 - o Somewhat satisfied
 - o Neither satisfied or unsatisfied

 - o Completely unsatisfied
- 4. During **periods of heavy traffic**, what intersections or interchanges do you use to access SR 32 in this area?
 - 8 Eastgate Boulevard Interchange
 - ➢ Eastgate Square Drive
 - ✗ Glen Este-Withamsville Road
 - o Elick Lane
 - o Old SR 74 (Speedway)
 - o Olive Branch-Stonelick Road Interchange
 - o Other _____
 - o None I travel through this area on SR 32
 - None I rarely use SR 32

Not at all concerned
7. When considering alternatives for improving SR 32, what issues should be considered most important?

Please rank in order, with 1 being most important.

- Safety
- Traffic flow and travel time

o Somewhat unconcerned

- Environmental impacts
- (3) Impacts on property and businesses
- Opportunities for new development
- □ Other travel modes (bus, bike, etc.)
- A Impacts on local roads
- Aesthetics or appearance
- □ Construction impacts (noise, traffic, etc.)
- Cost
- □ Other_____

What do you think are the most important trans	sportation problems within this study area? たろこ DURING PEAK HOURS
What ideas should we consider when developi	ing alternatives?
. How would you prefer to get updates on this p	project? (Letter, e-mail, website, newspaper, etc.) ふうたら
. Are there people in your community who would best way to reach them?	d be interested but are unable to attend public meetings? What is the
nank you for completing the survey questions. Pl	ease feel free to provide additional comments.
Please return completed surveys to:	Or contact the team:
SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242	Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

4

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

Name Address E-maik

Organization (if any)

- 1. What forms of transportation do you use in the study area? Choose all that apply.
 - o Walk
 - o Bicycle
 - o Bus
 - Automobile>
 - o Carpool
 - o Other_
- 2. What are your destinations within the study area? Choose all that apply.
 - 🖉 Home
 - o Work
 - o School
 - Shopping
 - Restaurants
 - Medical appointments
 - o Other ____
- 3. How satisfied are you with the time it takes to travel through the study area?
 - · Very satisfied used to be
 - o Somewhat satisfied
 - o Neither satisfied or unsatisfied
 - o Somewhat unsatisfied
 - · Completely unsatisfied too many accidents
- 4. During **periods of heavy traffic**, what intersections or interchanges do you use to access SR 32 in this area?
 - o Eastgate Boulevard Interchange
 - o Eastgate Square Drive
 - o Glen Este-Withamsville Road
 - o Elick Lane
 - Old SR 74 (Speedway)
 - Ø Olive Branch-Stonelick Road Interchange
 - o Other_
 - None I travel through this area on SR 32
 - None I rarely use SR 32

- 5. When **traffic is lighter**, what intersection or interchange do you use most often to access SR 32 in this area?
 - o Eastgate Boulevard Interchange
 - o Eastgate Square Drive
 - o Glen Este-Withamsville Road
 - o Elick Lane
 - Old SR 74 (Speedway)
 - o Olive Branch-Stonelick Road Interchange
 - o Other ____
 - None I travel through this area on SR 32
 - o None I rarely use SR 32
- 6. How concerned are you about roadway safety within the study area?
 - Very concerned
 - o Somewhat concerned
 - o Neither concerned nor unconcerned
 - o Somewhat unconcerned
 - o Not at all concerned
- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important.

Safety

- □ Traffic flow and travel time
- □ Environmental impacts
- $\hfill\square$ Impacts on property and businesses
- □ Opportunities for new development
- □ Other travel modes (bus, bike, etc.)
- Impacts on local roads
- □ Aesthetics or appearance
- □ Construction impacts (noise, traffic, etc.)
- \Box Cost
- □ Other_____

8. What do you think are the most important transportation problems within this study area?

9. What ideas should we consider when developing alternatives? How would you prefer to get updates on this project? (Letter, e-mail, website, Hewspaper, etc.) 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them?

Thank you for completing the survey questions. Please feel free to provide additional comments.

Please return completed surveys to:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Or contact the team:

Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team Kyla Hucker 1320 Minx Dr. Batavia, OH 45103 October 6, 2010

To Whom It May Concern,

This letter is in regard to Old State Route 74 between the new U.C. Clermont entrance and State Route 32 at Speedway. It includes safety concerns and suggestions. My name is Kyla Hucker. I travel the area of road mentioned above almost daily and need to make you aware of the concern I have for the safety and lives of my family, friends, and myself.

The area of Old State Route 74 from just above the Olive Branch United Methodist Church to the new interchange has become dangerous. Traffic travels much too fast regardless of the posted speed limit, and the speeding traffic is now worse due to the new access to U.C. Clermont. Trees in bloom can block the vision of someone trying to enter Old 74 from both Amelia Olive Branch and the old Stonelick Olive Branch roads. Poison ivy and brush grow up beside the creek and guardrail at the bridge and often impede a driver's vision depending on the season and the make of the vehicle someone is driving.

These safety concerns are not mere observations, they are threats to the lives of citizens that live in and use that area of our community. Traffic comes so constantly along Old 74 it is difficult to pull out from Amelia Olive Branch unless a car coming from the left is turning onto Amelia Olive Branch. The same situation occurs when trying to turn left from the old Stonelick Olive Branch. To safely turn left onto Old 74, the light at the interchange must have just changed and a car needs to be turning left from Old 74 onto Amelia Olive Branch. This will often give enough time to safely make a left-hand turn. Sometimes it is even dangerous to make a right hand turn from old Stonelick Olive Branch onto Old 74 due to vehicles coming over the hill that is just up from the church. This past summer my vision was obstructed by poison ivy growing up the electrical pole at the corner of the bridge. The vine had gotten so full it would not allow for clear vision when checking for traffic up the road. I have had horns blown at me. I have been cussed at, and I have been told "You're gonna get killed doing that!" all while waiting to turn left into my parents' driveway.

During the school year, my son gets on and off the bus at his grandparents' house. My parents and I have witnessed drivers going past my son's bus while the bus is stopped, the stop sign is out, and the red lights are flashing. Last year, a driver decided to stop at the last minute which resulted in the car behind him, who was also disregarding school bus law, to hit him. When it was over, three cars were involved in the wreck. I was on my knees thanking God that my son's bus was not hit and that he and his bus driver were not hurt or killed. I beg you to imagine my son's body and the body of his bus driver, if that car had hit the bus or if it had been or ever will be a semi involved in that accident or one like it. After something like that, what would be left for me or my family?

Questions were raised in the past as to why the Stonelick interchange was not located at Armstrong Boulevard near the commercial complex and the Clermont County airport where much of the traffic along Old 74 is either going to or coming from. Using that area would have put the mass traffic near its destination, not forced citizens from their homes, and not put lives in unnecessary danger. If that area is the safer option, is it not better to make the change now? Is it not better to change plans if it is realized a safer option is available rather than unnecessarily lose even one life?

I do not know what you have planned for Old 74 or the citizens that live there and travel its roads. I do know the safety of the citizens should be the top priority. Something needs to be done about the mass traffic speeding along residential houses. Citizens must be able to enter and leave their property safely. The lives of children should not be put in jeopardy merely because they are getting on or off a school bus. Decisions need to be made based on the welfare of the citizens.

Respectfully, Kyla Hucker

513-732-0905

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record

Name $\angle ARRY E Joines$	
Address 1307 AUTUMNVIEW DR.	BATAVIA oh 4503
E-mail	
Organization (if any) BATAVIA BAPTIST	
 1. What forms of transportation do you use in the study area? Choose all that apply. O Walk O Bicycle O Bus ✓ Automobile O Carpool O Other 	 5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area? ✓ Eastgate Boulevard Interchange ○ Eastgate Square Drive ○ Glen Este-Withamsville Road ○ Elick Lane ✓ Old SR 74 (Speedway) ✓ Olive Branch-Stonelick Road Interchange
 2. What are your destinations within the study area? Choose all that apply. Home Work School Shopping Restaurants Medical appointments Other Auch 	 Other
 3. How satisfied are you with the time it takes to travel through the study area? O Very satisfied O Somewhat satisfied Q Neither satisfied or unsatisfied O Somewhat unsatisfied O Completely unsatisfied 	 Somewhat unconcerned Not at all concerned 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important. D Safety Traffic flow and travel time
 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area? ✓ Eastgate Boulevard Interchange o Eastgate Square Drive o Glen Este-Withamsville Road o Elick Lane o Old SR 74 (Speedway) 	 Environmental impacts Impacts on property and businesses Opportunities for new development Other travel modes (bus, bike, etc.) Impacts on local roads Aesthetics or appearance Construction impacts (noise, traffic, etc.) Cost Other

- o/ Old SR 74 (Speedway)
- o Olive Branch-Stonelick Road Interchange
- o Other _____
- None I travel through this area on SR 32
- \circ None I rarely use SR 32

8. What do you think are the most important transportation problems within this study area?

CONGESTION 9. What ideas should we consider when developing alternatives? OVER AND AT JUTER SECTIONS 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) LETTER 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. Please return completed surveys to: Or contact the team: SR 32 Study Team Susan Daniels TranSystems ssdaniels@transystems.com 4555 Lake Forest Drive, Suite 540 513-621-1981 - extension 32103 Blue Ash, OH 45242 Fax to: (513) 621-2901 Attn: SR 32 Study Team

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the

area. Please note that all comments become part of the pul	plic record.
Name May hassef	
E-mail	
Organization (if any)	
 What forms of transportation do you use in the study area? Choose all that apply. Walk Bicycle Bus Automobile Carpool Other 	 5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway)
 What are your destinations within the study area? Choose all that apply. Home Work School Shopping 	 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32 How concerned are you about roadway safety within the study area?
 Restaurants Medical appointments Other How satisfied are you with the time it takes to travel 	 Very concerned Somewhat concerned Neither concerned nor unconcerned Somewhat unconcerned Not at all concerned
 through the study area? Very satisfied Somewhat satisfied Neither satisfied or unsatisfied Somewhat unsatisfied Completely unsatisfied 	 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important. ✓ Safety ✓ Traffic flow and travel time
 During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road 	 P Environmental impacts Impacts on property and businesses Opportunities for new development Other travel modes (bus, bike, etc.) Impacts on local roads Aesthetics or appearance Construction impacts (noise, traffic, etc.)

8 🗆 Cost

Cost
 Other ______

- o Elick Lane
- Old SR 74 (Speedway)
- o Olive Branch-Stonelick Road Interchange
- o Other _____
- None I travel through this area on SR 32
- None I rarely use SR 32

8. What do you think are the most important transportation problems within this study area? well Creale the disturbance 9. What ideas should we consider when developing alternatives? mill ore) 0 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) Spaper 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? visit to door par Thank you for completing the survey questions. Please feel free to provide additional comments. Please return completed surveys to: Or contact the team: SR 32 Study Team Susan Daniels TranSystems ssdaniels@transystems.com 4555 Lake Forest Drive, Suite 540 513-621-1981 - extension 32103

Blue Ash, OH 45242

Fax to: (513) 621-2901 Attn: SR 32 Study Team

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

area.	Please note that all comments become part of the public n	ecord	
Name	(Im WODDWARD		\sim /
Addr	ess 424 Wards Coaner	2	<u> </u>
E-ma	bille cincinnament	-	COM
	nization (if any) Ensite one Proper To		OGENTA
1. V	What forms of transportation do you use in the study area? Choose all that apply.	5.	interchange do you use most often to access SR 32
	 Walk Bicycle Bus Automobile Carpool Other 		 in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway)
(What are your destinations within the study area? Choose all that apply.		 Olive Branch-Stonelick Road Interchange Other None - I travel through this area on SR 32 None - I rarely use SR 32
)	 ✓ Work ⊃ School ⊃ Shopping ✓ Restaurants ⊃ Medical appointments 	6,	 How concerned are you about roadway safety within the study area? Very concerned Somewhat concerned
3,	Other		 Neither concerned nor unconcerned Somewhat unconcerned Not at all concerned
ز	 Very satisfied Somewhat satisfied Neither satisfied or unsatisfied 	7.	When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important.
	 Somewhat unsatisfied Completely unsatisfied 		Safety Traffic flow and travel time
	During periods of heavy traffic , what intersections or interchanges do you use to access SR 32 in this area?		 Environmental impacts Impacts on property and businesses Opportunities for new development Other travel modes (bus, bike, etc.)
	 Eastgate Boulevard Interchange Eastgate Square Drive 		 Impacts on local roads Aesthetics or appearance

- K Glen Este-Withamsville Road
- o' Elick Lane
- o Old SR 74 (Speedway)
- o Olive Branch-Stonelick Road Interchange
- o Other_
- o None I travel through this area on SR 32
- None I rarely use SR 32

- Construction impacts (noise, traffic, etc.)
- 🗀 Çost
- Other _____

8. What do you think are the most important transportation problems within this study area? PROVIDING ACCESS TO FX/SJNG RUSINESSOS . 1 ... 9. What ideas should we consider when developing alternatives? DLease ACCESS POINTS IF ARP ELIMINDTED 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) EMAIL 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. CLOSING The ST-GRODE IDJOMSV F DON ery 55È CL 81 5 Or contact the team: Please return completed surveys to: Susan Daniels SR 32 Study Team ssdaniels@transystems.com TranSystems 513-621-1981 - extension 32103 4555 Lake Forest Drive, Suite 540 Attn: SR 32 Study Team Fax to: (513) 621-2901 Blue Ash, OH 45242

.

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

area. Flease note that all comments become part of the put	blic record			
Name <u>GARY MACK</u>	1.76-7			
Address 5377 STATE ROUTE E-mail GARYANDJOELLAN @ NA	132	BATAVIA,	01410	45103
E-mail GHRYANDJOELLAN & NA	ET PE	NNY . NET		
Organization (if any) HOME OWNER				
 What forms of transportation do you use in the study area? Choose all that apply. Walk Bicycle Bus Automobile Carpool 	5.	 When traffic is lighter, while interchange do you use mo in this area? Eastgate Boulevard Integrate Square Drive Glen Este-Withamsville Elick Lane 	st often to acce erchange	
 Other What are your destinations within the study area? Choose all that apply. Home 		 Old SR 74 (Speedway) Olive Branch-Stonelick Road Inte Other None – I travel through this area None – I rarely use SR 32 	Road Intercha this area on S	0
 Work School Shopping Restaurants Medical appointments Other		How concerned are you abo the study area? Very concerned Somewhat concerned Neither concerned nor i Somewhat unconcerned	unconcerned	fety within
 through the study area? Very satisfied Somewhat satisfied Neither satisfied or unsatisfied Somewhat unsatisfied Completely unsatisfied 	7.	 Not at all concerned 7. When considering alternatives for improvement issues should be considered most Please rank in order, with 1 being most Safety 3 Safety 2 Traffic flow and travel time 4 Environmental impacts 9 Impacts on property and businesse 1 Opportunities for new development 3 Other travel modes (bus, bike, etc.) 1 Impacts on local roads 7 Aesthetics or appearance 8 Construction impacts (noise, traffic, Cost Other 	idered most im being most im	portant?
 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway) Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32 			evelopment s, bike, etc.) ce ioise, traffic, etc	etc.)

8. What do you think are the most important transportation problems within this study area?

SR 32 IS AT STANDSTILL DURING MORNING & EVENING RUSH HOUR. 9. What ideas should we consider when developing alternatives? REMOVE TRAFFIC LIGHTS AT INTERSECTIONS, AND USE OVERPASSES 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) LETTER 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. Please return completed surveys to: Or contact the team: SR 32 Study Team Susan Daniels ssdaniels@transystems.com TranSystems 513-621-1981 - extension 32103 4555 Lake Forest Drive, Suite 540 Fax to: (513) 621-2901 Attn: SR 32 Study Team Blue Ash, OH 45242

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this guick survey about transportation issues in the area. Please note that all comments become part of the public record.

Name JOANN MONTGOMER Address <u>993 Joyce Drive</u> E-mail <u>JCMONTGOMERY @ Webman</u> Organization (if any)	BAFAVIA O. 45103
 What forms of transportation do you use in the study area? Choose all that apply. Walk 	5. When traffic is lighter , what intersection or interchange do you use most often to access SR 32 in this area?

- Bicycle
- 0 o Bus
- Automobile .
- Carpool 0
- Other 0
- 2. What are your destinations within the study area? Choose all that apply.
 - Home .
 - Work 0
 - School 0
 - Shopping
 - Restaurants 0
 - Medical appointments 0
 - Other 0
- 3. How satisfied are you with the time it takes to travel through the study area?
 - Very satisfied
 - Somewhat satisfied 0
 - Neither satisfied or unsatisfied 0
 - Somewhat unsatisfied
 - Completely unsatisfied
- During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?
 - Eastgate Boulevard Interchange 0
 - Eastgate Square Drive 0
 - Glen Este-Withamsville Road 0
 - o Elick Lane
 - Old SR 74 (Speedway) 0
 - Olive Branch-Stonelick Road Interchange 0
 - Other FAYARD 4
 - None I travel through this area on SR 32 0
 - None I rarely use SR 32 Ó

- Eastgate Boulevard Interchange
- Eastgate Square Drive
- Glen Este-Withamsville Road
- Elick Lane
- Old SR 74 (Speedway)
- Olive Branch-Stonelick Road Interchange 0
- Other FAYARd ۲
- None I travel through this area on SR 32 0
- None I rarely use SR 32 0
- 6. How concerned are you about roadway safety within the study area?
 - Very concerned
 - Somewhat concerned 0
 - Neither concerned nor unconcerned
 - Somewhat unconcerned
 - Not at all concerned
- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important.
 - i 💭 Safety
 - Itraffic flow and travel time
 - Environmental impacts
 - Impacts on property and businesses
 - Opportunities for new development
 - Other travel modes (bus, bike, etc.)
 - □ Impacts on local roads
 - Aesthetics or appearance
 - B Construction impacts (noise, traffic, etc.)

JO Other Highway Truck Noise For Residents

8. What do you think are the most important transportation problems within this study area?

Rossing opposite direction tRAttic entering

OURS, eA

9. What ideas should we consider when developing alternatives?

10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.)

LeHer - Email

11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them?

Thank you for completing the survey questions. Please feel free to provide additional comments.

WERP Domen MADS be 030 eNou

Please return completed surveys to:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Or contact the team:

Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

○ None – I rarely use SR 32

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

Addr	ess 123 Emmons PL mt orais	07	45154
E-ma	allBACHMANS @gmail. Com		
	nization (if any)	_	
	What forms of transportation do you use in the study area? Choose all that apply. Walk Bicycle Bus Automobile Carpool Other		 When traffic is lighter, what intersection or interchange do you use most often to access SR in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway)
	What are your destinations within the study area? Choose all that apply. Home		 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32
	 School Shopping 	6.	How concerned are you about roadway safety within the study area?
	Medical appointments		 Very concerned Somewhat concerned Neither concerned nor unconcerned
	low satisfied are you with the time it takes to travel hrough the study area?		 Somewhat unconcerned Not at all concerned
	 Somewhat satisfied Neither satisfied or unsatisfied Somewhat unsatisfied 	7.	 When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important. Safety Traffic flow and travel time
0	During periods of heavy traffic , what intersections or interchanges do you use to access SR 32 in this area?		 Environmental impacts Impacts on property and businesses Opportunities for new development Other travel modes (bus, bike, etc.)
	Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway) Olive Branch-Stonelick Road Interchange Other		 Other traver modes (bus, bike, etc.) Impacts on local roads Aesthetics or appearance Construction impacts (noise, traffic, etc.) Cost Other

8. What do you think are the most important transportation problems within this study area? over passes would Allevate the traffic proplems that step Lights NOW Carse 9. What ideas should we consider when developing alternatives? over passes Forcallel ROBBS FOR SLopping traffic 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) Newspaper email 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. Please return completed surveys to: Or contact the team: SR 32 Study Team Susan Daniels TranSystems ssdaniels@transystems.com 4555 Lake Forest Drive, Suite 540 513-621-1981 - extension 32103 Blue Ash, OH 45242 Fax to: (513) 621-2901 Attn: SR 32 Study Team

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

Name Ra tonalick Olive Branch S. Address Thehenus egmail.com . E-mail

Organization (if any)

- 1. What forms of transportation do you use in the study area? Choose all that apply.
 - o Walk
 - o Bicycle
 - o Bus
 - Automobile
 - o Carpool
 - o Olher_
- 2. What are your destinations within the study area? Choose all that apply.
 - o Home
 - o Work
 - o School
 - Shopping
 - Restaurants
 - o Medical appointments
 - Other ____
- 3. How satisfied are you with the time it takes to travel through the study area?
 - o Very satisfied
 - o Somewhat satisfied
 - Neither satisfied or unsatisfied
 - o Somewhat unsatisfied
 - o Completely unsatisfied
- 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?
 - o Eastgate Boulevard Interchange
 - o Easigate Square Drive
 - o Glen Este-Withamsville Road
 - o Elick Lane
 - o Old SR 74 (Speedway)
 - Olive Branch-Stonelick Road Interchange
 - Other <u>275</u>
 - o None I travel through this area on SR 32
 - o None I rarely use SR 32

- 5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area?
 - o Eastgate Boulevard Interchange
 - o Eastgate Square Drive
 - o Glen Este-Withamsville Road
 - o Elick Lane
 - o Old SR 74 (Speedway)
 - Olive Branch-Stonelick Road Interchange
 - Other <u>275</u>
 - o None I travel through this area on SR 32
 - o None I rarely use SR 32
- 6. How concerned are you about roadway safety within the study area?
 - o Very concerned
 - o Somewhat concerned
 - o Neither concerned nor unconcerned
 - Somewhat unconcerned
 - o Not at all concerned
- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important.
 - 🖪 Safety
 - 2 Traffic flow and travel time
 - De Environmental impacts
 - S Impacts on property and businesses
 - Deportunities for new development
 - Diher travel modes (bus, bike, etc.)
 - D Impacts on local roads
 - C Aesthetics or appearance
 - Construction impacts (noise, traffic, etc.)
 - 🖓 Cost
 - Ó Other

2

8. What do you think are the most important transportation problems within this study area? às many 2trAsil 9. What ideas should we consider when developing alternatives? collector Romes Of nobl 1000 ho o Vencia plum NOOD DO 12m CM P NOON 000 o ten 00 0 and NOUR C 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) emai 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. Was ins cmcon 12200 OLILING QUUN 00 NO Focus on \leq Leen won hon Please return completed surveys to: Or contact the team: SR 32 Sludy Team Susan Daniels TranSystems ssdaniels@transystems.com 4555 Lake Forest Drive, Suite 540 513-621-1981 - extension 32103 Blue Ash, OH 45242 Fax to: (513) 621-2901 Attn: SR 32 Sludy Team

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

١.

Address 1290 HEITMAN LANE	BATAVIA, OHIO 45103
E-mail	
Organization (if any)	
 What forms of transportation do you use in the stud area? Choose all that apply. Walk Bicycle Bus Automobile Carpool Other 	 y 5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway)
2. What are your destinations within the study area? Choose all that apply.Home	 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32
 Work School Shopping Restaurants Medical appointments Other	 6. How concerned are you about roadway safety withi the study area? Very concerned Somewhat concerned Neither concerned nor unconcerned
3. How satisfied are you with the time it takes to travel through the study area?	 Somewhat unconcerned Not at all concerned
 Very satisfied Somewhat satisfied Neither satisfied or unsatisfied Somewhat unsatisfied Completely unsatisfied 	 When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important. Safety Traffic flow and travel time
4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?	 Environmental impacts Impacts on property and businesses Opportunities for new development Other travel modes (bus, bike, etc.)
 Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway) Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 	 Other fraver modes (bus, bike, etc.) Impacts on local roads Aesthetics or appearance Construction impacts (noise, traffic, etc.) Cost Other

None – I rarely use SR 32

8. What do you think are the most important transportation problems within this study area? YOU NEED AN OVERPASSAT ROUTE 32 FOLD 74 BY SPEED WAY EITMAN'LARE IN WILLOWVILLE PEOPLE LIVING ON HEITMAN CANNOT TURN LEFT TOGO BECAUSE OF THE TRAFFIC BACK BAT VIA WE DRIVE MILES THE WRONG DIBECTION TO TURN TO GO-MUST 9. What ideas should we consider when developing alternatives? - BACK TO BATAVIA. THIS IS UNCALLED FOR. 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) LE1 LFR 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments.

Please return completed surveys to:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Or contact the team:

Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

MURREL Name Address E-mail

Organization (if any)

- 1. What forms of transportation do you use in the study ` area? Choose all that apply.
 - o Walk
 - o Bićycle
 - o /Bus
 - Automobile
 - o Carpool
 - o Other_
- 2. What are your destinations within the study area? Choose all that apply.
 - o Home
 - o Work
 - o School
 - Shopping
 - Restaurants
 - Medical appointments
 - o Other _____
- 3. How satisfied are you with the time it takes to travel through the study area?
 - Very satisfied
 - Somewhat satisfied
 - o Neither satisfied or unsatisfied
 - o Somewhat unsatisfied
 - o Completely unsatisfied
- 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?
 - o// Eastgate Boulevard Interchange

 - 9/ Glen Este-Withamsville Road
 - o Elick Lane
 - o / Old SR 74 (Speedway)
 - of Olive Branch-Stonelick Road Interchange
 - o Other_
 - None I travel through this area on SR 32
 - None I rarely use SR 32

- 5. When **traffic is lighter**, what intersection or interchange do you use most often to access SR 32 in this area?
 - o Eastgate Boulevard Interchange
 - o _ Eastgate Square Drive
 - Glen Este-Withamsville Road
 - o Elick Lane
 - o Old SR 74 (Speedway)
 - o Olive Branch-Stonelick Road Interchange
 - o Other_
 - None I travel through this area on SR 32
 - None I rarely use SR 32
- 6. How concerned are you about roadway safety within the study area?
 - /Very concerned
 - Somewhat concerned
 - o Neither concerned nor unconcerned
 - o Somewhat unconcerned
 - o Not at all concerned
- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with **1** being most important.
 - Safety
 - Traffic flow and travel time
 - Environmental impacts
 - Impacts on property and businesses
 - Opportunities for new development
 - Other travel modes (bus, bike, etc.)
 - Impacts on local roads
 - Aesthetics or appearance
 - Construction impacts (noise, traffic, etc.)
 - Cost
 - Other___

8. What do you think are the most important transportation problems within this study area?

9. What ideas should we consider when developing alternatives?

10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.)

11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them?

Thank you for completing the survey questions. Please feel free to provide additional comments.

Please return completed surveys to:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Or contact the team:

Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

Name Charles Alight	
Address 4666 Rumpke Rd Cin E-mail clight@cinci.rr.com	cinnati OH 45245
Organization (if any)	
 What forms of transportation do you use in the study area? Choose all that apply. Walk 	5. When traffic is lighter, what intersection or interchange do you use most often to access SR in this area?
 Bicycle Bus Automobile Carpool 	 Eastgate Boulevard Interchange <i>L</i> Eastgate Square Drive Glen Este-Withamsville Road Elick Lane
o Other	 Old SR 74 (Speedway)

- 2. What are your destinations within the study area? Choose all that apply.
 - o Home

- o Work
- o School
- Shopping
- Restaurants
- Medical appointments
- o Other
- 3. How satisfied are you with the time it takes to travel through the study area?
 - Very satisfied
 - Somewhat satisfied
 - Neither satisfied or unsatisfied
 - o Somewhat unsatisfied
 - Completely unsatisfied
- 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?
 - Eastgate Boulevard Interchange
 - o Eastgate Square Drive
 - o Glen Este-Withamsville Road
 - Elick Lane
 - Old SR 74 (Speedway)
 - Olive Branch-Stonelick Road Interchange
 - o Other
 - None I travel through this area on SR 32
 - None I rarely use SR 32

- 32
 - Old SR 74 (Speedway)
 - o Olive Branch-Stonelick Road Interchange
 - o Other
 - None I travel through this area on SR 32
 - None I rarely use SR 32 0
- 6. How concerned are you about roadway safety within the study area?
 - o Very concerned
 - Somewhat concerned
 - Neither concerned nor unconcerned
 - Somewhat unconcerned
 - Not at all concerned
- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important.
 - 🖆 Safetv
 - 2 Traffic flow and travel time
 - **3** Environmental impacts
 - D Impacts on property and businesses
 - Opportunities for new development
 - □ Other travel modes (bus, bike, etc.)
 - **5** Impacts on local roads
 - Aesthetics or appearance
 - □ Construction impacts (noise, traffic, etc.)
 - 🔁 Cost
 - □ Other_____

8. What do you think are the most important transportation problems within this study area? Congestion af rush hour 9. What ideas should we consider when developing alternatives? Better thra traffic fow 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. . Please return completed surveys to: Or contact the team: SR 32 Study Team Susan Daniels TranSystems ssdaniels@transystems.com 4555 Lake Forest Drive, Suite 540 513-621-1981 - extension 32103 Blue Ash, OH 45242 Fax to: (513) 621-2901 Attn: SR 32 Study Team

SR 32 Eastgate Area Improvements Questionnaire

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

INDA LIG X Name OH 4524 DINTI Address Cinci, rr. com 6 E-mail Organization (if any)

- 1. What forms of transportation do you use in the study area? Choose all that apply.
 - Walk
 - o Bicycle
 - o Bus
 - Automobile
 - o Carpool
 - o Other_
- 2. What are your destinations within the study area? Choose all that apply.
 - Home
 - 😻 Work
 - o School
 - Shopping
 - Restaurants
 - o Medical appointments
 - o Other _____
- 3. How satisfied are you with the time it takes to travel through the study area?
 - o Very satisfied
 - Somewhat satisfied
 - o Neither satisfied or unsatisfied
 - Somewhat unsatisfied
 - o Completely unsatisfied
- 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?
 - Eastgate Boulevard Interchange
 - o Eastgate Square Drive
 - o Glen Este-Withamsville Road
 - o Elick Lane
 - Old SR 74 (Speedway)
 - o Olive Branch-Stonelick Road Interchange
 - o Other __
 - o None I travel through this area on SR 32
 - None I rarely use SR 32

- 5. When **traffic is lighter**, what intersection or interchange do you use most often to access SR 32 in this area?
 - Eastgate Boulevard Interchange
 - o Eastgate Square Drive
 - o Glen Este-Withamsville Road
 - o Elick Lane
 - Old SR 74 (Speedway)
 - o Olive Branch-Stonelick Road Interchange
 - o Other ____
 - None I travel through this area on SR 32
 - \circ None I rarely use SR 32
- 6. How concerned are you about roadway safety within the study area?
 - o Very concerned
 - Somewhat concerned
 - o Neither concerned nor unconcerned
 - o Somewhat unconcerned
 - o Not at all concerned
- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important.
 - 🕑 Safety
 - A Traffic flow and travel time
 - C3 Environmental impacts
 - $\hfill\square$ Impacts on property and businesses
 - Opportunities for new development
 - S Other travel modes (bus, bike, etc.)
 - by Impacts on local roads
 - Aesthetics or appearance
 - Construction impacts (noise, traffic, etc.)
 - \Box Cost
 - Other _____

8. What do you think are the most important transportation problems within this study area?

orgestion Ko in / Q 00 0 our

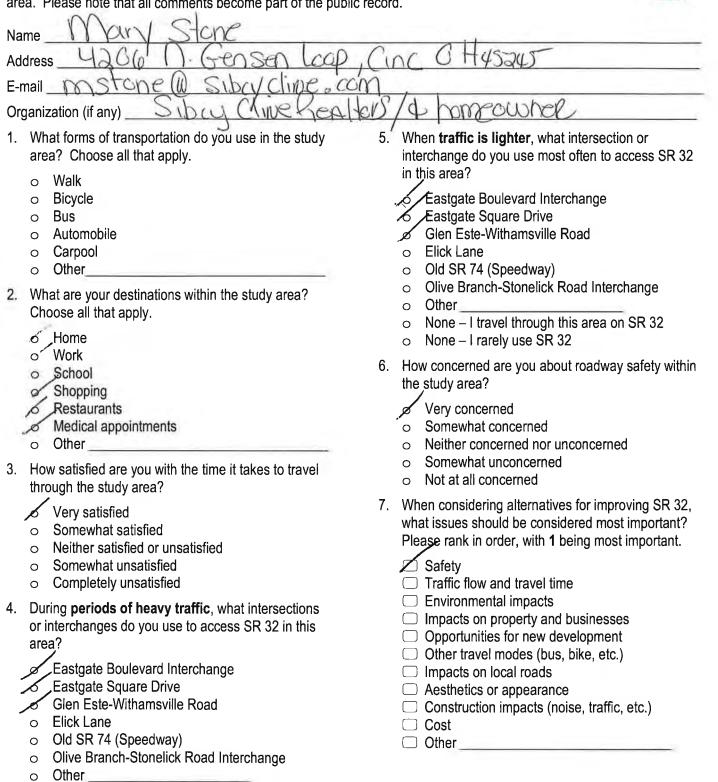
9. What ideas should we consider when developing alternatives?

- 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.)
- 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them?

Thank you for completing the survey questions. Please feel free to provide additional comments.

Please return completed surveys to:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242


Or contact the team:

Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

SR 32 Eastgate Area Improvements Questionnaire

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

- None I travel through this area on SR 32
- None I rarely use SR 32

8. What do you think are the most important transportation problems within this study area? ent QUP 10 (GI 15 rea arou d 9. What ideas should we consider when developing alternatives? loca Cn (Lonizud MDQC 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) P-W 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. MO. SOM 97 in Please return completed surveys to: Or contact the team:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242 Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

SR 32 Eastgate Area Improvements Questionnaire

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

area. Please note that all comments become part of the public re	ecord.
Name RICHARD WHELEN	
Address 1027 CLEPPER LANE	
E-mail <u>RICH @ RICH WHELEN. COM</u>	
Organization (if any) BLUE SKIES REAL ESTA	ATE COMPANY
 What forms of transportation do you use in the study area? Choose all that apply. Walk Bicycle Bus Automobile Carpool Other	 5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway) Olive Branch-Stonelick Road Interchange Other None - I travel through this area on SR 32 None - I rarely use SR 32 6. How concerned are you about roadway safety within the study area? Very concerned Somewhat concerned Somewhat unconcerned Not at all concerned
 Very satisfied Somewhat satisfied Neither satisfied or unsatisfied Somewhat unsatisfied Completely unsatisfied 	 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important. (2) Safety (2) Traffic flow and travel time
 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area? Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway) Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32 	 Environmental impacts Impacts on property and businesses Opportunities for new development Other travel modes (bus, bike, etc.) Impacts on local roads Aesthetics or appearance Construction impacts (noise, traffic, etc.) Cost Other

8. What do you think are the most important transportation problems within this study area?

_IT	15	THE	BACKUL	D OF	TRAFFIC	DU	RING	MORNING
AND	AFT	ERNOON	RUSH	HOUR	ALONG	S.R.	32.	AT
GLEN	ESTE	-WITHAN	USVILLE	ROAD	AND	ELICK	- BA	CHBUXTON
ROAD	IN	TERSECT	CONS.					

9. What ideas should we consider when developing alternatives?

PROPOSED ELICK-BACHBUXTON EXTENTION THE CURRENTLY S.R. 32 AT THE EASTERN END OF CROSS INTERCHANCE 0 EFFICIENT CLEPPER ANE SEEMS TO BB THE MOST MASSES ACROSS PROPLE MOVING THE APPROACH TO AFLOWING ACCESS POINT 32 WHILE CONVENIENT TO S.R. 32 AS WELL AS A SYSTEM OF SERVICE ROADS PARALLELING 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) S.R. 32 S.R. 32.

EMAIL ME AT: RICH@RICHWHELEN. COM

11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them?

Thank you for completing the survey questions. Please feel free to provide additional comments.

I	THINK THE SERVICE ROADS SHOULD:
	A. BE AT LEAST 2 LANES IN EACH DIRECTION
_	B. BEGIN AT I-275 AND EXTEND BEYOND THE
	CONGESTED DEMOGRAPHY
	C. HAVE A SPEED LIMIT OF 35 MPH
	D. PROVIDE OPPORTUNITY FOR PLENTY OF GURBOUT

Please return completed surveys to:	Or contact the team:
SR 32 Study Team	Susan Daniels
TranSystems	ssdaniels@transystems.com
4555 Lake Forest Drive, Suite 540	513-621-1981 – extension 32103
Blue Ash, OH 45242	Fax to: (513) 621-2901 Attn: SR 32 Study Team

SR 32 Eastgate Area Improvements Questionnaire

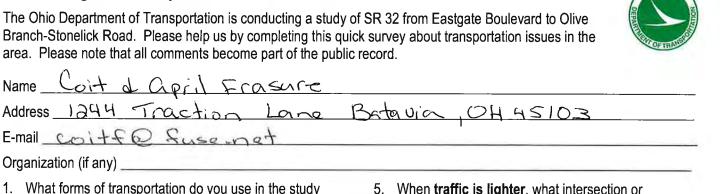
The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this guick survey about transportation issues in the а

area.	Please note that all comments become part of the pu	ublic record	l	OF THE
Name	Jean Gauy	th. cr	}	
Addre	ss 1289 Old State	74		
E-mail	missjeg@fuse.net			
Organ	ization (if any)		_	
	hat forms of transportation do you use in the study ea? Choose all that apply. Walk	5.	int	nen traffic is lighter , what intersection or erchange do you use most often to access SR 3 this area?
0 0 0 0 0 0	Bicycle Bus Automobile Carpool Other			Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway)
	hat are your destinations within the study area? noose all that apply.		0	Olive Branch-Stonelick Road Interchange Other

- Home 0
- Work 6
- o School
- Shopping Ð
- Restaurants €
- Medical appointments ۲
- Other 0
- 3. How satisfied are you with the time it takes to travel through the study area?
 - Very satisfied 0
 - Somewhat satisfied
 - Neither satisfied or unsatisfied 0
 - Somewhat unsatisfied 0
 - Completely unsatisfied ۲
- 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?
 - o Eastgate Boulevard Interchange
 - Eastgate Square Drive 0
 - o Glen Este-Withamsville Road
 - o Elick Lane
 - Old SR 74 (Speedway) •
 - Olive Branch-Stonelick Road Interchange 0
 - Other 0
 - None I travel through this area on SR 32 0
 - None I rarely use SR 32 0

- None I travel through this area on SR 32
- None I rarely use SR 32
- 6. How concerned are you about roadway safety within the study area?
 - Very concerned Ð
 - Somewhat concerned 0
 - Neither concerned nor unconcerned 0
 - Somewhat unconcerned 0
 - Not at all concerned
- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with 1 being most important.
 - □ Safety
 - Traffic flow and travel time
 - Environmental impacts
 - Impacts on property and businesses
 - Opportunities for new development
 - Other travel modes (bus, bike, etc.)
 - Impacts on local roads
 - □ Aesthetics or appearance
 - □ Construction impacts (noise, traffic, etc.)

Sale


Other _____

8. What do you think are the most important transportation problems within this study area? 9. What ideas should we consider when developing alternatives? least 74 01 n wa 0 S USI avi 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? mail Thank you for completing the survey questions. Please feel free to provide additional comments. con aut 2 GS.C. on needwar 0 eren 31 40 ks ruc are rum noure Please return completed surveys to: Or contact the team: SR 32 Study Team Susan Daniels TranSystems

TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242 Susan Daniels ssdaniels@transystems.com 513-621-1981 – extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

SR 32 Eastgate Area Improvements Questionnaire

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

1. What forms of transportation do you use in the study area? Choose all that apply.

Name Coit & april Frasure

- Walk 0
- Bicycle 0
- o Bus
- Automobile

Organization (if any)

- o Carpool
- o Other_
- 2. What are your destinations within the study area? Choose all that apply.
 - Home
 - 0 Work
 - o School
 - Shopping
 - Restaurants
 - Medical appointments 0
 - Other 0
- 3. How satisfied are you with the time it takes to travel through the study area?
 - Very satisfied
 - Somewhat satisfied
 - o Neither satisfied or unsatisfied
 - Somewhat unsatisfied •
 - Completely unsatisfied
- 4. During periods of heavy traffic, what intersections or interchanges do you use to access SR 32 in this area?
 - Eastgate Boulevard Interchange 0
 - Eastgate Square Drive 0
 - o Glen Este-Withamsville Road
 - Elick Lane
 - Old SR 74 (Speedway) ۲
 - Olive Branch-Stonelick Road Interchange
 - o Other
 - None I travel through this area on SR 32
 - None I rarely use SR 32

- 5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area?
 - Eastgate Boulevard Interchange 0
 - **Eastgate Square Drive** 0
 - Glen Este-Withamsville Road
 - Elick Lane •
 - Old SR 74 (Speedway)
 - Olive Branch-Stonelick Road Interchange 0
 - o Other
 - None I travel through this area on SR 32 0
 - None I rarely use SR 32 0
- 6. How concerned are you about roadway safety within the study area?
 - Very concerned 8
 - Somewhat concerned 0
 - Neither concerned nor unconcerned 0
 - Somewhat unconcerned 0
 - Not at all concerned 0
- 7. When considering alternatives for improving SR 32. what issues should be considered most important? Please rank in order, with 1 being most important.
 - S Safetv
 - S Traffic flow and travel time
 - Environmental impacts
 - Impacts on property and businesses
 - G Opportunities for new development
 - ⁽⁷⁾ Other travel modes (bus, bike, etc.)
 - (Impacts on local roads
 - Aesthetics or appearance
 - Construction impacts (noise, traffic, etc.)
 - O Cost
 - □ Other _____

8. What do you think are the most important transportation problems within this study area? in this area - the stop and GD lich Trat cider is mon 9. What ideas should we consider when developing alternatives? 1 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) ot ____ e-mai 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. 0 07 in Please return completed surveys to: Or contact the team:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

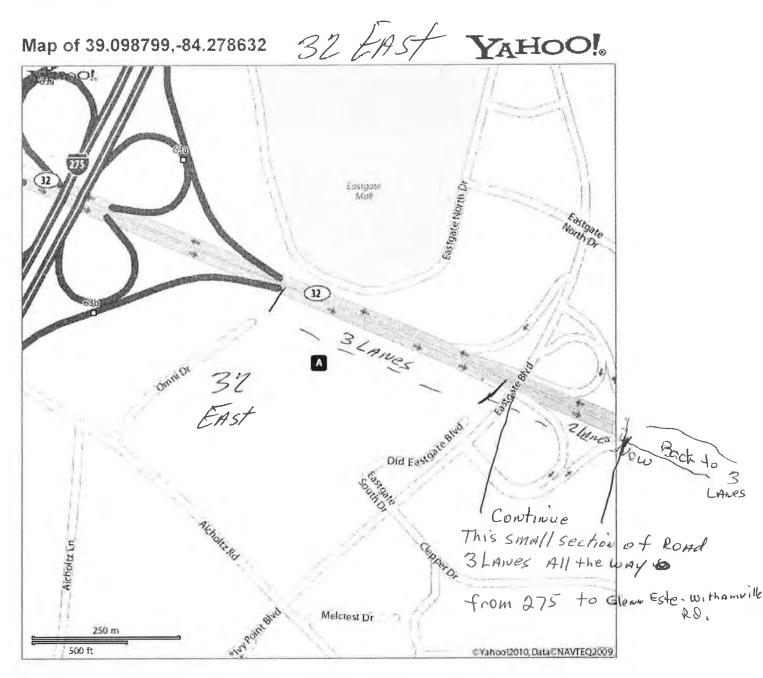
Susan Daniels ssdaniels@transystems.com 513-621-1981 - extension 32103 Fax to: (513) 621-2901 Attn: SR 32 Study Team

SR 32 Eastgate Area Improvements Questionnaire

The Ohio Department of Transportation is conducting a study of SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by completing this quick survey about transportation issues in the area. Please note that all comments become part of the public record.

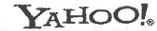
area. Please note that all comments become part of the public	c record.
Name Don BOWMAN Address Bax 65 Winchester E-mail Kizzdo Yyahoo.com	OL 45697
E-mail KIZZOOYAhoo, com	
Organization (if any)	
 What forms of transportation do you use in the study area? Choose all that apply. Walk 	5. When traffic is lighter, what intersection or interchange do you use most often to access SR 32 in this area?
 Bicycle Bus Automobile Carpool Other 	 Eastgate Boulevard Interchange Eastgate Square Drive Glen Este-Withamsville Road Elick Lane Old SR 74 (Speedway)
 What are your destinations within the study area? Choose all that apply. Home 	 Olive Branch-Stonelick Road Interchange Other None – I travel through this area on SR 32 None – I rarely use SR 32
 Work School Shopping 	6. How concerned are you about roadway safety within the study area?
 Restaurants Medical appointments Other 	 Very concerned Somewhat concerned Neither concerned nor unconcerned
2 How patiefied are you with the time it takes to travel	 Somewhat unconcerned

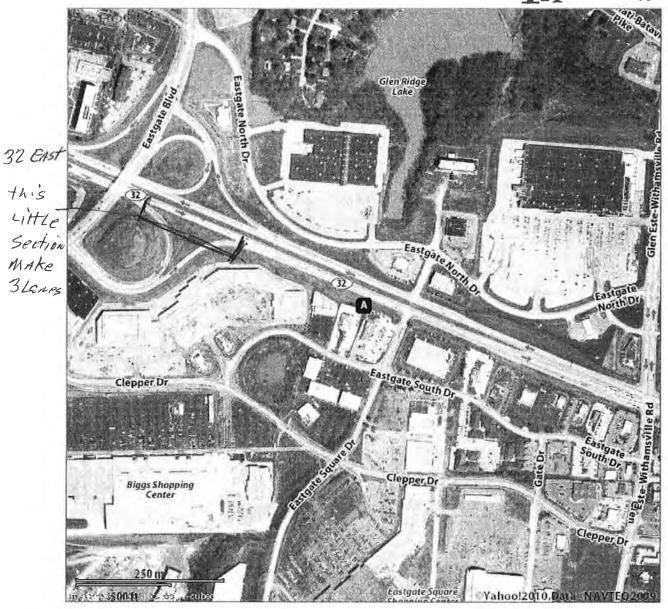
- 3. How satisfied are you with the time it takes to travel through the study area?
 - o Very satisfied
 - o Somewhat satisfied
 - o Neither satisfied or unsatisfied
 - Somewhat unsatisfied
 - o Completely unsatisfied
- 4. During **periods of heavy traffic**, what intersections or interchanges do you use to access SR 32 in this area?
 - Eastgate Boulevard Interchange
 - o Eastgate Square Drive
 - Glen Este-Withamsville Road
 - o Elick Lane
 - o Old SR 74 (Speedway)
 - o Olive Branch-Stonelick Road Interchange
 - o Other_
 - None I travel through this area on SR 32
 - None I rarely use SR 32


- 7. When considering alternatives for improving SR 32, what issues should be considered most important? Please rank in order, with **1** being most important.
 - 2 🕾 Safety
 - Traffic flow and travel time
 - Environmental impacts

Not at all concerned

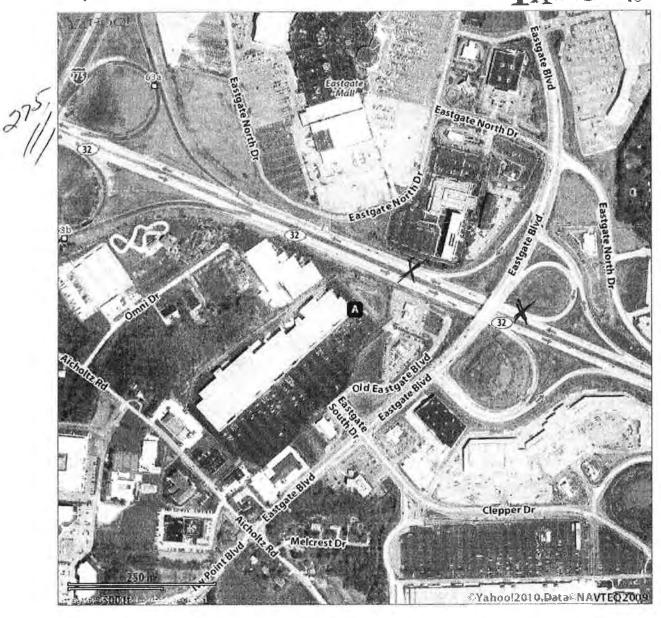
- □ Impacts on property and businesses
- Opportunities for new development
- □ Other travel modes (bus, bike, etc.)
- Impacts on local roads
- \Box Aesthetics or appearance
- □ Construction impacts (noise, traffic, etc.)
- 5 Cost
- Other_____


8. What do you think are the most important transportation problems within this study area?


Bumper to Bumper 9. What ideas should we consider when developing alternatives? Shown on 2 attached papers 10. How would you prefer to get updates on this project? (Letter, e-mail, website, newspaper, etc.) 11. Are there people in your community who would be interested but are unable to attend public meetings? What is the best way to reach them? Thank you for completing the survey questions. Please feel free to provide additional comments. to contact ON DOOT Site to see how 1005 Looking about this CONCENING Idens INV some one 1 SAW This ON Dec. 12-2010 50 DD hrista Qu) OA. Or contact the team: Please return completed surveys to: Susan Daniels SR 32 Study Team ssdaniels@transystems.com TranSystems 513-621-1981 - extension 32103 4555 Lake Forest Drive, Suite 540 Fax to: (513) 621-2901 Attn: SR 32 Study Team Blue Ash, OH 45242

MAKing 3 Lanes All the way from 275 to Glen Este-whim wille Rd. would greatly increase flow of traffic between 275 of EAStgate Blud.

Map of 39.096351,-84.269148



32 West YAHOO! Map of 39.098799,-84.278632 MARO! 32 West 275 32 Igate Nevth Dr Easigate astgate Vorth (32) A Old Eastgate Bud Aithold Se Melcrest Dr 250 m 500 ft ©Yahoo!2010, Esta©NAVTEQ2009

Continue this SMALL Section of road so you don't have to marge onto 32 than immediately Merge night to Exit onto 275. Creates A smoother flow And more time to Exit & Merg onto Highway http://maps.yahoo.com/print?mvt=m&ioride=us&tp=1&stx=&fcat=&clat=39.0987... 12/12/2010

Map of 39.098449,-84.277237

32 West

CO-Jen Spinosi

From:	CO-Susan Daniels
Sent:	Wednesday, September 29, 2010 2:22 PM
То:	Jay.Hamilton@dot.state.oh.us
Cc:	CO-Jen Spinosi; Manger, Pat; CO-Andrew Schneider
Subject:	IVa Comment - Margaret Moores

When I receive calls about IVa, I will send e-mails to you and Pat for your information. Jen will save these messages to include with the public comments.

I received a phone call today from Margaret Moores, 513-752-4482. She had the following comments:

- She has sold her house and asked that we send an invitation to the new owner: Jason L. Prichard, 4467 Briarwood, 45103 (Jen will do this.)
- She now lives off of Amelia Olive Branch, so she uses the Olive Branch-Stonelick Interchange now to access SR 32.
- She noted the following travel problems in the study area:
 - It is very difficult to turn onto 74 from Briarwood at peak hours. The speed limit is 45 mph, which seems too high considering how many roads and driveways there are. People do not slow down to let you out.
 - At 74/Tealtown intersection, people turning right on red onto 74 regularly pull out in front of traffic on 74. Right turns on red should be prohibited.
 - At 32/74 intersection, turning left is very difficult because there is no turn arrow. Traffic backs up for a long distance. When she used to live off 74, she wouldn't try to turn there, going to the next intersection instead.
 - Turning from White Castle onto Eastgate Boulevard, left turns are prohibited. This should be enforced by the township, because it is regularly violated. Ms. Moores was in a collision at this location when a car illegally turned left from the White Castle in front of her.

She asked if she should still attend the open house, since she doesn't live off 74 anymore. I told her that she is welcome to come. I told her that if she drives SR 32, her opinions would be helpful.

Susan S. Daniels, PE, AICP, LEED Green Associate

Senior Professional Assistant Vice President

TranSystems 1105 Schrock Road, Suite 400 Columbus, OH 43229 Main: 614-433-7800 Direct: 614-433-7803 Cell: 614-571-3222 Fax: 614-846-2602 www.transystems.com

Note: The information contained in this transmission as well as all documents transmitted herewith are privileged and confidential information. This information is intended only for the use of the individual or entity to whom it was sent, and the recipient is obliged to protect this information as appropriate. If the recipient of the e-mail, and/or the documents attached is not the intended recipient, you are hereby notified that any dissemination, distribution or reproduction, copy, or storage of this communication is strictly prohibited. Thank you.

TranSystems

1105 Schrock Road Suite 400 Columbus, OH 43229 Tel 614-433-7800 Fax 614-846-2602

www.transystems.com

Friday, October 8, 2010

Mr. Allan Daniel 1001 Joyce Drive Batavia, OH 45103

Dear Mr. Daniel:

Included, please find copies of the requested materials from the SR 32 Eastgate Area Improvements public meeting from Wednesday, October 6, 2010:

- Study Area display board
- Levels of Service display board and definitions board
- Crash History display board

If you have any questions or comments, please contact Susan Daniels at 513-621-1981 ext. 32-103 or ssdaniels@transystems.com.

Respectfully,

Susan Daniels

TranSystems

1105 Schrock Road Suite 400 Columbus, OH 43229 Tel 614-433-7800 Fax 614-846-2602

www.transystems.com

January 31, 2011

Ms. Gertrud Whitaker Office of Congresswoman Jean Schmidt 8044 Montgomery Road, Suite 170 Cincinnati, OH 45236

Re: Eastern Corridor Segment IV(a) Comments to Date

Dear Ms. Whitaker:

Thank you for attending the October 6, 2010 stakeholder meeting for Eastern Corridor Segment IV(a): SR 32 Improvements from Eastgate Boulevard to Stonelick-Olive Branch Road. As requested, enclosed are copies of the public comments that we have received regarding the project since the October 6, 2010 public meeting.

If you have any further questions or requests regarding this project, please contact me at 614-433-7803 or ssdaniels@transystems.com.

Respectfully,

Susan S. Daniels, PE, AICP

Project Manager

CC: Jay Hamilton, Ohio Department of Transportation, District 8

Eastgate Boulevard to Olive Branch-Stonelick Road Eastern Corridor, Segment IV(a) – CLE-32-2.25, PID 82370

Public Open House September 28, 2011

Purpose of the Meeting

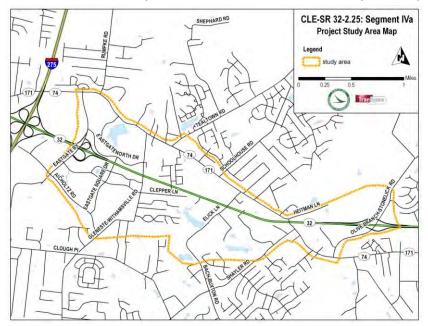
The purpose of this open house is to update you on the State Route 32 Eastgate Area Improvements Study, review the issues in the study area and seek your feedback on various conceptual alternatives that have been developed.

Project Purpose and Goals

DID YOU KNOW?

Previous studies for the Eastern Corridor are available at **www.easterncorridor.org**.

Materials from this open house are available on ODOT's website. A link is provided at www.tid.clermontcountyohio.gov.


The goals of the SR 32 Eastgate Area Improvements are to serve current and projected travel demand, reduce congestion and delay, and improve roadway safety, in a manner consistent with local transportation and economic development goals.

Study Area

The current study is focused on SR 32 from the Eastgate Boulevard interchange to the Olive Branch-Stonelick Road interchange. Improvements to local roads or the construction of new local connectors may be included as part of the project. Therefore, the study area also includes areas north and south of SR 32 as shown.

Background

In November 2004, the Ohio Department of Transportation (ODOT) published Access Ohio 2004-2030, Statewide Transportation Plan. The statewide plan recognized SR 32 as an important trade and travel corridor. In 2006, ODOT completed the Eastern Corridor Study, in cooperation with Clermont County, Hamilton

County, and the City of Cincinnati. The Eastern Corridor Study was a comprehensive look at the transportation needs between Cincinnati and western Clermont County.

As part of a multi-modal transportation strategy, this study included a recommendation to consolidate and manage access points to establish SR 32 as a limited access arterial roadway, including elimination of access at SR 32/Glen Este-Withamsville Road, with planned local road improvements implemented separately in support of this improvement. The current SR 32 Eastgate Area Improvement Study seeks to build upon the previous study by evaluating solutions for this area in detail.

Alternatives

Based on technical studies and public comment, five conceptual alternatives have been developed within the study area, including various locations for an interchange, overpasses, and various local network connections. These are as follows:

- > Alternative I* Widen existing SR 32, including five through lanes, and added turn lanes at intersections.
- Alternative 2 Includes an interchange on SR 32 between Glen Este-Withamsville Road and the existing Elick Lane/Bach Buxton Road.
- Alternative 3 Includes an interchange on SR 32 interchange at the existing Elick Lane/Bach Buxton Road intersection.
- Alternative 4 Includes an interchange on SR 32 between the existing Elick Lane/Bach Buxton Road and Old SR 74.
- > Alternative 5 No Build (do nothing alternative).

* Alternative 1 is not being recommended for further study.

Next Steps

The project team will collect public comments and continue to refine the alternatives. Additional design detail will be completed as well as environmental fieldwork and resource agency coordination. Expect another public involvement meeting sometime in 2012 to share the results of these studies and obtain your feedback on a preferred alternative.

Your Opinions are Needed

Feel free to view the exhibits and discuss the project with the team members. Please complete a short comment form and drop it in the comment box before you go. What are your thoughts on the conceptual alternatives presented at the public meeting? Do you prefer one alternative over another? Do you have other suggestions for this project?

Written comments may be submitted at the meeting, e-mailed, faxed or mailed to the study team.

Please submit your comments by October 26, 2011 to:

SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Phone: 513-621-1981, ask for extension 32-205 Fax: 513-621-2901 E-mail: amschneider@transystems.com

Materials are available on the ODOT website, via a link at: **www.tid.clermontcountyohio.gov**.

PROJECT SCHEDULE

Spring 2009

Funding Identified and Programmed thru TRAC

Spring 2010

ODOT Assembles Consultant Team and Implementation Committee

Fall 2010 – Fall 2011

Technical Studies Conducted and Alternatives Developed

Fall 2011 – Fall 2012

Preliminary Design and Environmental Approvals

2013 Right-of-Way Acquisition Process

> 2014-2015 Project Construction

SR 32 Eastgate Area Improvements – Comment Form

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

lame	_
ddress	
-mail	_
Prganization (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242 Or contact the team: Andrew Schneider amschneider@transystems.com 513-621-1981, ext. 32-205 513-621-2901 – Attn. SR 32 Study Team (fax)

Name	Organization (if any)	Email	Address (to
BARD WEDENBEIN	CLERK of Counts	6. LOIEDENBEINOCLERMONTOUDYDHON	
RONLMADDEN		RONMAD 8119 1 ADL. COM	
DUANE FERCUSON		FERCDEV @ YAHOO, COM	
Angelo Santoro	Santoro Engr' Co	santors e one. net	
Joyce Whalen		lytle leslie@fuse.net	4305 Min
Garria Blundell		goundell garriae @ gmail.com	
Diane mcWethy		diane men 2001@ yahoo.com	1511 W. M
mary sakine			4563 2
Marjonie Roberts		marginnatiozoontown.com	459 Qu
Ken Reekers			1264 Sec
EUGENE REMARDS			4390
BARBOJIMShinkle		hairiam 33@hotmail.com	127711
John McGraw		JMC 4604@fuse.net	4604 Bl
J Start SPEWARY		JSSTEmant & fuse. net	4580 S
DOUGLAS PAUEY			
JANET CHANEY TOP	t CALANTO	DOUGLASPAVEY CGMAIL.COM	1263 SH
Ruth Hurt JANET For	1	Chancy - jan 2 qmail . com	6000 F
Rut H Hury	1		1017 CLE
JIM SCHUBERT			1267 SH
Cheryl Vasar		loves, reading@yahoo.com	1251 MI

to be added to mailing list) nute Man Dr., Cincinnati, OH 45245 Mendowbrook Dr Loveland 45140 SUMMERSINE APTS CIN. OH 45244 artmouth Cir, ecretariat CT. Batavia OH 45183 DELICK Im l'Illage Glen Batavia Blainfield Ct. 45103 Shepherds WAY BATTAVIA 85103 HAYLERRD BATAVIA 45103 FILAGER RO BATAVIN OH 15703 upper in. Batavia 0445103 SHAVLER KO GATAVIA OHIO 45203 listy Lake In Batavia OH 45103

Name	Organization (if any)	Email	Address (to
dough to. Malo +>		LOE MALOHO FUSE NET	1026 Wes
Tim Ross			4807 Sto Cintr
Coit & april Frasure		coittle fuse. net	1244 Tro Batav
Drena Thancis	Kennedy Landing	Francis 536 C.C.S.COM	983 K
Matthew + Elizabeth Meibers		mmeibers @ shp. com	4967 Be
Devon Clausing		drisdale @ virtual spectrom. com	5950
Charles & Charlotte Brothers		CHARBROS@GMAIL.COM	49 Jerri
Chris White		Chriswpeusa@ao!.com	410 Wo
TERRY BROTHERS		candy terry brothes @ gmil.com	29 Terr
Nickie Hampton		nmhampton & hotmail . Com	4448 M
JEFFY SACILIE, MORE		JUMPORE FUET. NET	1154 11017
Ben Reddick			1007.
BOB+ JOAN EDEN			4639 LA
RONALD M. NORRIS		RONNORRIS @ ZOOMTOWN. COM	4792
Philip Koro		pkoro@hotmail.com	6543 L
Beth Lammish		1	5577 He
Gerolomme			4612540
Dobber Knyrs	k		4390 Eli
Bob front	Courty Commissioner	pproud e clermont county.gov	101 E.M
Stuart Kennedy			600 Kenna

to be added to mailing list) est chester way 45244 i, Ohio toney brook Kd 45244 OH ractionlane Via, OH 45103 -Kennedup Sanding O 45245 Beechwood Rd C 45244 45244 Chicory ick Lane, amelia 45102 lood St. Norwood 45212 Amelia 45102 nck Ln Valuet St Batavia Ohio 45103 1RUZZO UN BATAVAPOH 4563 SAATLER 43 AUREL VIEW DR. 43244 IMBERIZHOLL RE CINT, OH 45299 Cincy, 04 45230 ycenn Lt, MM Hard, OH 45150 Loffman Rd Balaña 45103 45703 ()A iller iller 45/03 Main 5% a quia Concontro 0 67 45253 Trals ref

Name	Organization (if any)	Email	Address (t
DAN Rose			
Raymond Rose			
Famme Manger	Cler. Co. Enji att.		
Craig Stephenson	u <i>č</i>		
JudiTH A. KEICH			4191 5
TOM MERE	WCPQ-TV	trackeepwepo.con	
SOE ESPERAGE	TRAUSYSTEM S	jrespelaged transystems con	-
Pat Williams	Clernort Cty Library		
STEPHAN TAM	CVVA-649		1871 È
Valerie Benninger			41490
Rose Jourson	clercty citizen	REJOHIO @ FUSE.NET	4123 h
LOHN & SOEA. DISNEY	RETIRED		10590
Cauple Potra fac	retied		1771 0
Rod Smill	Individual	grundræfuse, net	668
HOWARD HUTCHISON	<i>U</i> (5082
John Hirsh	individual	Jackmpinshe pal com	5060
PHILIP DODGE	ENDIUSDC2.	PD & D & Q C. WC'. RR - CON	4525 E
Bitty Hyten		BL HIder @ZoomTown	294051
steame for? Comae			
Diana Dallman		sodal@yahoo.com	978 Bi

to be added to mailing list) AGEWOOD CT. BATAVIA Ameria C Concore Rel overree BaTavia VOODSLY DR BATAVIA 45103 040 STATE ROUTE 74 4503 Claugh Pile, Batavia Bostwicker, N52 40 MIDFIGCO 45244 Midnesd Rd 15244 NELISH CREIV DRIVE, CARCY 45245-1308 Rt. 222 Bethel, In 4.5106 ingoyne DT. Bindinids . On

	Name	Organization (if any)	Email	Address (t
~	KAT			
	RICHARD TAXION		rgt3000@fuse.net	920 TAL
	Tuis & Kathleen BIRZ		Yax 40 @ ad. com	4498
	traces Woodward		traceydarine (yanos. con	4574 Zatai
	Kevin Post			4485 FO
	Stan Doimline			
	Carry Way ha			
	Cina & Charlie Dictrich			8490 B
	Robert + Elaine Kay			
	Carl + mileie Bockman			4602
	Scott JANSSENS		JANSSENS SGIR anci. RR. con	SGI CC.
~	that Ducttehin		PDUCHEMINCOMCI, RR. com	1500 C
	Find darge			
	The Montel		Emontel algo for	PO K
	Jenniger Boud		bonded forere zoontown.com	395
	Karen Pointer		Karen-pointer@hotmail.com	111 St.
	Jeffry Kohls		Karen-pointer@hotmail.com jeffreyKohls@yahoo.com	1063.C
	Pauline m Senhis			A
	Rendentii			
	Jam's Fraley	*	JAMES D FRALEY OGMAIL. COM	1322

to be added to mailing list) NATI OH 45245 FINNEY TRAIL 45244 75253 4.5 stavia Rd lint Oh 45244 Batin, 04, 03 Pearl Fr. CINCINA 11 AIRMONT WOODS DA EBAN ROGE TO BATAVIA, OF 4570. 45150 O Randolph in 45245 Andrews Dr. 45245 174 Bat. 01 45102 2 1 Old ST.RT.74 BATRULA

Name	Organization (if any)	Email	Address (t
Miranda Fash			4414 Eas
Kellie Geist-May	Community Journal	Kmay Community press.com	394 WC
KAREN Duesing	Everest Real Estate		
allan Daniel			4466
2 Canhies			
Sheri Yonenaka		simply. yellow@ymail.com	555 ASP
FRANTE M. HELFEN		Simply. yellow@ymail.com BLOW BURNIN @ FUSF.NET	1340 OC
OFFIT L. BRAdshow			465 Me
RAY GEPHARA			1129 0
CUFF HOAGLAND	APPLEBEES	CHOAGLAND & TANDK. COM	4440 G
Mark Wilker		MWILKENAT FUSE. NET	141 Cr
Don Wabler		DLW +130 AN. cm	579 C
LLOYD ACRES			
Lathleen A. Marshall		4803 Klatte	4803
Jerry Thomberry		2033 Plumb Lu -	>
In			
Sankee Bernard		2950 Jackson Pile	2950
Jes Benned		0	
GARY MACK			5377
John Simpson		John. Simpson@prodigy.net	

to be added to mailing list) strood Dr. #6104 Batavia OH 45103 ards Crn Rd, Loveland, OH Forest TR. CIN Dh 45244 pen Glen Dr #704 Cinfi 95244 DSR74 45103 45255 etutonsh De. VELLESLE? 45103 LENESTE WITHAMSVILLE RD 47245 45244 4570 ARDINAL DR. CINTICH. CINCINTA varmost woods De 4520 Klatte Rd. Cincinnati, O. 45244 Batairo Of 45103 Jackson Pike 45203 ST. RIE. 132 BATAVIA, OH. 45103

Name	Organization (if any)	Email	Address (t
Ben Aicholtz		ben Caicheltz. com	3748 Wht
ARNOLD HOMAN JR	-	AHOMANJR & YAHDD. COM	1029
LYNN BAIRD		labairdo yahos.com	4488 CHO
LICTOR BREEhNE		VBREEhNEQGMAN, COM	4313 0
TERRY STEWART		ts/virtues430gmail.com	998 5
Monica C Faw		MFDW@ZOOMTOWW.COM	4649 1
Billy Tipton			4.563
Den a Gitedenbein			1300
MARGARET HINKle		buzzhinkle Obirdlover, com	1053 old S
A. Skyz Levin	REI	styplevin@reiteam.com	602 L
LINDA MORGAN			3309 MT
RANDALL A. WULKER		Randy Wolker @ Yahoo.com	524 m
Thomas F Habig		9fhabig@ zoom town. com	44760
Dennis M Collies			4495
Nick Grammas	GRP32		
cuatt tocica	cormon too unty Public Schrau		626 0 6689 Nal
Faycand im Miller	Stonelick Tuy resident	Payejimmiller @ Vahoo, com	5281 BI
Jeannetto meckstroll			10120
Dains Sponsortie		HIPDENIS @FUSE, NET	1007 2
Lisa Skowronski		Usajotra fuse. net	
		v	

to be added to mailing list) fostore et Amelia off 45102 OLD S.R. 74 STNUT CREEK DR CINTI 45244 WURBOLD LA 45245 451013 TOYCEDR out Grove Ct 45103 5t. RT. 222 dwin Ra Mil Sord, Chio 45152 Ka state Rt. 74 45103 ila Avenue, Millord, Ott TCARMEL Rd GNT: 45244 IRYLEE LA Cincinnat: ON 45 glenWi low Dr. Batavia, O Glenridge Dr. Cont. Oh 45245 244 St Rt. Cinti OH4 45140-8708 DA 45103 45103 Batabia OH 450 ar. Land. \mathbf{V} same

Name	Organization (if any)	Email	Address (t
Marilyn Baker			1183
anna Stark		AESTARK47@HOTMAIL.com	4502 50
- Tong landmal	RCPL	t. cardinal @ efgemail. com	1205 Word
Jeachine warf			12236
sing & wind		TSANDONA 98 CLUSE Net	196
Dong & Mary Sweppond			
Jeff Roberts		Jffrob @ gmail. com	
Carol Kisner		cikisnere yahoo. com	4810 SW Cincinn
VICKY MEZACK			618 6
Maura Gray		grayma@oplin.org	3265
Dave Mezada.	LIBRARY-	MOZACION COPAIN ORA.	
KICHARD HEDRICK		SHOTTY HEDRICKOYAHOW. COM	
Caverne K. Fary-John Lay		ALARMREREADL.com	45036
Chazity M. Allins		chasity.pullins@gmail.com	63036
Jain Doedde	Retised	0 11 0	4393
angela Preace		preece @ fuse.net	1418 0
A A			
Jeff Preace MARK BREDEMEIER	KBA, INC. ANCHITEUTS	MBREDEMELEA @ KBAINC. COM	4357 F
Wm WOODWARD	TIDION INSERESTS	B, 1/0 Cincinnation. com	
ERIC FLAIG	JIFFY LUDE	EFLAIG @ GMAIL. Com	

to be added to mailing list) Shayen Woods Dr. ULEP WAY BATAVIA 45103 despoint have, Milford 45150 woodchase Irail Sataria this Picket Boy HO, tail mmerside Rd rati 45244 1600 LAND VIEW CINTI Broadway St. Betavia enridge Pr. Cin . lemmeste Witham suille auchalts ad. 1d SR74 Batava 45103 11 ERGUSON DR; 200 45245

Name	Organization (if any)	Email	Address (to
Lelva Johnstm			
Bier Johnston	Leiberry Beard	WJOHNSTON QCINCI. rr. com	4730.0
		mlammrich @fuse. Net	4762 M
Margaret Jamminis Glen Uled en ban		WiedenbeinFArms@yAhoo.com	4435.
James n. Jeffre			4203 2
Delon ?. Dri	At.	grædes @ fuse. not	4187 8
Marion Croswel		marion eqo croswell com	159 N.
John Becker	/	John & Beckerbor. com	925 60
Thia Walston	Resident	RWALSTON + CINCI. COM	4433 Far
Nancy Heplint	Resitent	netgep@asl.com.	112 g Wel
Chuck LANE	Resident	ChuckLane C-Zoomtown.com	886 CA:
Stephante Hall	Resident	shall@ dag-cons.con	4607 PC
Um Schwartes Keis Maresmark	4	5	990 J.
KRIS MARSMAR		wood marshard e Fuse. NET	
	Rosident	JLWJG, OHO Notzoro-nol	4430 Ee
Jason Watson Louise Homan	Res.	weezhomanb @ aol.com	1029
Betty Smith	RES		443
DAKRELL SMITH	* Res		4412
LEAH STUMPF	Res	BTUMPFOCINCI. RR. COM	4449 W
BEURGE STUMPT	RES		4449 h

to be added to mailing list) NO FERN FOREST LN CONGUNATI 45244 latte Rd., C. nt., Ott 45544 STRT222, BAT 04 45103 Glen Este Withomsville Rd Heitage Den cinti 45245 1. Second St Coulleman 45176 ocust In 45245-1313 eyand Dr. Botasia OH 45103 eleslay 4 5TO 3 ASTLE BAY Dr. CINCINNATI, 95245 OKTRAIL CURILL 45845 JOYCE DR. BATAVIA. OH 45103 Eastwood Dr. AB104, Batavia, 019 45107 OCD S.R.74 4437 FAYALD DR. 37 FAYARD DR. JAINUT ST WAINUT ST

Name	Organization (if any)	Email	Address (t
Margaret Bryant			4515 0
Mike Roth	SANDLER TAGINING	Mike Rothe tuse. Net ronrosents Crestern.com	4357
Ron Roberts	SANDLER TAAHAINA Roberts Engineering	ronroberts Cresterm. com	602 0
leffing D. Hendle			1065 ha
Mike Jany		MIGNEY@ CINCI. ER. COM	544
CARL G. HARTMAN		chartman apports zoneusa, con	and the second sec
ELAUDE ORNEH			
CLAUDE CORNELL		CCORNEll@FUSE.NET	193,
Jour Dave Olvens		mojoowens a) hot mail.com	1118 F
GEORGE MilligAN			1197 0
John + Martine adams			420 S
James Puchets	Mt Carmel Bapter	puckejh@yahoo.com	4416 FAY
myrna I al Dangman			4589(
Louise Wilson			4482 A
David Parminist		dlamm@fuse.net	5577
De Thomas & fustenburger			_
Saxa Hambold		Sheimbold Qyahoo.com	1475
Alere Kentyle			996
Laury + Dennes Tolus		dennistrus @ yahoo.com	625 Ru
Day Malne	RASTO	gmalone e casto into con	

to be added to mailing list) EVA LN BATAVIA ON 45103 Ferguson Pr. # 190 45245 INA ANY M. Hord. tour Pk 15103 VITGINIA CAME CIN 45244 HOLIN BIDGE CINTI, 6H 45245 HUDSONAVE. Williamsuge Fick Lane Batavia, ort 45103 OLD STATE ROUTE 74 BATAVIA OH 4/103 onne Le Cente 45244 HARD DR BATAVIA OH 45103 CITATIONET PATANIA 45103 : chostz Rd Hoff man Rd. Mil Timber Knol CLEPPER LN sthn.

Name	Organization (if any)	Email	Address (to
Sandy Madden		Sandyzmadde @ Yako.com	4435 St.
	Resident CC		4203 Hla
Ellen Croswell Morrison	Resident Levington Run	Ellerc Morrison e hotma: 1. com	4565 W
David Forcum			4097 Wood
Ly dia WARD	Resident Union Trop	barneysmomd fuse. net	996 Pau
Mike SAWERS			1166 FC
Mary Heeney	Resident, Batavia Tup.	meheeney a fuse. net	2219 2m
Lisa & Robert Mineer	Resident, Batavia	meheening a fuse. net momma mineer@ yahoo.com	1017 CLEP
Wayne Hart	tr (t	11	
Intaria Thanabrook	SonneyLane		6245
Ellin Sester	Sorest Grail		44620
Howard & Ruth Konwinski	Resident Batano	rkonwinski @ fuse . net	4278
GANY GOTGON			503 GENE
John Aicholtz	4026 Wilma Court Union Twp	john.aicholtz@ge.com	4026 Wiln
JEFF BAUMGHETH	The Myers Y. Cooper Co.	J Baumgarth C Cooper-corcon	5050 E.
RAY SESASTIAN		SEBASTIANLR@MSN. Com	#5620 S.
Ed Waltz		E) Waltz 3 (a yohoo. Com	
Carolyn Kew		Kewroberts @ gmail. com	4530 Jul
Carolyn Kew Mossy Green Carolyn & George Rutherford		Mossyg@Cinci.rr.com	4285 m
Carolyn & George Rutherford	Resident/	Cmrhere@ aol.com	1005 Shi

to be added to mailing list) Rf 222 Betavia 45103 len Este With. Rd. City 45245 Jinners Circle, Bartonin 45/03 odslypr, Batavia, OH 45103 ul St. BATAVIA, DIDIO 45103 FORST RUN DR. BATAMA rappers the 45103 pper Ln. Batavia OH 45/03 11 15 Jonny Le Cuifi, Forest Trail Cim - 45244 Balson Park Place, Betana 4503 WEELN CENTEULY5244 Ima Court Cincinnati OH 45245 E. Galbroth Rd Ste B Cincinnati 01445236 STRT 132 BATAVIA 45103 45103 elep Way Batana 45245 narette Dr hepherds Glen Dr 45103

Name	Organization (if any)	Email	Address (t
Edwin H. Humphrey	CLEIMONT BOARd offa	MMISSIONERS	DIE
RODNEY A. SAYlor	M-E COMPANIES	RODNEY SAY @ AOL. CON	
GARY H, MORGAN			3309MT
Jane Kammer Habig	Self/Public Infrastructure Subremme	itte janekh@zoomtown.com	4476 0
Kristine Durand		Krisdurand e hotmail.com	1181 VILL
dennile Milligun	2		1197 01
Michelle Hendricks	Animal Wellness Hospi	the mithof Risc. net	962 da
Denise Smith	West Clermont School	Tod / Ashley Neadow HDA	573 6
PARKICK Smith	-	Smith put @ Fuse. Net	573 L
Alex Lambros	MA	-	1069 0
Sharles & Rubey	Republic		4483-
Becky autorty	11		
Richard Lommin		RICHL 39@ FUSE, NET	4762
Roberta Ross			4807 Sta
LyleRupp	Snowie	lyleesnowlecom	4382
Deb Osborne	ENTRAN	desborne @ entran.us	1848 54.
Patrick Marce		Pate Manel-com	5091 2
PETER + TERRI EDDINGTON		peter_eddington euco.or	4311
Je Bran	Clamit Could Charam Brand	jjbravne Strausstray. com	1560 Hun
Doug Lach			4338

to be added to mailing list) MAW ST, BATAVIA, OH45103 - CANMEL RD CIN, OH 4524 Glen Willow Drive, Batavia. 45103-1511 age Glen Dr. Batovia OH 45103 St. Rt. 74 Batavia and Grave Ct Cinti OH 4524 Auka Grock Gr CIN. CH 45244 -lough PK, 5: - Dhio 45245 45244 KLATTE RO oneybrook Rd. 45244 Newberry Dr. 45103 math Rd. Cinc. 04 45237 Eagles Vw, Cinti, 04 45244 GLEN ESTE WITHAMSVILLE, RD. 45245 NT CLUB Dr. Minfal, OIT 45KD Aicholtz

SR 32 Eastgate Area Improvements Public Open House September 28, 2011

Name	Organization (if any)	Email	Address (to be added to mailing list)
DAVID W. HAWKIM	CCPC	hawkinde @ oplin.org	
JIM/BARB CLARKE		bj 60@ fuse net	
"Ed Dyen	west clermont Schools	dyene Quest cler.org	
Clint Hines	Redi-Rock International LLC		4030 Mt. Carmel-Tobasco Rd. Ste. 211 Cineinnafi, OH 45255 1083 Split Rall Dr.
Julie Greger		jgreger @ cinci, rr. com	Batavia, SH 45103
BILL FLANIGAN			822 MASSACHUSGATS DR. 45245
Scott Land	Crosspointe Baptist Church	Church admine Crosspointebe. 6m	
BOB CUSSON			819 MASSACIANSETTS DR. CIN., 0 45245
Lee Joesch			819 MASSACIAUSETTS DR. CIN., O 45245 3749 Restance Dr. Amelia Off-

Name	Organization (if any)	Email	Address (1
Nancy Miller		miller_nejuno.com	4988
Nancy Miller Amanda Miller Parbara apel Julie Kennedy		mancheercoach@gmail.com bapel@Aor.com	4988 B 607 S
Parbara apel		bapel@ Aoh. com	607 Sa
Julie Kennedy			600 K
M.E. Dowling			6868 Pi
M.E. Dowling Brian Lynd Patricia Rux Mullins		blynd@fuse.net	4620 Sto
Patricia anx Mullens			
Jay Hamilton	ODOT DB		
Keith Smith.	ODOT DE		
Stue Wharton	CCTID		
Andy Schneider	Transystems		
Cindy Walke	Transistems		-
(Joe Espélage Gen Spinosi	Tran Systems)		
Gen Spinosi	Tran Systems		

to be added to mailing list) Briarwood Ln. Cinti. Oh. 45244 ranwood in Cincinnati 45244 hr Centi 45044 nny Lennedy Trails Cinti OH 45255 ineneedle Ln. Cinti, OH. 45243 replechase Dr. Butavia, OH 45103

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

	homas	Habi	9	t	at the second seco		
Address 4	476	Glen	Willow	Dr	Batavia,	Ou	45103
E-mail <u>H</u>	habig	@ zoom	town.c	om			
Organization	(if any)_						

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Old 74 will	need to be	upgraded da	e to an increase
in traffic duy	to Genter comm	ection points 9	o 32. This
should happen	sooner rather	than later to	relive congestion
caused by 32	construction.		

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name Beth Lammish		<
Address 3577 Norfman Dol	Milfad, OH 45150	
E-mail		
Organization (if any)		

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

(interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton)

Alternative 2

Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

No.

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

intersection)

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until October 26, 2011. Please note that all comments become part of the public record. í

	N	6	11/ 1	
Name	Drena	Francis	Kennedys	Landing
Address _	983	Kennedys	Landing	4
E-mail	Franc	is 536 @	CS.COM	
Organizati	ion (if any)	Kennedys	Landing	
		l	/	
Which of	the conceptual alt	ernatives do feel would	be the best fit for this p	roject? (Please circle one.)
Al	ternative I*		ternative 2 🔪	Alternative 3
(wider	n existing SR 32)	(intercha	ange between Glen	(interchange at existing
*Alteri	native 1 is not being	Este-Wit	hamsville Road and	Elick/Bach Buxton

existing Elick/Bach Buxton)

*Alternative 1 is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name Kris Dwand
Address [18] Village Clen Dr Batana OH 45/03
E-mail Krisdvrand c hotmail. com
Organization (if any)
Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1*	Alternative 2	Alternative 3
(widen existing SR 32)	(interchange between Glen	(interchange at existing
*Alternative 1 is not being	Este-Withamsville Road and	Elick/Bach Buxton
recommended for further study.	existing Elick/Bach Buxton)	intersection)
Alternativ	ve 4 Alte	ernative 5
(interchange b	etween (r	no build)
Elick/Bach Bux	ton and	
Old SR74	4)	

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

It was stated tonight that the library would not be impacted. This is something that is
be impacted. This is smothing that is
important to my family + we definitely want
The library to be built.
Thank you!
∂

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name <u>ANNA STARK</u>		
Address 4502 JULEP WAY	BATAVIA OH 45103	
E-mail AESTARK 47@h	TOTMAIL. COM	
Organization (if any)		
Which of the conceptual alternatives of Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.	do feel would be the best fit for this project Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton)	t? (Please circle one.) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)
Alternative		
(interchange betv Elick/Bach Buxtor Old SR74)		a)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

0

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Resident	
Address _	OSCILL	
E-mail		
Organizati	ion (if any)	_

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Old SR74)

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name GARY MACK Address 5377 ST. RTE. 132	
Address 5317 ST. RTE. 132	
E-mail	
Organization (if any)	
Alternative I* (widen existing SR 32) (intercent *Alternative I is not being Este-W	Id be the best fit for this project? (Please circle one.) Alternative 2 hange between Glen ithamsville Road and g Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)
Alternative 4 (interchange between Elick/Bach Buxton and	Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	JIM SCHUBERT	
Address	1267 SHAYLEN RO	
E-mail	RAPTIROV @ CINCI. RR. COM	
Organizat	tion (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 4 Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 5

(interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

The FLY-OUERS	RT 32	MUST	ircl-de	accom odeting	for prodistria
al bicyclists.		_			
1 cornerty see		folks	biking and	welling Rt 32	and crossing
criss walks a	1 side no	the most he	included	for all Este	withous wille,
010 74 m	1 shaple	Back Back	in as the	main Res. Last	ial facte streets

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Glen	Wiedenber	TLA	
Address	4435	STRT 222	BATAVIA	04 45103
E-mail	Wied	enbeinfarm	SE YAhoo. (om
Organizat	tion (if any)			

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

AIT 2 SEEMES to be the best For EASE OF TRAFFIC And getting From Atob.

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name Laren	Pointer	
Address St. F	Indrews Privie 45	245
E-mail		
Organization (if any)		
Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.	tives do feel would be the best fit for this Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton)	Alternative 3 (interchange at existing Elick/Bach Buxton intersection)
Altern		lternative 5
· · · · ·	ge between	(no build)
Elick/Bach I		
Old S	SR74)	

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	ThE/IAN	MACC	~ 1			
Address	5377	St. Kt. 132	BATBULA	Ohio	45103	
E-mail						
Organizat	tion (if any) _					

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Jane Kammer Habig 4476 Gen Willow Drive
Address	4476 Glen Willow Drive.
	janekh@zoomtown, com
Organiza	tion (if any) private / public representative on Okrmont County Issue 2 Subcommittee

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Tor years county officials have "suggested" Old SR 74 will be widened PRIOR to my improcements on SR 32. I have NO objection to SR 32 improvements, but it is imperative to improve SR 74 before tumping any more traffic on a road which is" Plane each direct trans already at maximum capacity 4- to box. I have attended lexup for the last one all these corridor meetings tam desquartles at the slow
on SR 32. I have NO objection & SR 32 improvement, but it is imperative to emprove SR 74. before tumping any more traffic on a road which is "I lane each direction & already at maximum capacity
tumping any more traffic on a road which is "I lane each direction & already at maximum capacity
1111 The shift we shill all and anothing the house that which all the lose
4- topm. I have attended (except for the last one) all these correlate mailings am association at the beau
action on the whole plan. It would be helpful to "the citizenry" a know how bed to get
any forties of this project in motion.

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name _	Debbis	s. Muer	5				
Address	4390	FLICK	al	BATDUIA,	ORIO	45103	
E-mail 🧕	daye	RS16@+	20705	vall con			
Organiza	ation (if any)						

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.

Æ

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name _	Michelle Hendricks		
Addres	5 962 Old St. RI. 74	Batavia On 45103	
E-mail			
Organiz	ration (if any) Animal Wellnes	ss Hospital	
		0	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

I have a	business at the	correct of Glen Este Withiansville
		to Keep access to old 74
to maintain	a profitable busines	s onvironment

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	LYDIA WARD	
Address	996 PAUL St. BATAVIA, OHio 45103	
E-mail	barneys morn & fuck net	
Organizatio	cion (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

House is involved the Price (AT least what I paid Stould be WARST A Derson

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	MikeRoth	
Address	4357 Ferguson Dr. #190	
E-mail	Mike Roth @ Fuse. Net	
Organiza	ation (if any) Roth + Associates, INC.	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Presented	MAPS So only person Fime coold see
@ spoty	presentation of Alternatives

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Sandee	BERNARD			
Address	2950	Jackson	Pike	45103	
E-mail	bernardj	+ @ yahoo.	com		
Organiza	ation (if any)		_		

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Yes

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Like the Clepper Rd eftension better than aicholy Rd

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record

Name all in topler	1
Address 4462 Jorest Trail	45244
E-mail	
Organization (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton)

6.1

Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

They all A Relp Ou Ever you	look soe	d any	thing ?	that	will
Relp ou	& with	Friaff	ic on	32	- what
Ever you)	Can de	the.	hest.	lor.	The
least	money.	Sha	MA Tim	and the second	
			063	Pertin	Josla
			Cor		0

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name JIM BERNARD	
Address 2950 JACKSON Pic	
E-mail BERNARD JT@YAHOO.COM	
Organization (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

Alternative 4 (interchange between Elick/Bach Buxton and

Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	VICTOR A. Breehne	
Address _	4313 WURBOLD LA	
E-mail	VBREEHNE C GMAIL CON	
Organizati	ion (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and

> > Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Eastern Corridor

SR 32 Eastgate Area Improvements – Comment Form

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	M,	Ke IG	NEY		
Address	544	VII-11	IA CA.		str, Ch 45249
E-mail	MIG	GNEP @	CIAKL, R	R. Com	
Organization (if any) _					

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

77 Sel 17

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until October 26, 2011. Please note that all comments become part of the public record.

n de l			
Name and opune	1 2		
Address 4615 Stablehand Dr.	Catavia	45103	
E-mail			
Organization (if any) _///A			

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

leaves only allemate

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	PETER + TERRI EDDINGTON	
Address	4311 GLEN ESTE WITHAMSVILLERD. 452	4
E-mail	peter eddington Queq.org	
Organization	n (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1*	Alternative 2	Alternative 3
(widen existing SR 32)	(interchange between Glen	(interchange at existing
*Alternative 1 is not being	Este-Withamsville Road and	Elick/Bach Buxton
recommended for further study.	existing Elick/Bach Buxton)	intersection)
Alternative 4 (interchange betwee Elick/Bach Buxton an Old SR74)		Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

Alternative 4 (interchange between

Elick/Bach Buxton and Old SR74)

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Siane newethy	x
Address	15/1W. MeadowbrookDr. Loveland OH 45140	
E-mail	dianement2001@yahoo.com	_
Organiza	ation (if any)	_

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

thenew librar moact

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Name Addy + Thone theire Statemin ad Ved Unt #1 iscolevan concept D+O withows Made DVement3 he braster Bra million dollar 10 choose an alternative that Save age

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name _	CLIFF	HOAGUAD						
Address	4440	GLERESTE	WITHMISULE	RD	CINTI	oH	45245	
E-mail _	CHOAG	UND 6 TA	NDK. Com					
Organiza	ation (if ar	y) APPLEB	RES					

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 3 Alternative 2 Alternative 1* (interchange at existing (widen existing SR 32) (interchange between Glen Este-Withamsville Road and Elick/Bach Buxton *Alternative 1 is not being intersection) existing Elick/Bach Buxton) recommended for further study. Alternative 5 Alternative 4 (no build) (Interchange between Elick/Bach Buxton and Old SR74)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

13 - DEFINITERY

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

IT would !	THE BED	N MLE	Fur	SOMERIDE	COMING	OF	275 1	to BE
IT WOUD J NBLE TO G	ET DEF	PRECTLY	ento	GE WITH.	ROAD.	- 17	coate	BE
MLE TO G								

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name Address	4007	Stongbrook	Rdy Cinti D	H 45244
	10.01	Openegeroen	100) 01111 0	1 1
-mail				

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

MORE pa ¥ L ale

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

improvemen On Lere V owar a airpl aver we

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Sennifer	Milligan			
Address_	1197 old	Milligan State Route T	14 Catavi	a 45103	
E-mail					
Organizat	tion (if any) _				

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.	Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton)	Alternative 3 (interchange at existing Elick/Bach Buxton intersection)
Alternativ (interchange be Elick/Bach Buxt Old SR74	etween (in and (in a second se	ernative 5 no build)
If Alternative 3 or Alternative 4 is se connections to Glen Este-Withamsv	elected as the Preferred Alternative, wo ille Road?	ould you prefer to see the ramp

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

05

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name GEORGE MilligAN Address 1197 OLD STATE ROUTE 74	
Address 1197 OLD STATE ROUTE 74	
E-mail 6 gmilligan_5141@Euse.NET	
Organization (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative *	Alternative 2	Alternative 3	
(widen existing SR 32)	(interchange between Glen	(interchange at exist	_
*Alternative 1 is not being	Este-Withamsville Road and	Elick/Bach Buxton	
recommended for further study.	existing Elick/Bach Buxton)	intersection)	
Alternativ (interchange be Elick/Bach Buxt Old SR74	tween on and	Alternative 5 (no build)	

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

PLEASE DO SOMETHING ABOUT THE STORM
PLEASE DO SOMETHING ABOUT THE STORM DRAIN WATER ON OLD 74 BECAUSE OF ALL THE
BUISINESS THAT HAS ACCUMULATED OVER THE
PAST 10 YEARS

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	al E	Bockm	an			
Address _	4602	Pearl	In,	Batan	in ,0 #10	45103
E-mail	1997 - Carlos Ca	V	/		/	
Organizati	on (if any)					

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1*	Alternative 2	Alternative 3		
(widen existing SR 32)	(interchange between Glen	(interchange at existing		
*Alternative 1 is not being	Este-Withamsville Road and	Elick/Bach Buxton		
recommended for further study.	existing Elick/Bach Buxton)	intersection)		
Alternative 4 (interchange betwee Elick/Bach Buxton au Old SR74)		Alternative 5 (no build)		

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

en

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Dieli	i Bo	ckman	-		
Address	- /	4602	Plail	fn.	Bataria, 0H10	45103
E-mail			0		/	
Organiza	tion (if any)					

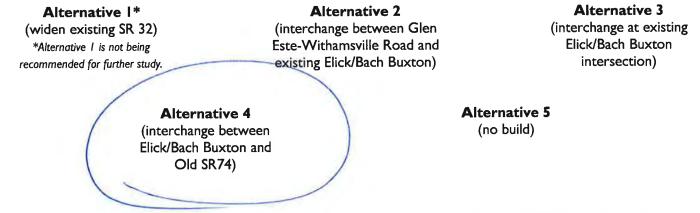
Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I*	Alternative 2	Alternative 3	
(widen existing SR 32)	(interchange between Glen	(interchange at exist	ing
*Alternative 1 is not being	Este-Withamsville Road and	Elick/Bach Buxtor	า
recommended for further study.	existing Elick/Bach Buxton)	intersection)	
Alternative 4 (interchange betw Elick/Bach Buxton Old SR74)	een)	Alternative 5 (no build)	

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

yes .

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)


Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	
Address	
E-mail	
Organization (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

CONTINUE TO MAKE GRAPHICS AVAILABLE AFTER THIS FOR FURTHER

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

YES

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	PHI	Lip	DOD	65				
Address	4525	ENG	Lisit	CREEV. OR	CIN CINNATI	OH	45245-1308	
E-mail	PDODO	SEQ.C	inci.	RR. Com				
Organiza	tion (if an	ıy)	UNE					

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 3 Alternative 1* Alternative 2 (interchange between Glen (interchange at existing (widen existing SR 32) Este-Withamsville Road and Elick/Bach Buxton *Alternative 1 is not being existing Elick/Bach Buxton) intersection) recommended for further study. Alternative 5 Alternative 4 (interchange between (no build) Elick/Bach Buxton and Old SR74)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name Chuck	LANC	
Address <u>\$86</u> Cr	ASTLE BAY Dr.	GNT1, Oh 45245
E-mail ChuckLANE	CZOOMTOWN, C	om
Organization (if any)	312-3989	
Which of the conceptual alternatives	do feel would be the best fit for this pr	oject? (Please circle one.)
Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.	Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton)	Alternative 3 (interchange at existing Elick/Bach Buxton intersection)
Alternative (interchange bet Elick/Bach Buxto Old SR74)	ween (no	rnative 5 o build)
If Alternative 3 or Alternative 4 is sele connections to Glen Este-Withamsvill	ected as the Preferred Alternative, wou e Road? (////////////////////////////////////	Ild you prefer to see the ramp

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Bull this rood as a part of I-74
the CINCINNATI and all actions Ohio.
Bull I-73 (Old USZ3) then Ohio. We need
Bull I-73 (Old US23) then Ohio. We need good roads for jobs & growth.

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Stuart Kennedy		
Address	600 Kenned TA.IS	Channah OH	45255
E-mail	<i>v</i>		
Organization (if any) _			

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being	Alternative 2 (interchange between Glen Este-Withamsville Road and	Alternative 3 (interchange at existing Elick/Bach Buxton
recommended for further study.	existing Elick/Bach Buxton)	intersection)
Alternative 4 (interchange betweer Elick/Bach Buxton and Old SR74)	n (no	build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

ARE YOU CRAZG THINKINS	the tax pages
CAN Afford This?	
What shout sol of the	ousness and homes that
world be displaced?	
EVER POLITION, State emplo	byre AND County employee superting
the will be voted out	office Ano per Fined within a
the Next Sew years.	The toxpayors will wing
Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540	Or contact the team: Andrew Schneider amschneider@transystems.com 513-621-1981, ext. 32-205

Blue Ash, OH 45242

513-621-2901 - Attn. SR 32 Study Team (fax)

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Julie	Kennedy				 -
Address	600	Kennedy	Traits	Cinti Oh	45255	
E-mail		2				
Organiza	ition (if	any)				

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

now because of finances. This I'd love to fire anyone who is Please submit your comments to:	Starting/Stirning this pol. Or contact the team:
SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540	Andrew Schneider amschneider@transystems.com 513-621-1981, ext. 32-205 513-621-2901 – Attn. SR 32 Study Team (fax)

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Carolyn Rutherford	
Addres	ss 1005 Shepherds Glen Dr. Batavia, OH 45103	
E-mail_	Cmrhere @ aol.com	
Organiz	zation (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build) UNTIL You Know For Sure what traffic Volume Comes w/ Jungle Jims, (Not just) Guess

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road? Do Not Close or E liminate the access,

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Mr. Hamilton said they do NOT project any added traf unale New Shortsia Ians 1C

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name Sava Heimbold		
Address 4778 Timper Knoll Rd	CINT	40044
E-mail Shembold & yahoo.com		
Organization (if any)		

Alternative 2

(interchange between Glen

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

Este-Withamsville Road and existing Elick/Bach Buxton)

Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

we need a

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

Nothing works

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Denis	se Smith		
Address _	573	Laurel Grove Ct	Cincinnati	0442244
E-mail	Smith	o(at) fuse. net		
Organizat	ion (if any) 📩			

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

e Options are 0 20 an 0100.

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

I have concerns about the students
accessing the High School. There is no good
route for students who live outside innediade
HSchol asca. I think to the Boord of Education
should be contacted for ideas / inpict.

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	PATRICK SMITH		
Address	573 LAUREL GLUVE	COURT CINCINNATI	at 45244
E-mail	SMITHPAT @ FUSE, NET		
Organiza	tion (if any)		

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

YES

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

UPGRADE SECONDARY ROADS	610 74	AND THE LIKE TO
HANDLE EXTRA TRAFFIC	FROM	RT 32

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	Keas	Vrth F.	Ducadia		
Address	10/03	OLD STATE	Rente 74	Bitavia, show	15103-
			Porter, Com		
Organiza	tion (if any)				

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

YP.S

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	TOM	MA	NTEL
Address	POR	57	MILFORD
E-mail	Elmontel	Ø	you so com
Organizatio	on (if any)		

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

= VP RV

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name _	Joan	Owe	ns				
Address	1118	Flick	Ln.	Batavia,	0/4	45103	
E-mail	mojo	owens a	hotma	il. com			
Organiza	tion (if	any)					

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

1

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

With all of the options, it appears much traffic wo	wild be diverted
to old ST. Rt. 14; therefore at this road would	need to be
widened + a traffic light would need to be in	
It already is dangerous making left throws at Sci	
Also Glen Este Withansville should be windened to the high	
limited bysing traffic has increased. new	
Finally - Please do not impact the library in any	Way Thank Voy
Please submit your comments to:Or contact the ofSR 32 Study TeamAndrew SchneiderTranSystemsamschneider@tran4555 Lake Forest Drive, Suite 540513-621-1981, ext	team: - nsystems.com

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name Jeffrey D. Hinkle	
Address 1065 Batavie PK	
E-mail	
Organization (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

(interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton)

Alternative 2

Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

all sea	andary Road	's need	to be in	proved	74, Henesh
in the alith	le patrame	1 Tohacces	2. Simulla	Roud	Like Teal Tour
School, M	euse, Bridelu eu Traffic	oor kitty	Rogurooo	1 Heilm	my banc
Need No	ew Traffic	Interse	tions, h	ights, be	ines, t
widning	of 74				

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name MARK BREDEMEIER Address 4357 FERGUSON DR; 200	
Address 4357 FERGUSON DR; 200	
E-mail MBREDEMELER @ KBAING COM	
E-mail MBREDEMELER & KBAING COM Organization (if any) KBA, INC. ARCHITECTS	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

I HAVE CONCERN OVER THE G.E.W RD RAMPOPTIONS. THE CLERMONT COUNTY PUBLIC LIBRARY HAS JUST PURCHASED A SITE AND IS DEVELOPING IT AS THE NEW UNDA TOWASHIP BRANCH. THESE ALTERNATES APPEAR to work provid The SITE; Howe VER - BM THUG Pass 51 WELL PREVENTER

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

ddress <u>4191</u>	SAGEWOOd	LT.	BATAVIA	04 45103
-mail '				

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

TO SEE/REVIEW MORE, RECAUSE OF THE NEFT TGET TOSTUdy, IT. 10: DES + HAVE 51: RESEL TO Du Sloving 15 DEDDIE AT

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	ames	Jellries		
	4203	Glen Este Wittamsville Rd	Cinti,	45245
E-mail	1.			
Organizat	ion (if any) _	Resident		

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

	million dolla			
survey's	have been done	on these of	different	projects
The people	that are dealis	ig with a	this is	logal
	cal bussiness			
They & Anda	Tax payer mi the twop. is	mey is	wasted	wink
every ung.	no mospe . w	2100000	41 win	

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name Dolores E. Smith	
Address 4187 Havitage Glan,	Cinti oh 45245
E-mail ars des @ fuse. net	
Organization (if any)	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

waited oceal OP en Ó Or contact the team: Please submit your comments to: SR 32 Study Team Andrew Schneider amschneider@transystems.com **TranSystems** 4555 Lake Forest Drive, Suite 540 513-621-1981, ext. 32-205 Blue Ash, OH 45242 513-621-2901 – Attn. SR 32 Study Team (fax)

has been done. " I a need improvements but not to negate what we have I am very concerned about the proposal to reconfigure the intersection of SR 32 and Glen Este-Withamsville Road. The Clermont County Public Library as invested millions of dollars and thousands of hours of planning & discussion. Surely, plans exist that are feasible I do not believe the state can pay the library for the full cost of what is already in place. Is their current building available after the new branch opening date? What about all of the euqipmnet , fixtures, furniture and books, movies and more that have been purchased for the new branch? Where would that be parked and how much would it cost CCPL?

CCPL provides valuable services to a wide variety of Clermont County citizens, from the very young to the very old. The library provides educational, informational and educational resources to all. If the new Union Township is forced to go, it will impact every CCPL branch negatively. This blow, along with recent budget cuts, will impact CCPL in a way that will prevent the branches from providing vital services, the collection will suffer, and staff will be cut. CCPL and the township will lose the public's trust.

Please give all plans consideration, and choose a plan that will not impact the new CCPL Union Township branch

And if you really want public input, how about starting the session later, and end later. Traffic is fierce, schedules are inflexible, and there are many demands on people's time. Why add another barrier?

Sincerely,

Diane McWethy

1511 W. Meadowbrook Dr.

Loveland OH 45140

513-722-0583

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	BAR	eBA	RA	APEL				
						OH	45244	
				. Com				
Organiza	tion (if a	any) _	RET	TRED	EDUCAT	OR		

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study. Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74) Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

you do not Curtail janspleakh

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

+ Regarding provene ese

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

424 Wards Corner Road Loveland, OH 45140	TRANSMITTAL NO.: JOB/PROJECT NO.: FILE NO.:	
---	---	--

Tipton Interests

FACSIMILE TRANSMISSION

DATE:	10/13/2011	TIME	11:09: J8 AM	NO. OF PAGES:	
DAID.),0/13/2011			(Including	Cover Sheet)

ТО	FROM
Andrew Schneider	Bill Woodward
	CC:
ATTN:	
FAX NO.: 621-2901	FAX NO.: 513/576-0268
TEL. NO.:	TEL. NO.: 513/248-5648

SUBJECT: SR 32 Study Team

Andrew:

Attached please find my comment form from the recent meeting in Union Township. Thank you for soliciting feedback from effected businesses!

Bill Woodward President

The information contained in this facsimile message is intended for the personal and confidential use of the addresses named above. This message may contain legally privileged and/or confidential information. If the reader of this message is not the intended recipient, you are hereby notified that you have received this document in error, and that any review, dissemination, distribution, or copying of this message is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and return the original document to us by mail. We will reimburse any costs incurred in notifying us and returning this message to us.

Tipton Interests, Inc.

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	WILLIAM WOODWARD	
Address	424 WARDS Corner Rd	
E-mail	billa Cincinnaticm. com	
Organizat	ion (if any) INTERESTS, INE	

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I* (widen existing SR 32) *Alternative I is not being recommended for further study.

> Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

ACTERNATIVE #1 MINIMILES THE NEGATIVE IMPOST OF LOSING CRITCOL ACCESS POINT (Glen FSTE-WITHDASVILLE) TO A MULTITUDE OF EXISTING BUSINESSES FXTENSIUN OF CLEODER LANE TO ELICK BAUE ALS-PITCOL

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name	MARY	HEENEY			
Address _	2219	TRAPPERS	KNOLL	, BATAVIA, OH	45103
E-mail	mehee	eney@fuse.	net		
Organizat	ion (if any) _	1			

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative I*	Alternative 2	Alternative 3
(widen existing SR 32)	(interchange between Glen	(interchange at existing
*Alternative 1 is not being	Este-Withamsville Road and	Elick/Bach Buxton
recommended for further study.	existing Elick/Bach Buxton)	intersection)
Alternative (interchange bet Elick/Bach Buxto Old SR74)	ween on and	Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

YES

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

THE NEW UNION TWP LIBRARY BLD.	
	6-
INTERCHANGE CLOSE TO SK74 NECE	SSARY FOR

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

The Ohio Department of Transportation is working to improve conditions along SR 32 from Eastgate Boulevard to Olive Branch-Stonelick Road. Please help us by sharing your thoughts on this project. Comments related to this project will be accepted until **October 26, 2011**. Please note that all comments become part of the public record.

Name ROBE	AT	EISK	EN				
Address 463	9 LA	UREL	VIEW	DR,	CUNTI,	OH	45244
E-mail BEL	SENI	DCINC	I. AR.	con	4		
Organization (if a	ıy)						

Which of the conceptual alternatives do feel would be the best fit for this project? (Please circle one.)

Alternative 1* (widen existing SR 32) *Alternative 1 is not being recommended for further study.

2

Alternative 4 (interchange between Elick/Bach Buxton and Old SR74)

Alternative 2 (interchange between Glen Este-Withamsville Road and existing Elick/Bach Buxton) Alternative 3 (interchange at existing Elick/Bach Buxton intersection)

Alternative 5 (no build)

If Alternative 3 or Alternative 4 is selected as the Preferred Alternative, would you prefer to see the ramp connections to Glen Este-Withamsville Road?

Do you have any additional comments about any of the alternatives and/or the project in general? (Please write on the back and attach additional pages as necessary.)

SEE ATTACHED

Please submit your comments to: SR 32 Study Team TranSystems 4555 Lake Forest Drive, Suite 540 Blue Ash, OH 45242

My comments on the SR 32 Eastgate Area Improvements:

We are very interested in this project since it will have a direct impact on our subdivision (Ashley Meadows), traveling to work, shopping, visiting friends, and any other traveling we do. Since we live two blocks from Bells Lane, the impact will be immediate.

We have been to three open houses at Union Township Civic Center, plus one presentation held at our Ashley Meadows HOA meeting at the Civic Center. At the earlier HOA meeting with an engineer, he started out being very civil minded and low keyed until the hard questions started, his attitude changed to being combative and finally saying well this is just the early stages of this project. We went away with the opinion that the owner of Gramma's Pizza and the Crosspointe church were happy so our subdivision of 144 houses should also be happy. He was so pleased that they signed off on it that our opinion mattered little in the scheme of things.

Attending the open houses at the Civic Center is chaotic, noisy, overcrowded, and confusing to say the least. There were four display boards, alternative one through four, with an engineer of some type standing in front of or close to each one. You have to get within two feet of the board to try and make any sense of it, so if there are more than five people you are blocked out. You know the board is showing some type of alternate choice, but you're not sure what the choice is. It's very noisy so trying to hear the engineer, unless you are two feet away, is impossible. A few in the crowd are very intent on having their specific concern explained, so they dominate the display board and the subject matter.

If you stay long enough and keep trying to move closer you can make sense of some of the displays and explanations. Toward the end of the two hours the engineer's attitude and demeanor changes, especially with the large crowd on September 28. They end up saying "well nothing is set in stone and all of this is preliminary, we just want your comments until the next open house, then we will be a lot closer to the finished product". So you leave knowing that there were four choices with choice one not being very serious and we may know more in 2012, or 2013.

This is what I got out of it. When the project was years away it made for some good but impractical presentations and far out ideas. Now that we are getting somewhat closer, nothing really seems to work. The SR 32 improvement idea is just too big and isn't feasible, but they aren't willing to scale it down. So we are now at an impasse, with no one willing to admit that a mistake was made and try to rectify it.

If we were permitted to vote on one alternative only I would have to take alternate five (no build), which is a shame and counterproductive!

Bob Eusen

Bob Eisen 4639 Laurel View Dr. beisen@cinci.rr.com

From:	Gene R. Smith [grsdes@fuse.net]
Sent:	Wednesday, September 28, 2011 9:57 PM
To:	CO-Andrew Schneider
Subject:	SR 32 Eastgate Area Improvements
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi Andrew,

It was good to talk to you this evening at the Civic Center, and I thought you did a good gob explaining the proposed Alternative #4. Can you help me get more data?

I looked on the website at www.tid.clermontcountyohio.gov, hoping to print out the maps for #2, #3, and #4 so I could go over them with my wife and neighbors, however the only map was one showing the overall improvement area, not showing the above alternatives with their proposed changes, interchanges, etc.

I would appreciate it if you have maps of those alternatives, and where I can find them, so I can print them out. You can let me know by e-mail, at grsdes@fuse.net.

Thanks for your help.

Gene Smith 4187 Heritage Glen Cincinnati, Ohio 45245

P.S. One question I forgot to ask you at the meeting, was how much area would be available for parking at the Library if any one of the three alternatives above would be the final senerio.

From: Sent: To: Subject: smichael7@cinci.rr.com Wednesday, September 28, 2011 4:19 PM CO-Andrew Schneider Union Township Library

Please choose an option that does not affect the new library.

Yours truly,

Susan Michael

From: Sent: To: Subject: CO-Andrew Schneider Wednesday, October 12, 2011 9:22 AM CO-Jen Spinosi FW: ST. RT. 32 construction

FYI

From: Manger, Pat [mailto:pmanger@clermontcountyohio.gov]
Sent: Wednesday, October 12, 2011 9:21 AM
To: CO-Andrew Schneider
Subject: FW: ST. RT. 32 construction

Andy,

I received this the other day and thought I would forward on to you for follow up.

Sincerely,

Patrick J. Manger

Patrick J. Manger, P.E. - P.S. Clermont County Engineer 2381 Clermont Center Drive Batavia, Ohio 45103 (513) 732-8068

From: Dan & Kerry Braun [mailto:d kbraun@yahoo.com]
Sent: Thursday, September 29, 2011 8:57 PM
To: Manger, Pat
Subject: ST. RT. 32 construction

Mr. Manger, I own a home on Fayard Drive right off of St. Rt 32. Will this property at 4423 Fayard be impacted by the planned construction? Thank you for your response. Dan Braun

David Bolten [dbolten@cinci.rr.com]
Thursday, September 29, 2011 9:58 AM
CO-Andrew Schneider
SR 32 Eastgate Area Improvements

Follow up Flagged

Follow Up Flag: Flag Status:

Dear Sir,

My wife and I sincerely ask that other options are considered better than taking the area for the new library. This area library is used heavily and its relocation with enhanced space has been planned for a long time. Demolition of the current project and delay of better services will certainly be felt deeply in this community.

Sincerely,

Dave and Chris Bolten Eastgate

From:	djbryson@fuse.net
Sent:	Thursday, September 29, 2011 12:09 PM
То:	CO-Andrew Schneider
Subject:	SR 32 EASTGATE AREA IMPROVEMENTS

Follow Up Flag:	Follow up
Flag Status:	Flagged

To Whom it May Concern: I am writing in regard to the Eastern Corridor project on SR 32 in Clermont County as it affects our businesses, homes, etc. I strongly urge you to consider where this new road goes and just how many people will be affected by your decisions.

Today I am writing on behalf of the new Union Township Branch Library on Glen Este -Withamsville Road. This library purchased land which had a restaurant on it which had closed. The library system was assured at that time that the new road WOULD NOT affect their plans to completely renovate the building and open a badly needed new library at the end of 2011. Now, as a library patron, I have been told that the new road may now in fact come through the new building. If this is the case, who re-pays the money already spent on renovations???

Does this mean that the public cannot believe what we are told??? Does it mean that nobody KNOWS where the road will be??? I've tried to get a current plan on the computer - no luck.

I'd like some answers, along with a lot of other people who live in Union Township.

From:	Joan Owens [mojoowens@hotmail.com]
Sent:	Thursday, September 29, 2011 11:28 AM
To:	CO-Andrew Schneider; d08.pio@dot.state.oh.us
Subject:	Eastern Corridor, Segment IV(a) - CLE-32.2.25, PID 82370
Follow Up Flag:	Follow up
Flag Status:	Flagged

I live off of School House Road, and I have major concerns that all of the alternatives presented at the Public Open House on September 28, 2011 have the interchange from SR 32 dumping traffic onto St. Rt. 74. I anticipate major traffic congestion on this road from westbound travelers coming into the Eastgate area. Part of this study should include major improvements to St. Rt 74. At a minimum the road should be expanded to at least include a middle turn lane option. Also, it is already very difficult trying to make a left turn from School House onto St. Rt 74 because there is no traffic light at this intersection. I would hope with the additional traffic projections, there would be a plan in place to put a traffic light at this intersection.

Also I did not notice if there were any links to Aicholtz Lane for westbound travelers trying to get to the south side of St. Rt. 32. I am extremely concerned that you are only shifting the traffic problem from Rt 32 to Rt 74; but, Rt. 74 cannot handle the traffic because it is only two lanes.

Finally, please do not move forward on any plans that would jeopardize the new Union Township library (either parking or the beautiful facility). Thank you.

Joan Owens

1118 Flick Lane

Batavia, OH 45103

513-753-9944

From: Sent: To: Subject:	David Bolten [dbolten@cinci.rr.com] Thursday, September 29, 2011 12:21 PM CO-Andrew Schneider Re: SR 32 Eastgate Area Improvements		
Follow Up Flag: Flag Status:	Follow up Flagged		
Thanks for the quick	reply.		
Dave On Sep 29, 2011, at : wrote:	10:02 AM, < <u>amschneider@transystems.com</u> > < <u>amschneider@transystems.com</u> >		
> Thank you for your comment. Please note that none of the alternatives directly impact the library property. An optional component of Alt 3 & 4 includes a ramp in one of two locations near the libraryone does not impact the property and one could impact some parking spaces. While the ramp does provide some benefit, Alt 3 & 4 can function without it.			
> > Again, thank you for your comment. > Andy			
> >Original Message > From: David Bolten [<u>mailto:dbolten@cinci.rr.com</u>]			
> Sent: Thursday, September 29, 2011 9:58 AM > To: CO-Andrew Schneider > Subject: SR 32 Eastgate Area Improvements			
> > > Dear Sir,			
> > My wife and I sincerely ask that other options are considered better than taking the area for the new library. This area library is used heavily and its relocation with enhanced space has been planned for a long time. Demolition of the current project and delay of better services will certainly be felt deeply in this community.			
> > Sincerely, >			
> Dave and Chris Bolten			

> Eastgate

From:	Joan Owens [mojoowens@hotmail.com]
Sent:	Thursday, September 29, 2011 6:30 PM
To:	CO-Andrew Schneider
Subject:	RE: Eastern Corridor, Segment IV(a) - CLE-32.2.25, PID 82370
Follow Up Flag:	Follow up
Flag Status:	Flagged

I appreciate your reply. After further reviewing the interchange options, I still have strong concerns that St Rt 74 will not be able to handle the additional traffic that would be anticipated unless the road is widened and a traffic light is installed at Schoolhouse. My vote is definitely for Option 2. Thank you again for your consideration.

From: <u>amschneider@transystems.com</u> To: <u>mojoowens@hotmail.com</u>; <u>d08.pio@dot.state.oh.us</u> Date: Thu, 29 Sep 2011 14:02:23 -0500 Subject: RE: Eastern Corridor, Segment IV(a) - CLE-32.2.25, PID 82370

Hello Ms. Owens. Thank you for your comment. All interchange options will certainly need to consider what improvements might be necessary on the local network to handle the traffic. The maps for the four alternatives are available on ODOTs website at the following link:

http://www.dot.state.oh.us/districts/D08/Pages/CLE32Alt.aspx

Finally, please note that none of the alternatives directly impact the library property. An optional component of Alt 3 & 4 (shown on Alt 4) includes a ramp in one of two locations near the library--one does not impact the property and one could impact some parking spaces. While the ramp does provide some benefit, Alt 3 & 4 can function without it.

Please let me know if I can answer additional questions. And, again thank you for your comment. Regards, Andy

From: Joan Owens [mailto:mojoowens@hotmail.com]
Sent: Thursday, September 29, 2011 11:28 AM
To: CO-Andrew Schneider; <u>d08.pio@dot.state.oh.us</u>
Subject: Eastern Corridor, Segment IV(a) - CLE-32.2.25, PID 82370

I live off of School House Road, and I have major concerns that all of the alternatives presented at the Public Open House on September 28, 2011 have the interchange from SR 32 dumping traffic onto St. Rt. 74. I anticipate major traffic congestion on this road from westbound travelers coming into the Eastgate area. Part of this study should include major improvements to St. Rt 74. At a minimum the road should be expanded to at least include a middle turn lane option. Also, it is already very difficult trying to make a left turn from School House onto St. Rt 74 because there is no traffic light at this intersection. I would hope with the additional traffic projections, there would be a plan in place to put a traffic light at this intersection.

Also I did not notice if there were any links to Aicholtz Lane for westbound travelers trying to get to the south side of St. Rt. 32. I am extremely concerned that you are only shifting the traffic problem from Rt 32 to Rt 74; but, Rt. 74 cannot handle the traffic because it is only two lanes.

Finally, please do not move forward on any plans that would jeopardize the new Union Township library (either parking or the beautiful facility). Thank you.

Joan Owens

1118 Flick Lane

Batavia, OH 45103

513-753-9944

From:	blhyden@zoomtown.com
Sent:	Monday, October 10, 2011 8:24 PM
То:	CO-Andrew Schneider
Subject:	Betty Hyden

Follow Up Flag:	Follow up
Flag Status:	Flagged

I Am a property owner at 1273 Heitman Ln . Batavia , ohio 45103 the alternate RT. going thru. Heitman i can see will be a real nuisance more traffic in front of my house and RT. 32 behind the house that would be not acceptble for the home owners there . i sure wish there would be a different alternative. i am 3rd house from old 74.

Thanks for attention Betty Hyden

From:	Tonya Spurlock [ktms1990@yahoo.com]
Sent:	Monday, October 03, 2011 1:32 PM
To:	CO-Andrew Schneider
Subject:	Heitman Lane concerns
Follow Up Flag:	Followup

Follow Up Flag: Flag Status: Follow up Flagged

Hello,

My family ownes a property on Heitman ln, where the proposed road will be going in. Currrently, as you know there is a MAJOR highway to the back of Heitman, and now it looks like a large through road in the front of the homes.

I've spoken to a few home owners on the street and they have chosen not to come to the meetings or speak out because they feel that the decisions have already been made and there is no value to their opinions.

I realize the deadline for comments is Oct 26, but what kind of feedback are you looking for? I can say that nearly every home owner on the street has been there over 25 years. Typically these are older folks and would hate to move, but are concerned that they could not sell with these changes anyway. Would it be possible for their homes to be bought out? I'm sure you could appriciate not living with a highway in your front and back yards!

I would think that the value of homes will significantly decrease with this new road. This is a concern for many of our neighbors.

Thanks!

Tonya Spurlock

The elevator to sucess is out of order, you will need to take the stairs, one step at a time.

From:	Tonya Spurlock [ktms1990@yahoo.com]
Sent:	Tuesday, October 04, 2011 7:19 PM
To:	CO-Andrew Schneider
Subject:	RE: Heitman Lane concerns
Follow Up Flag:	Follow up
Flag Status:	Flagged

Andy,

Thanks for responding to my e-mail. It looks to me that no matter which of the three alternative plans are chosen that the road will still go down Heitman ln. Is it being discussed to buy out these homes? I would imagine if anyone on the committee lived on this street they would not want a highway as a front and back yard! My parents own 1273 Heitman, and they rent it to a disabled woman, who wants to live out her life there. They have no desire to be bought out, but I know of someone who does.

Clearly it is undesirable to have such traffic congestion with two major roads up next to your house! I suppose my question is this- is there any other way to avoid the road going down Heitman? Will public imput make a difference on this part of the plan?

Thanks!

Tonya Spurlock

The elevator to sucess is out of order, you will need to take the stairs, one step at a time.

--- On Mon, 10/3/11, <u>amschneider@transystems.com</u> <<u>amschneider@transystems.com</u>> wrote:

From: <u>amschneider@transystems.com</u> <<u>amschneider@transystems.com</u>> Subject: RE: Heitman Lane concerns To: <u>ktms1990@yahoo.com</u> Date: Monday, October 3, 2011, 1:47 PM

Hello Ms. Spurlock. At the public meeting we presented four alternatives. These may be viewed on the Eastern Corridor website, as well as ODOT's website:

http://www.dot.state.oh.us/districts/D08/Pages/CLE32Alt.aspx

We also handed out the attached information, and included a comment form on which attendees (and anyone else) could circle which alternative they liked and why. While Alt 1 is not being carried forward, I might mention the other three alternatives do indeed include an additional lane on SR32 in each direction and an overpass/bridge at Old SR 74. There would no longer be direct access from SR 32 and Old SR 74. Access would be via the new interchange (one of three locations) or by Olive Branch-Stonelick (south to Old SR 74). Note that Alt 2 includes a Heitman Lane extension over to Olive Branch-Stonelick. An attempt will be made to avoid as many residential impacts as possible.

I'd be happy to answer any other questions you might have, either by email or phone (513-621-1981 ext 32205). I would ask that you please complete a comment sheet and distribute to your neighbors if they wish to comment as well. It is extremely important to gather input that this early stage. We will of course accept comments throughout the life of the project, but for the purposes of moving forward, there is a 30 day period following the public meeting.

I hope this helps. Again, please let me know if you have additional questions.

Thanks,

Andy

From: Tonya Spurlock [mailto:ktms1990@yahoo.com] Sent: Monday, October 03, 2011 1:32 PM To: CO-Andrew Schneider Subject: Heitman Lane concerns

Hello,

My family ownes a property on Heitman ln, where the proposed road will be going in. Currrently, as you know there is a MAJOR highway to the back of Heitman, and now it looks like a large through road in the front of the homes.

I've spoken to a few home owners on the street and they have chosen not to come to the meetings or speak out because they feel that the decisions have already been made and there is no value to their opinions.

I realize the deadline for comments is Oct 26, but what kind of feedback are you looking for? I can say that nearly every home owner on the street has been there over 25 years. Typically these are older folks and would hate to move, but are concerned that they could not sell with these changes anyway. Would it be possible for their homes to be bought out? I'm sure you could appriciate not living with a highway in your front and back yards!

I would think that the value of homes will significantly decrease with this new road. This is a concern for many of our neighbors.

Thanks!

Tonya Spurlock

The elevator to sucess is out of order, you will need to take the stairs, one step at a time.

From:	Keys Font [keys130@gmail.com]
Sent:	Friday, October 07, 2011 3:38 PM
To:	CO-Andrew Schneider
Subject:	Eastgate Area Improvements
Follow Up Flag:	Follow up
Flag Status:	Flagged

These improvements should not take place 1. You'll be destroying peoples yards and homes to build this extension. 2. Misuse of funds- this area was just remodeled. take the money and focus on upgrading the existing roads. If we are in a recession why would be focus on building new roads when we cant even maintain the ones we have.

Who is the person who said we needed to build new roads in the Eastgate Area?

From: Sent:	Osborne, Deborah [DOsborne@entran.us] Monday, October 10, 2011 4:14 PM
То:	CO-Andrew Schneider
Subject:	FW: Eastern Corridor: StRt32

Follow Up Flag:Follow upFlag Status:Flagged

Andy - I'm not sure you got this one - that's what sparked the previous email about giving you access.

Deb

-----Original Message-----From: Alex Lambros [mailto:theophanes677@aol.com] Sent: Sunday, October 09, 2011 8:53 AM To: ECSegment4a Subject: Eastern Corridor: StRt32

This is an enquiry e-mail via http://www.easterncorridor.org/ from: Alex Lambros <theophanes677@aol.com>

On September 28, 2011, at the Public Open House, the Ohio Department of Transportation (ODOT) and the SR32 Study Team introduced several proposals for public review and comment regarding redevelopment of the State Route 32 corridor that will change the existing access on State Route 32 within Union Township.

These alternatives provided several options that addressed the needs of ODOT in order to ensure the provision of safe traffic flow and to reduce congestion along St Rt. 32 corridor. However, these proposals did not show any improvements to Old State Route 74 or Aicholtz Road or other local roadways which will be forced to accommodate the redirection of all local traffic and would likely shift safety and congestion issues onto the local and county roads in this area.

Without considering the inclusion of the redevelopment of ALL secondary roadways within Union Township in order to improve safety and congestion on the St Rt. 32 corridor, ODOT will inadvertently pass the financial burden to the Clermont County taxpayers to make improvements to our local roadways and jeopardize the safety of our citizens in emergency situations.

As taxpayers of Union Township and the entire County, we must express our concerns regarding ODOT's lack of consideration in the implications of resulting improvements necessary on the local road infrastructure and the financial burden to the citizens of Clermont County.

We as taxpayer must MAKE the time to express our concerns regarding the safety implications for our secondary roadways within Union Township and the financial burden to the local taxpayers regarding ODOT proposals during the open comment period which will expire on October 26, 2011.

The bottom line is that our secondary roadways, in their current state, will never be able to accommodate the increased traffic volume and jeopardize the safety of our citizens, places an unreasonable financial burden on local taxpayers and substantially reduces our ability in

economic development. We can not sit in the sidelines and expect the Government always to do the right thing. SPEAK OUT this is our only chance.

Alex Lambros 1069 Clough Pike

From: Sent:	Mollie Labeda [mj.labeda@gmail.com] Monday, October 10, 2011 12:03 PM
То:	CO-Andrew Schneider
Subject:	32 Projects a Win!

Follow Up Flag: Flag Status:

2011 12:03 PM er Follow up Flagged

Hello,

I wanted to give some positive feedback to the effort put forth to improve the corridor. I work at Xavier (have worked at UC before) and it is a pain to get to work from my home in Pierce Township to Norwood. Many of the routes are congested (471, Columbia Parkway, if there is a concert or flooding- Kellogg and 275 is horrible) or slow (32 through Newtown is a nightmare). It takes me a good 45 minutes to get back and forth, mostly just sitting in traffic. I have many times wished that there was a highway that continues across the city to the east side.

This option will be a fantastic way to reduce that congestion and offer an alternative to the already overwhelmed 32 and the alternates. I am very excited! I am also intrigued by the rail option, although it does not (yet) offer a stop at Xavier, what a wonderful addition to the options.

Mollie Labeda Pierce Township resident

Dan & Kerry
Thursday, O
CO-Andrew
Re: ST. RT.

Dan & Kerry Braun [d_kbraun@yahoo.com] Thursday, October 13, 2011 7:33 PM CO-Andrew Schneider Re: ST. RT. 32 construction

Andy,

Thank you for the information that you have provided. I have a rental property on Fayard Dr. but live in Dayton, Ohio and was interested whether or not our properties were part of the ground needed to complete the project. This would impact decisions for future rental plans. Thank you for your help, Dan Braun

From: "amschneider@transystems.com" amschneider@transystems.com To: dkbraun@yahoo.com Sent: Wednesday, October 12, 2011 9:33 AM Subject: FW: ST. RT. 32 construction

Mr. Braun, Im returning your email on behalf of Pat Manger. I am the project manager at the consultant firm working for ODOT on the SR 32 project. First, a preferred alternative has not yet been selected. We are actively soliciting feedback from the community on three alternatives. These alternatives are available to view at the following links:

http://www.dot.state.oh.us/districts/D08/Pages/CLE32Alt.aspx http://tid.clermontcountyohio.gov/Segment+IVA.aspx http://www.easterncorridor.org/eastgate-area-corridor/segment-iva-sr-32-eastgate-publicinvolvement/september-2011-open-house

Your home should not be directly impacted by the alternatives under consideration. However, access to SR 32 from Fayard will be closed off, as it will at all access points between Eastgate and Olive Branch-Stonelick. A new interchange is proposed at one of three locations between Eastgate and Olive Branch-Stonelick (Alternatives 2-4). Alternative 1 is not being carried forward in the study.

Please feel free to email me or call (513-621-1981 ext 32205) if you have other comments or questions. Thanks, Andy Schneider

From: Dan & Kerry Braun [mailto:d_kbraun@yahoo.com] Sent: Thursday, September 29, 2011 8:57 PM To: Manger, Pat Subject: ST. RT. 32 construction

Mr. Manger, I own a home on Fayard Drive right off of St. Rt 32. Will this property at 4423 Fayard be impacted by the planned construction? Thank you for your response. Dan Braun

From:	samichel@earthlink.net
Sent:	Sunday, October 16, 2011 2:06 PM
То:	CO-Andrew Schneider
Subject:	SR32 Study Team Proposal Comments
•	

Follow Up Flag:Follow upFlag Status:Flagged

Hi,

I revisited the project site after seeing in the Community Journal that a open house had been presented with updated info.

Up to now, the information had been somewhat sketchy, but the latest proposals were much better, though lacked any information on current and projected traffic loads for each proposal. (I understand this is difficult to obtain and speculative) Nevertheless, after reviewing the 4 proposals I would like to submit my observations and suggestions for review. Perhaps taking portions of #2 and #3 would be best.

Ranked:

Proposal 2 - much cleaner integration between SR74, SR32, and Bach-Buxton - I would suggest NOT completing the Heitman Ln extension. While this may artificially offload traffic from the 2 lane SR32 onto the new 1 lane extension, it would ultimately create a CHOKE POINT where it would dump into the 1 lane SR74 and much of the traffic would again attempt to enter SR32 to obtain access to the businesses farther west. * consider use of curved Glen-Este/Alcholtz extension idea from #3 to avoid clash with residentials, and provide smoother integration with Bach Buxton, and also consider a new entrance into high school at the mid-point of the back of the main lot connecting to the Glen Este/Alcholtz curved extension to Bach Buxton. Proposal 3 - Old SR 74 tie-in too far down to be of real benefit. Also, disruption/displacement of existing residencs and busnesses to justify * Consider a new entrance into high school at the mid-point of the back of the main lot connecting to the Glen Este/Alcholtz curved extension to Bach Buxton. Proposal 4 - CLepper Ln. extension overly disruption/displacement of existing residencs and busnesses to justify - Old SR 74 tie-in too far down to be of real benefit. disruption/displacement of existing residencs and busnesses to justify Proposal 1 - Blocking of Eastgate Square Blvd is a bad idea. - Does nothing to address interconnections between SR74, SR32, Bach-Buxton, and Glen Este Withamsville. Applies to all proposals: Blocking of inbound Eastgate Square Blvd traffic is a bad idea...blocking of outbound to SR32 would be good.

** Consider an over pass extesion of Eastgate Square Blvd to cross SR32. No ramps, just a cross over.

This would provide a direct connection between the 2 large business areas, which are expected to have drastically increased traffic once Jungle Jim's comes online, and other prospective businesses.

* One concern I have, and perhaps that is due to ODOT project funding vs. Clermont County funds, is the lack of a 'through' access at Glen Este High School. It does have a back entrance via Wuebold Ln., but this dumps directly into the middle of a residential area. With the introduction of the Glen-Este/Alcholtz extension to connect to Bach-Buxton, it would make great sense to include a new entrance for Glen-Este High School off of the mid-point of the back of the main lot that would connect to the new Glen Este/Alcholtz extension to Bach Buxton.

Thanks for your consideration of the above items and continued work towards improving the traffic and connectivity issues.

Sincerely, Steve Michel

From:	Chris Coldiron [ccoldiron@guardiansavingsbank.com]
Sent:	Monday, October 17, 2011 5:51 PM
То:	CO-Andrew Schneider
Subject:	RE: eastern corridor project (can you please give me a call ?)

Hi Andy,

Thanks for your quick reply.

I am not sure if you handle the responsibilities for where my lot is. Do you know where St.Rt. 32 & Hickory Creek Drive intersect? It is just west of Eight Mile Road (before you get to Burger Farm) on the south side of St.Rt. 32.

Can you answer any questions relating to that portion of the project?

The section of St.Rt. 32 where my Vacant Lot is would have nothing to do with the potential alternatives which you sent to me for review.

Sincerely,

Chris Coldiron cell # : (513) 313-1593

-----Original Message-----From: <u>amschneider@transystems.com</u> [<u>mailto:amschneider@transystems.com</u>] Sent: Monday, October 17, 2011 5:08 PM To: <u>ccoldiron@guardiansavingsbank.com</u> Subject: RE: eastern corridor project (can you please give me a call ?)

Hi Chris, thanks for the email. I can certainly give you a call and answer what questions I can (though Im not in the office for most of the week). If you had not attended the public meeting Sept 28, the potential alternatives are available on ODOTs website at the following link:

http://www.dot.state.oh.us/districts/D08/Pages/CLE32Alt.aspx

If you had not seen the alternatives, plesae take a look and we can discuss. If you have seen them and have questions, I can try to answer those as well.

Thanks again and I look forward to talking with you. Andy

From: Chris Coldiron [ccoldiron@guardiansavingsbank.com] Sent: Monday, October 17, 2011 2:59 PM To: CO-Andrew Schneider

Subject: eastern corridor project (can you please give me a call ?)

Hi Mr. Schneider.

I was hoping to ask you a couple of questions regarding this project.

I own a vacant lot along St.Rt. 32 and Hickory Creek Drive. This is a corner lot at that intersection.

My cell phone is listed below.

Sincerely,

Chris Coldiron cell # : (513) 313-1593

From:	hzehetmaier [hzehetmaier@cinci.rr.com]
Sent:	Tuesday, October 18, 2011 12:38 PM
То:	CO-Andrew Schneider
Subject:	Re: Sr 32

Follow Up Flag:	Follow up
Flag Status:	Flagged

Thank you very much. As a resident in this area and as a now retired highway design project manager with KZF, Alternative 2 is my preferred option. Heinrich

----- Original Message -----From: <<u>amschneider@transystems.com</u>> To: <<u>hzehetmaier@cinci.rr.com</u>> Sent: Monday, October 17, 2011 4:58 PM Subject: RE: Sr 32

Yes, the options may be viewed at the following link: http://www.dot.state.oh.us/districts/D08/Pages/CLE32Alt.aspx

```
Please let me know if you have questions or comments.
Thanks,
Andy
```

```
From: hzehetmaier [hzehetmaier@cinci.rr.com]
Sent: Monday, October 17, 2011 9:12 AM
To: CO-Andrew Schneider
Subject: Sr 32
```

Mr. Schneider, Is there a website the various SR 32 plan options can be viewed? I would greatly appreciate your help. Thanks, Heinrich

From: Sent:	Sarah Schneider [sschneider@saybrookmarketing.com] Tuesday, October 25, 2011 12:00 PM
То:	CO-Andrew Schneider
Cc:	Vogel, Joe; Hamilton, Jay; Laura Whitman
Subject:	Fwd: Eastern Corridor: Union Township library

Andy,

The comment in the email below was submitted through the Eastern Corridor website. We can respond to this email with a message that says, "Thank you for sharing your comment. The Implementation Partners and project team appreciate your feedback and will add your comment to the official meeting record."

We can send this email from the <u>responses@easterncorridor.org</u> account. Please let me know if this is okay or if you prefer a different response. I look forward to hearing from you soon.

Thank you!

Sarah

----- Forwarded message ------From: **Kelley Paul** <<u>kelleyp13@yahoo.com</u>> Date: Mon, Oct 24, 2011 at 2:34 PM Subject: Eastern Corridor: Union Township library To: <u>ECSegment4a@entran.us</u>

This is an enquiry e-mail via <u>http://www.easterncorridor.org/</u> from: Kelley Paul <<u>kelleyp13@yahoo.com</u>>

Please keep in mind that young children will be using the library. We go frequently, and I worry about the road being so close to my children. We would also be disappointed if the ramp took away the outdoor children's area.

--

Sarah Schneider | Account Associate 3665 Erie Avenue | Cincinnati, OH 45208 Saybrook Marketing Communications, LLC. Facebook | Twitter | LinkedIn | Blog | Email: Sarah Schneider | Phone: 859.391.1590 October 24, 2011

To Whom It May Concern

This letter is with regards to the SR 32 Eastgate Area Improvements: Eastgate Boulevard to Olive Branch-Stonelick Road; Eastern Corrider, Segment IV(a) – CLE-32-2.25, PID 82370.

I am in favor of Alternative 2 – interchange on SR 32 between Glen Este-Withamsville Road and the existing Elick Lane/Bach Buxton Road. I think that location for this interchange is best suited for several reasons. First, most of the land needed is undeveloped and would be more cost effective as to the number of homeowners and businesses that would need to be purchased for the Right of Way for this development.

Secondly, it appears that this interchange would balance out the traffic accessing Old SR 74 to the north of SR 32 and traffic flowing onto Buch Buxton Road to the south rather than off/on ramps at Glen Este-Withamsville Road.

And third, it involves me directly. I live at 996 Paul Street Batavia, Ohio in the Thomas and Mame Clepper Subdivison Lot 31, Parcel 414109B031 which borders the new Clermont County Public Library on Glen Este-Withamsville Road near SR 32. If and when, more likely when, current access to my subdivision is closed (Fayard Drive and SR 32), another access is needed. As it stands right now, it is very likely my property will be acquistioned by the state in order to extend Paul Street to Glen Este-Withamsville Road.

There is another way out of the subdivision that I think should be considered. At the other end of Paul Street there is a 40' wide by approximately 900' long wooded strip that comes out onto Old SR 74. Parcel 413104B306. I've been told that this strip of land was originally used as a road sometime in the past. I believe that this possible access to and from the subdivision is well worth considering. From what I can see, no one would have to lose their home. Please see attachments.

Why couldn't Paul Street be extended into Jamestown Crossing whereby using their exit system? Also, if the interchange as discussed in Alternative 2 materializes, why can't Paul Street extend through Jamestown Crossing to the interchange and exit/enter?

I purchased my home at 996 Paul Street in late May 2009. I moved to this area to be near my friend, Rita Walston who lives down the street from me at 4433 Fayard Drive. I have a degenerative eye disease which will prevent me froming driving at some point and possibly affecting other aspects of my life. She was kind enough to suggest I move here, when this property came up for sale, so that she could help me when I needed her. This house is near everything and is convenient for me to get around. Alternatives 2, 3 and 4 show Paul Street being extended through my property.

The thought of losing my home is very stressful. I'm retired and on a fixed income. I used my life savings as a down payment on this house. I have a good interest rate. I was planning on staying here indefinitely. Now the housing values have dropped significantly. I may not be able to recoup what I have monetarily in the house. I cannot afford to lose in this situation. Why should I be worst off for something that I have no control over?

Thank you for your consideration. Lydia Ward Ph: 513-753-0919 513-753-0919

From:
Sent:
То:
Subject:

David Belshaw [belshaw_dave@yahoo.com] Tuesday, October 25, 2011 8:15 AM CO-Andrew Schneider US 32 corridor project.

Greetings sir.

I have lived on the east side since the '60s and basically grew up here. I have lived in the East Gate area for 16 years in both Batavia township and Union township. I have seen the area grow as have all the other residents. The 32 corridor as it is called has been overloaded since I can recall. Most of this is due to how the local governments have ignored common sense when it comes to anything but revenue. They allowed business and residential development to run rampant but never gave any thought to SR 32 or any of the side roads that feed it. Much the same thing has been done to SR 125. There have been no ramps added to SR 125.

I for one see nothing good regarding any modifications to SR 32 by adding off or on ramps to dump traffic on already crowded and dangerous side routes such as SR 74 or clough pike for example. What is done is done and folks need to recognize that and live with it. We have seen one business close down already with just the mention of this activity and that was Cheese Burger in Paradise. That caused the loss of 40 jobs from just the one business closure. Our economy could benefit from whatever money is earmarked for this by being used for other good causes, but not at the cost of people's jobs.

Recall the physician's oath, first do no harm.

Please do not add any ramps to SR 32 in the East Gate area as all it will do is distribute the madness to other roadways that are supported and paid for by smaller governments.

Thank you for your time Andrew. Respectfully, Dave Belshaw.

4400 Glen Este-Withamsville Road, Cincinnati, OH 45245, Phone: (513)752-3710, Fax: (513)752-7603, Website: www.carespring.com

Eastern Corridor Segment IV(a) SR 32 Eastgate Area Improvements

To: Andrew Schneider, TranSystems amschneider@transystems.com

From: Gina Bell, LNHA Regional Administrator
Company: Carespring Health Care Management
Address: 4400 Glen Este-Withamsville Road, Cincinnati, Ohio 45245
Email: ginab@carespring.com

The following comments are in response to the public hearing on September, 28, 2011.

The Eastern Corridor Website lists the following four important issues:

- Impacts and benefits to existing businesses;
- Maintaining access;
- Community disruption; and
- Impacts during construction.

In addition, the Purpose and Need Statement for the Eastgate Area Improvements contains the following: all sure

- Serve current and projected travel demand;
- Reduce congestion and delay;
- Improve roadway safety; and
- Be consistent with local transportation and economic development goals.

The information, exhibits and documentation available at the September public hearing failed to address very important aspects of the proposed improvements related to the business community. To my knowledge, there was no information provided for each of the considered Alternatives related to:

Impacts and benefits to existing businesses:

- Maintaining access;
- Community disruption:
- Impacts during construction: and
- Consistency with local transportation and economic development goals.

Without information related to the above, it is difficult to make an intelligent and informed decision about a preferred Alternative(s) for future study. Of particular concern is the lack of

Information related to impacts and benefits to existing businesses, maintaining access, and economic development goals.

Considering the state of our national, regional, and local economy, it seems to me that issues related to "jobs" and the economy should be an important part of the alternative analysis process.

Request for Additional Information

I request that you provide additional information and background support for each Alternative (2, 3, 4, and No Build) related to the above five issues, as it specifically applies to Eastgatespring of Cincinnati and also to the business community in general.

Priorities for Carespring Health Management

A high level of access is extremely important for our facility. We presently have a convenient and highly visible access to SR 32 for our visitors, ambulances and medical assistance vehicles, and our staff. All of the considered Alternatives eliminate our direct access to SR 32.

Alternative #4 has the most negative impact on our ingress/egress since our driveway would apparently be restricted to Right In/Right Out only. This situation is unacceptable and certainly drastically diminishes our ability to provide high-quality service for visitors and residents.

Alternative #2, while providing full movement access for our driveway, fails to replace the devastating loss of access at the Glen Este -- Withamsville interchange with appropriate local road improvements. This Alternative also fails to provide connectivity to the surrounding area and, especially the proposed SR 32 interchange with Bach-Buxton/Elick.

Alternative #3 provides full movement access for our driveway and also improves Clepper Lane. It provides some benefit by extending Clepper lane to the proposed SR 32 interchange at Bach-Buston/Elick.

Glen Este- Withamsville Ramp Options appear to be compatible with either Alternative #3 or Alternative #4. These additional ramps would help to increase accessibility and circulation for both residential and business land uses in the area. These ramps would undoubtedly increase

the total cost of the project. However, I believe the benefits to the commercial and residential community, when calculated, would exceed the additional cost.

Overall Impression of Alternatives

- The construction of the Glen Este-Withamsville overpass at SR 32 will have an overwhelming negative impact on our business;
- Alternative #4 is unacceptable due to the loss of full movement at our driveway and Alternative #2 is unacceptable due to the loss of local road circulation and connectivity.
- Alternative #3 incorporates elements which, to some extent, partially address the negative impact of the Glen Este Withamsville overpass; and
- The Glen Este-Withamsville Ramp Options are beneficial and should be constructed.

Conclusion

Alternative #3, with the addition of Glen Este-Withamsville Ramps, should be the Preferred Alternative for further study.

Phone Log

Phone Call Received: 9/28/2011, 9:50 AM

From: Maureen Dikeman (513-688-0136)

Message: "I wish to express my opinion that I don't want anything to change where the Union Branch library is. Use an option that doesn't disturb it. Thank you."

// JNS

Date: 9/29/2011, 10:20 AM

Subject: Eastern Corridor Segment IV(a) Public Comment

James Elliot, 1276 Old 74 (middle house across from Speedway) near Shayler.

Concern is whether he will be relocated; he wants to stay.

Explained that at this time, we didn't have design detail to sufficiently know where the Old 74 would be touching back down at grade. His driveway is on Old 74.

// Andrew Schneider

Phone Call Received: 10/7/2011, 10:50 AM

From: James Elliot (513-752-3552)

Message: Question about whether he could get a copy of the alternatives.

// JNS

September 30, 2011

Mr. Allan Daniel 1001 Joyce Drive Batavia, OH 45103

Dear Mr. Daniel:

Included, please find copies of the four (4) Alternatives Maps that you requested at the SR 32 Eastgate Area Improvements public meeting on Wednesday, September 28, 2011. Please note that these are still preliminary designs; final designs won't be done until next year.

Additionally, you may find the full-size versions of these materials and items from past meetings on the following websites:

- Eastern Corridor <u>www.easterncorridor.org</u>
- ODOT, District 8 www.dot.state.oh.us/districts/D08/Pages/PublicInvolvementMeetingSchedule.aspx
- Clermont County TID <u>tid.clermontcountyohio.gov/Segment+IVA.aspx</u>

If you have any questions or comments, please contact me at 513-621-1981 ext. 32-205 or amschneider@transystems.com.

Respectfully,

Andrew Schneider

October 14, 2011

Ms. Clairee Smith 453 Ivy Trails Drive Cincinnati, OH 45244

Dear Ms. Smith:

Included, please find copies of the four (4) Alternatives Maps and a map of the Glen Este-Withamsville Road ramp options that you requested regarding the SR 32 Eastgate Area Improvements project. Please note that these are still preliminary designs; final designs won't be done until next year.

If you have any questions or comments, please contact Andrew Schneider at 513-621-1981 ext. 32-205 or amschneider@transystems.com.

Respectfully,

Jennifer Spinosi

October 12, 2011

Mr. Norman Wright 136 Judd Road Amelia, OH 45102

Dear Mr. Wright:

Included, please find copies of the four (4) Alternatives Maps and a map of the Glen Este-Withamsville Road ramp options that you requested regarding the SR 32 Eastgate Area Improvements project. Please note that these are still preliminary designs; final designs won't be done until next year.

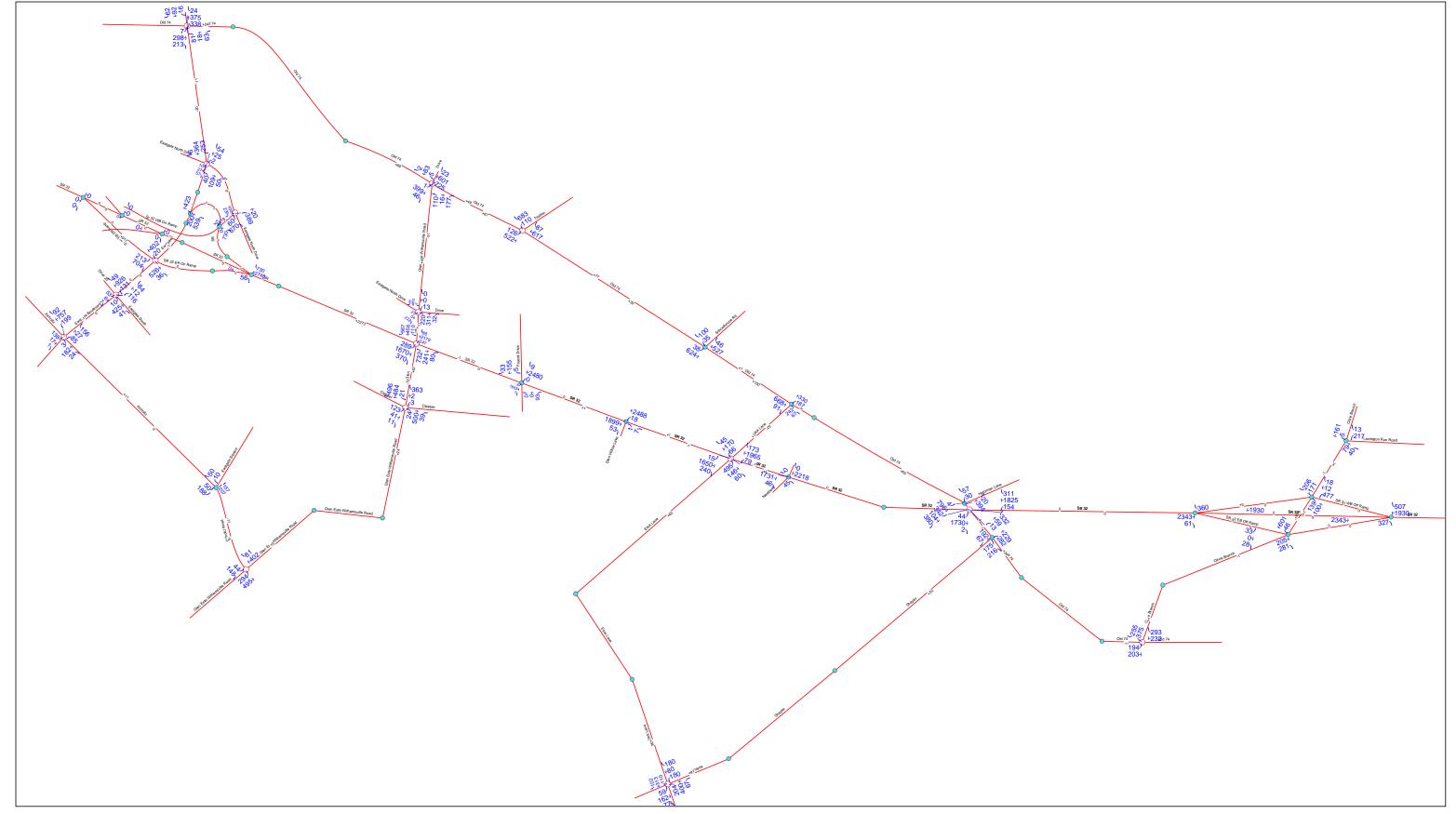
Additionally, you may find the full-size versions of these materials and items from past meetings on the following websites:

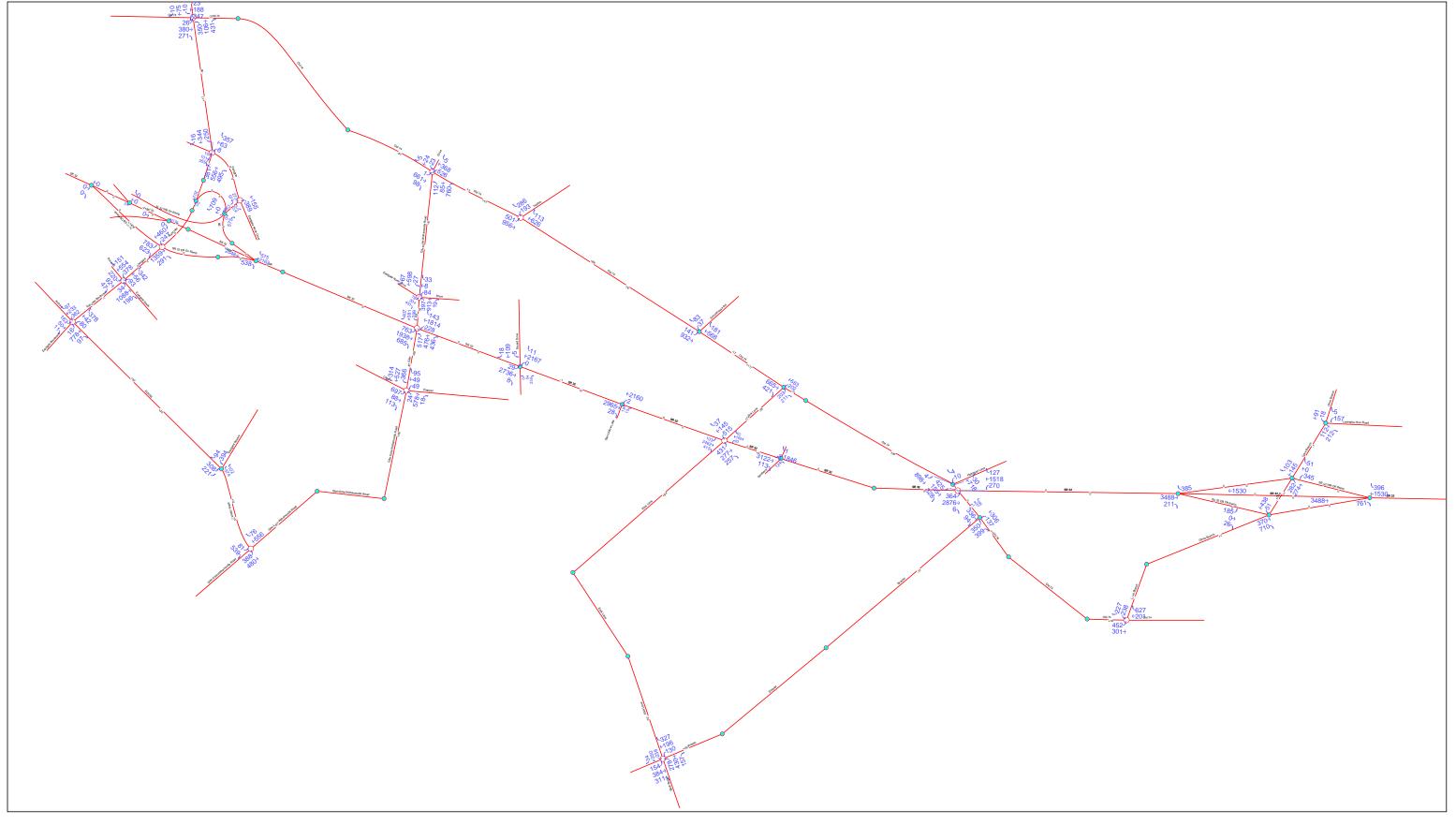
- Eastern Corridor <u>www.easterncorridor.org</u>
- ODOT, District 8 –
 <u>www.dot.state.oh.us/districts/D08/Pages/PublicInvolvementMeetingSchedule.aspx</u>
- Clermont County TID <u>tid.clermontcountyohio.gov/Segment+IVA.aspx</u>

If you have any questions or comments, please contact me at 513-621-1981 ext. 32-205 or amschneider@transystems.com.

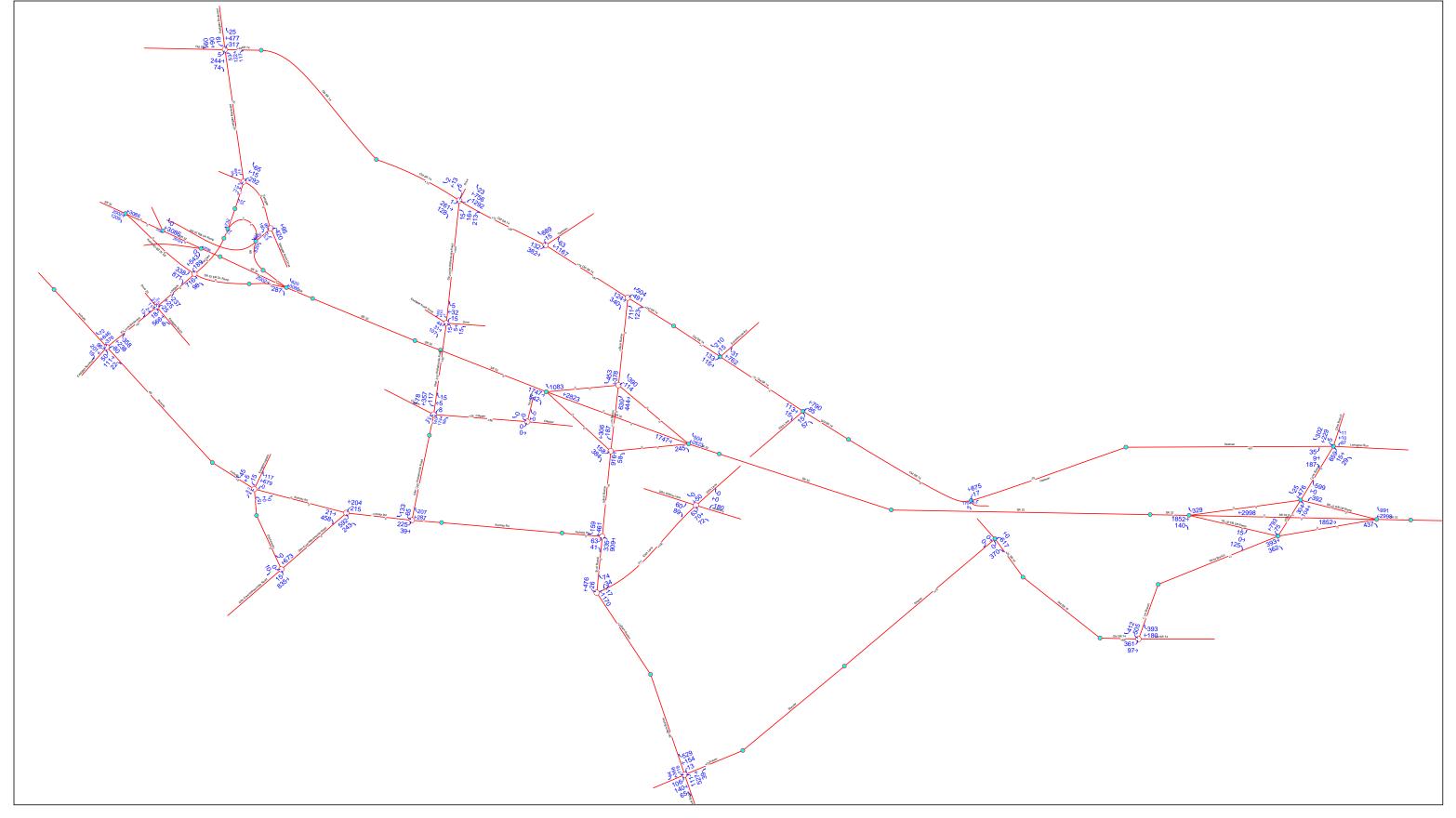
Respectfully,

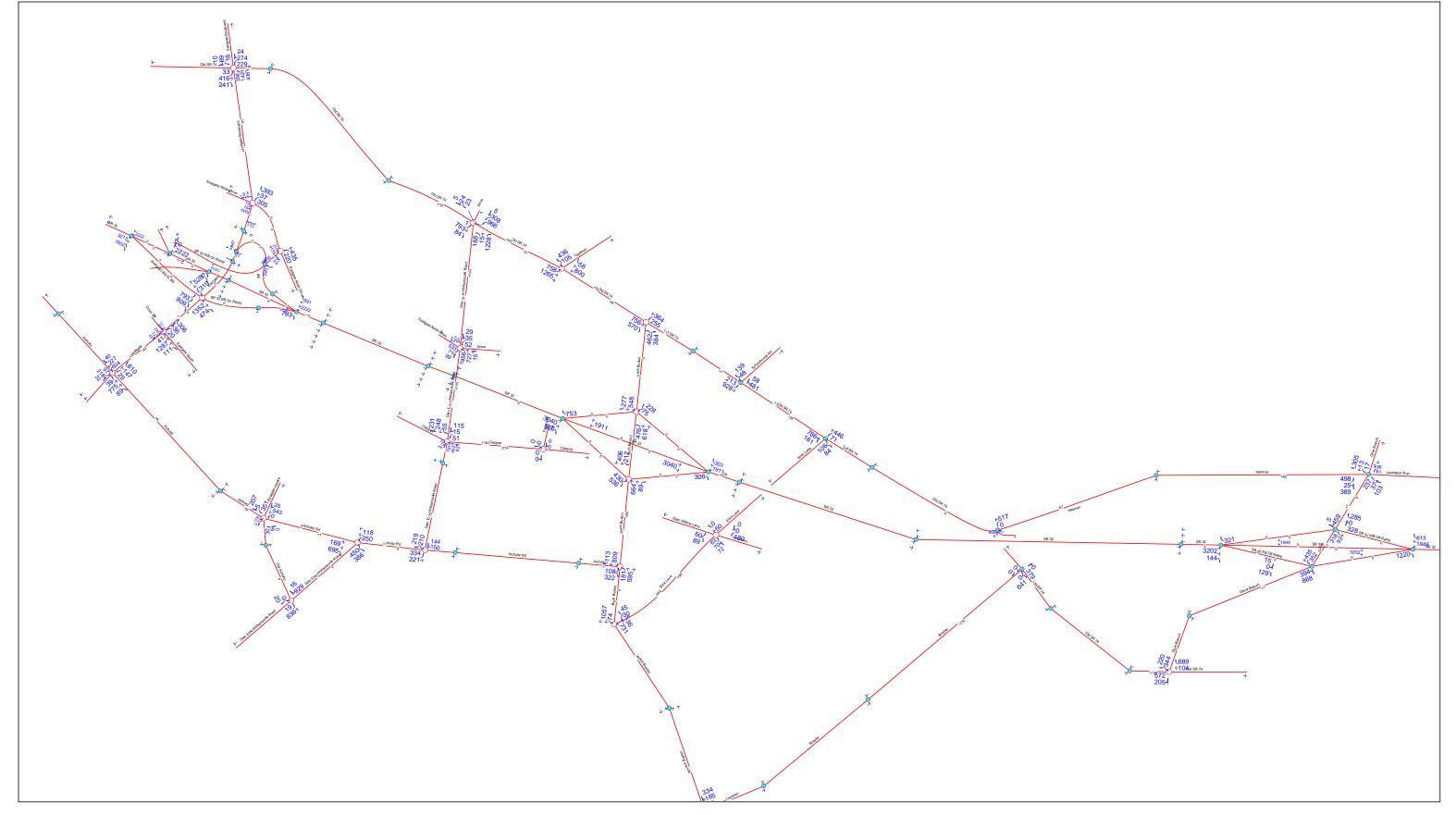
Andrew Schneider

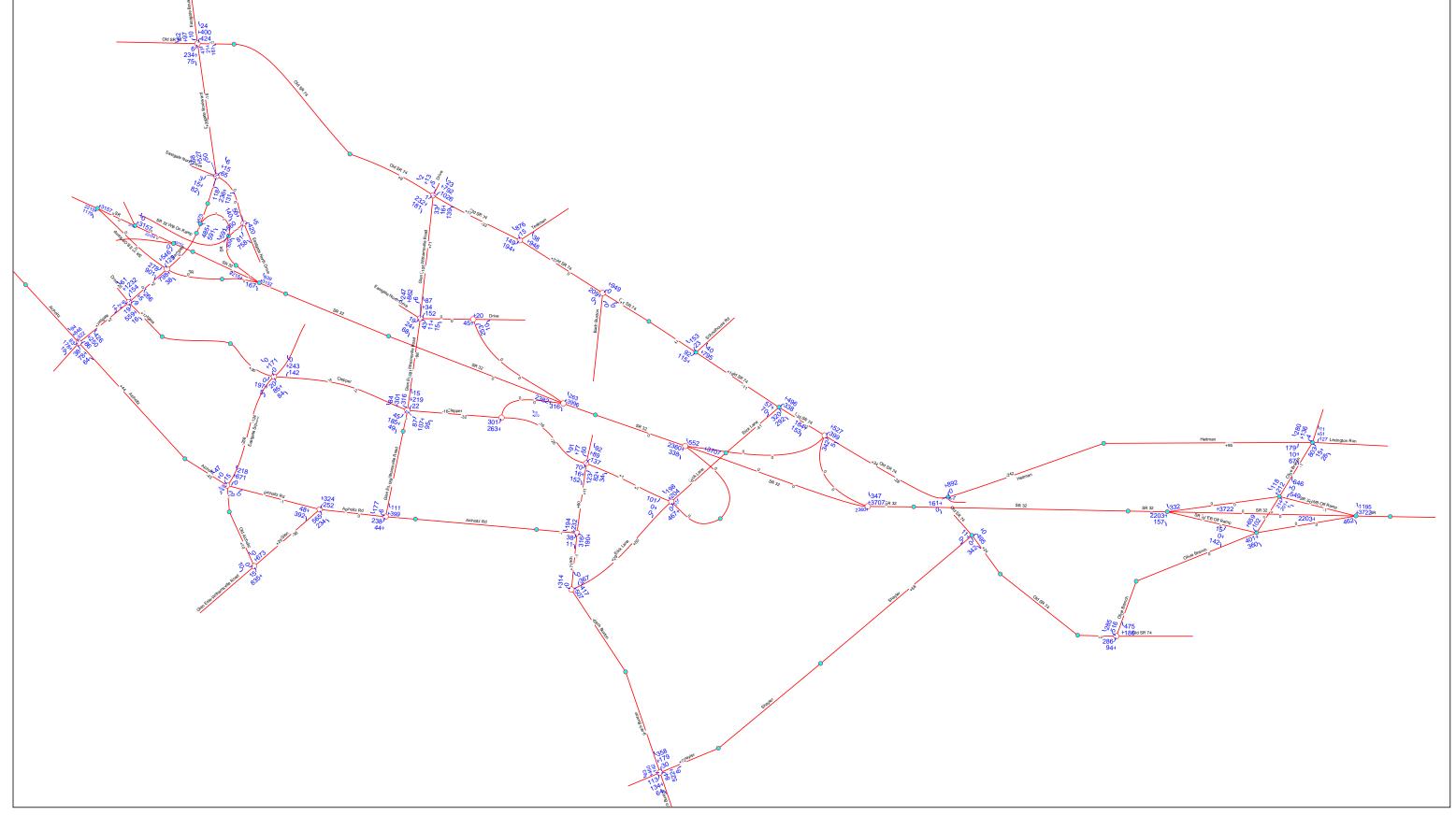


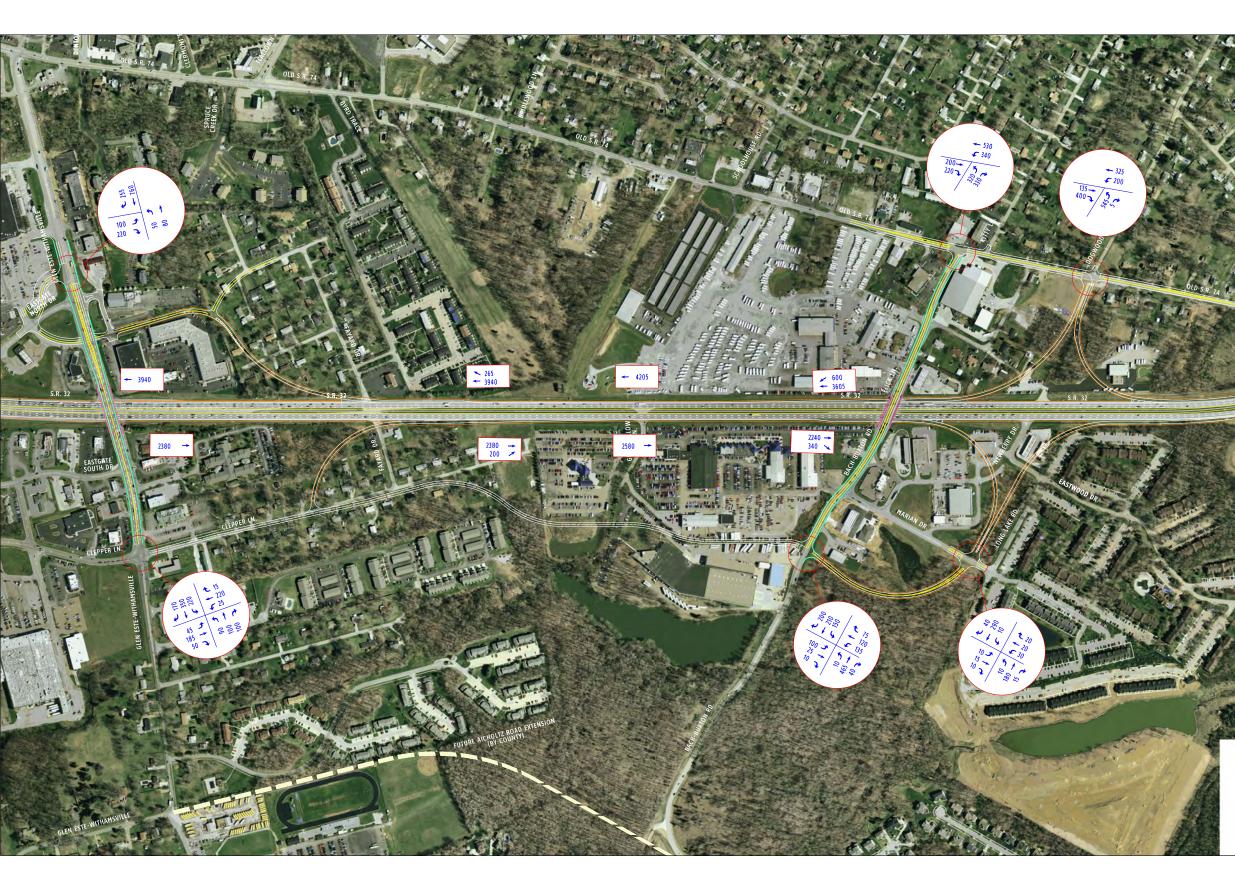

APPENDIX C: TRAFFIC PLATES (ON CD)

- Alternatives I & 5 AM and PM
- Alternative 2 AM and PM
- Alternative 3 AM and PM + updates
- Alternative 4 with Glen Este-Withamsville Road ramps AM and PM + updates
- Alternative 4 without Glen Este-Withamsville Road ramps AM and PM updates

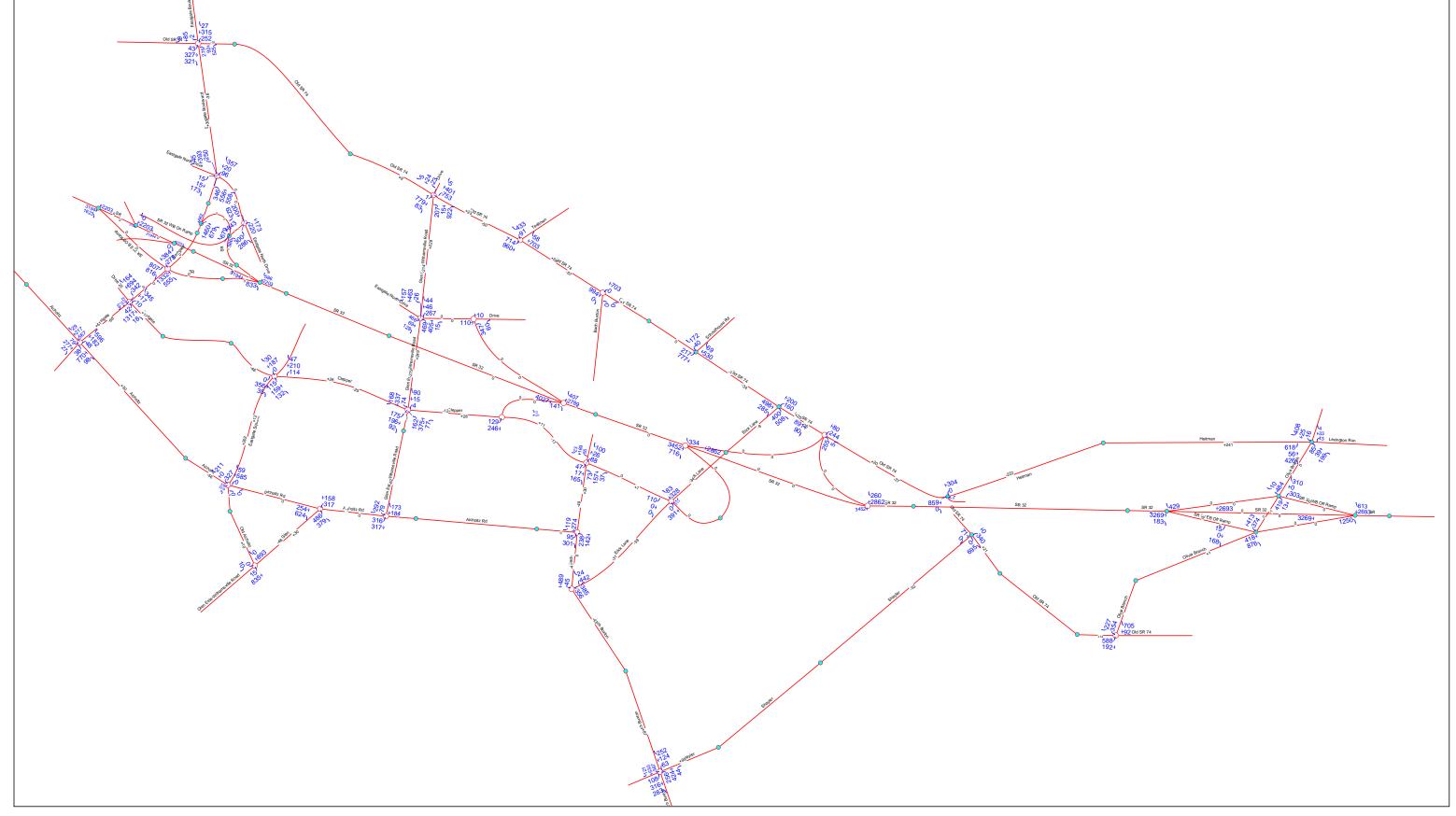

G:\CO10\0004\Traffic\Data_In\HNTB Synchro\No-Build 06-17-11\SR-32 Corridor (Existing_am) 06-17-11 sny 6.sy7 Volume Balance Between Intersections

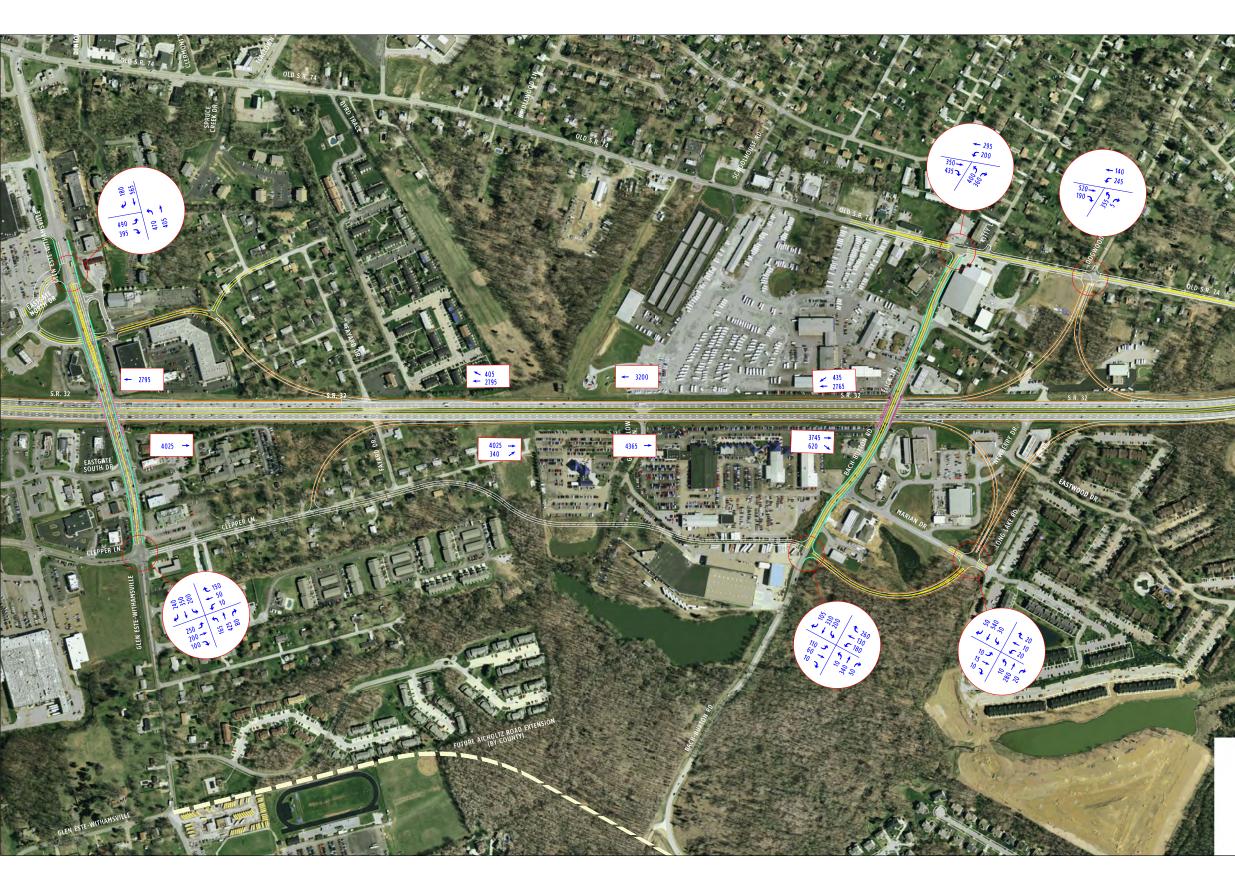

G:\CO10\0004\Traffic\Data_In\HNTB Synchro\No-Build 06-17-11\SR-32 Corridor (Existing_pm) 06-17-11 syn 6.sy7 Volume Balance Between Intersections

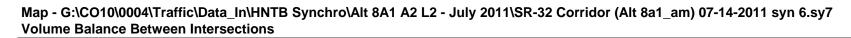

G:\CO10\0004\Traffic\Data_In\HNTB Synchro\Segment IVa - July 2011\Alt 7\SR-32 Corridor (Alt 7_am) 06-30-2011 syn 6.sy7 Volume Balance Between Intersections

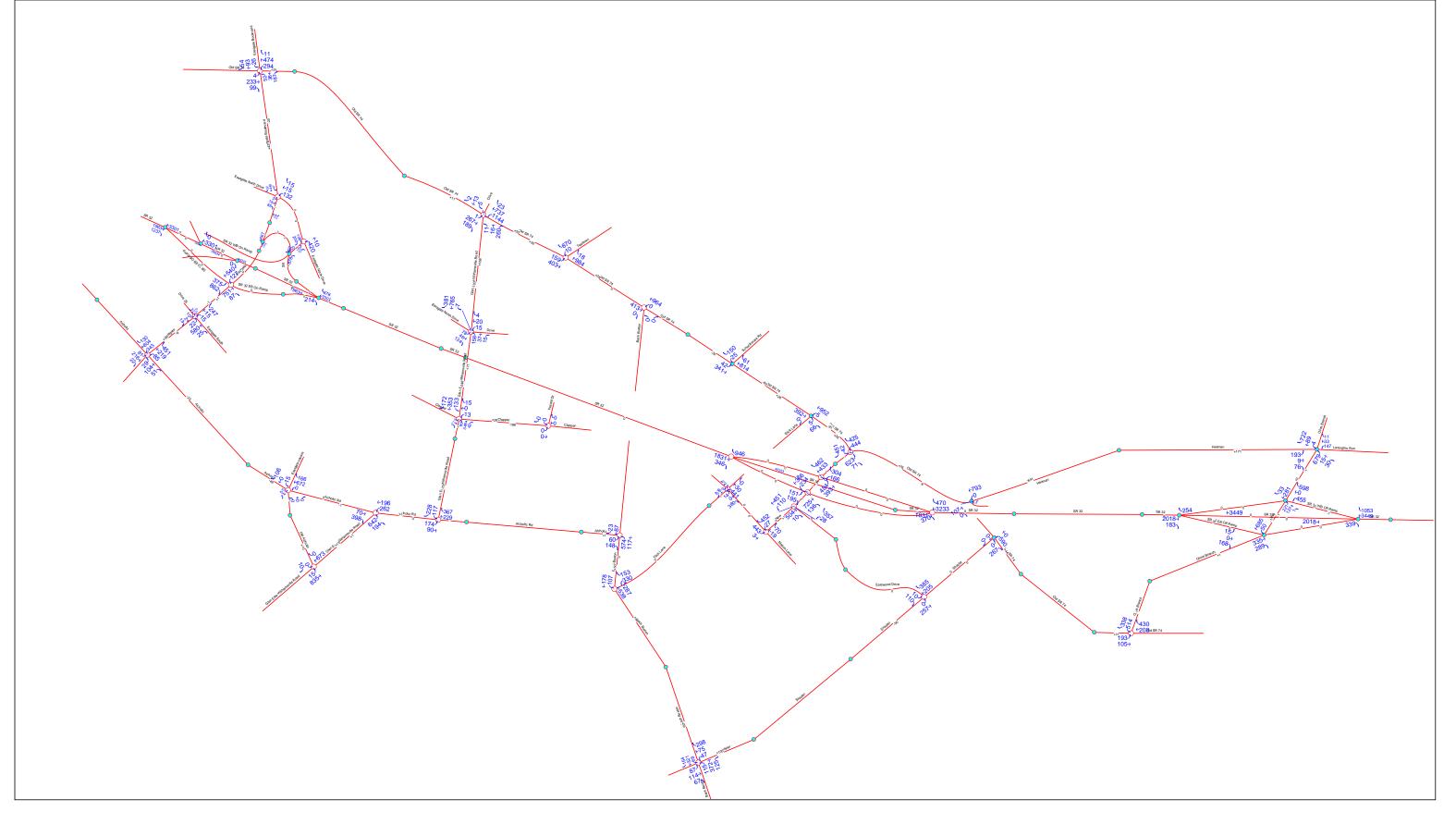


G:\CO10\0004\Traffic\Data_In\HNTB Synchro\Segment IVa - July 2011\Alt 7\SR-32 Corridor (Alt 7_pm) 06-30-2011 syn 6.sy7 Volume Balance Between Intersections

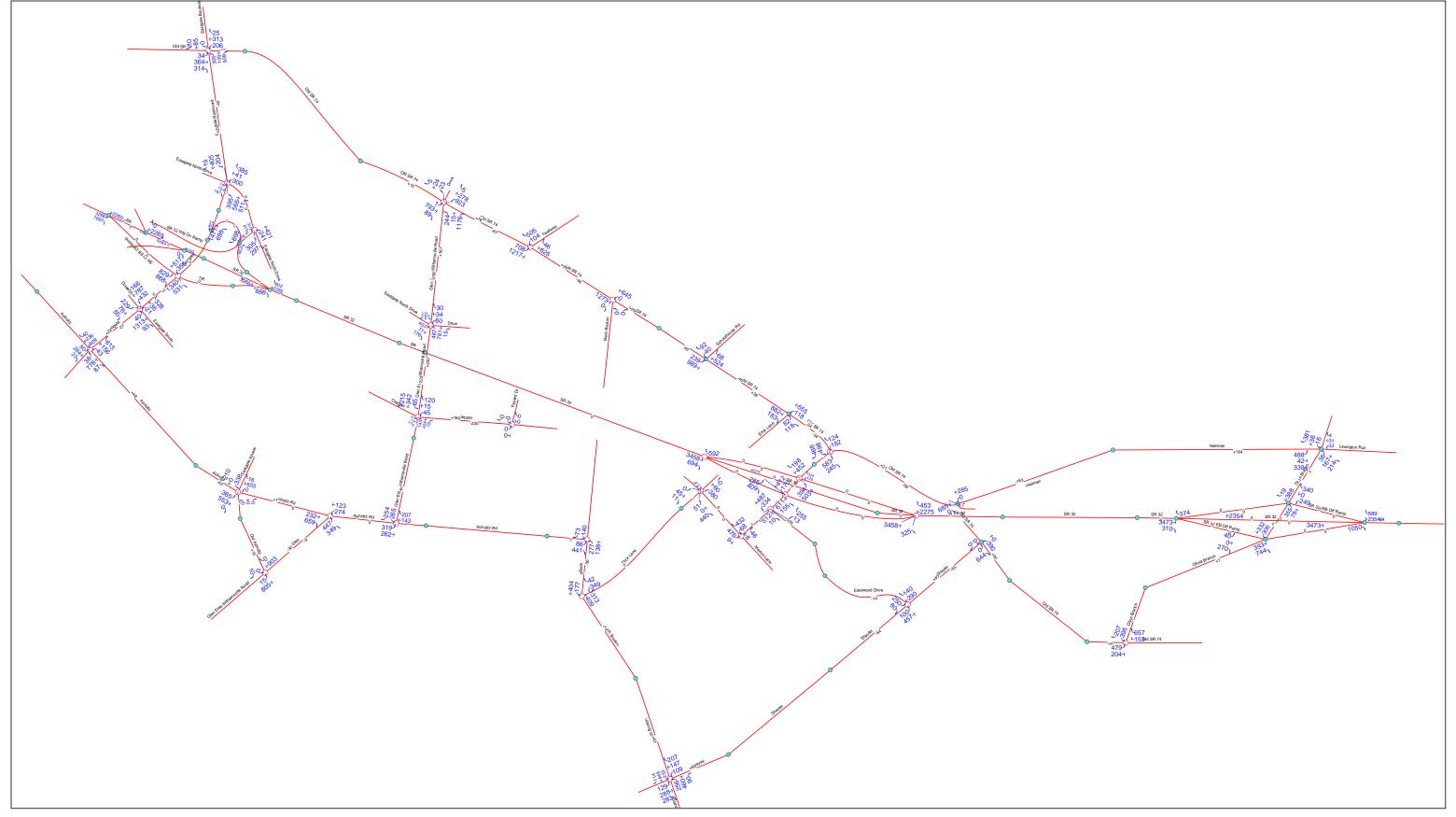





Segment IV(a) - Alternative 3 Planning Level Traffic Volumes 2030 AM Peak Hour



Segment IV(a) - Alternative 3 Planning Level Traffic Volumes 2030 PM Peak Hour



Segment IV(a) - Alternative 4 Planning Level Traffic Volumes 2030 AM Peak Hour

Map - G:\CO10\0004\Traffic\Data_In\HNTB Synchro\Alt 8A1 A2 L2 - July 2011\SR-32 Corridor (Alt 8a1_pm) 07-14-2011 Syn 6.sy7 Volume Balance Between Intersections

Segment IV(a) - Alternative 4 Planning Level Traffic Volumes 2030 PM Peak Hour

Segment IV(a) - Alternative 4 without Glen Este ramps Planning Level Traffic Volumes 2030 AM Peak Hour

Segment IV(a) - Alternative 4 without Glen Este ramps Planning Level Traffic Volumes 2030 PM Peak Hour

APPENDIX D: HIGHWAY CAPACITY SOFTWARE (HCS) OUTPUT (ON CD)

- Alternative I
 - Freeway Segments
 - o Key Intersections
- Alternative 2
 - Freeway Segments
 - Key Intersections
 - Ramp Junctions
- Alternative 3 (with Glen Este-Withamsville Road ramps)
 - o Freeway Segments
 - $\circ\quad \text{Key Intersections}$
 - Ramp Junctions
- Alternative 4 (with Glen Este-Withamsville Road ramps)
 - o Freeway Segments
 - o Key Intersections
 - o Ramp Junctions
- Alternative 4 (without Glen Este-Withamsville Road ramps)
 - Freeway Segments
 - Key Intersections
 - o Ramp Junctions
- Alternative 5
 - o Freeway Segments
 - o Key Intersections

1150 1150 (600 (50) (500		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	<u>Input</u> FFS, N, v _p FFS, LOS, v FFS, LOS, v FFS, N, AA FFS, LOS, v FFS, LOS, v	Ń v _p , S, D DT LOS, S, D AADT N, S, D
	0 2400			
	Site Inform	nation		
	Highway/Dire	ction of Travel	SR 32 East	
tems	From/To			ntrance to Glen
	Jurisdiction			Build Volumes
	Analysis Yea	r	2030 Alt 1	
	Des.(N)		🗌 Planni	ing Data
ven/day		Buses, F _T		
		ain	-	
veh/h			mi	
	E _R		1.2	
	f _{HV} = 1/[1+P _T (E-	_T - 1) + P _R (E _R - 1)]	0.985	
	Calc Spee	d Adj and FFS	6	
ft				mi/h
ft				
I/mi				mi/h
	f _{ID}			mi/h
mi/h	f _N			mi/h
	FFS		60.0	mi/h
	Design (N)			
3				
76 nc/h/ln	-	H\/) / (PHF ¥ N ¥	f x	
ο ρο/π/π	f)		.HA 🗸	pc/h
0.0 mi/h	'p' S			mi/h
4.6 pc/mi/ln	5 D-v /9			
		mbor of Lorge N		pc/mi/ln
		ation		
	E _R - Exhibits2	23-8, 23-10	f	_{-w} - Exhibit 23-4
-				
			-	_N - Exhibit 23-6
ase free-flow speed	r -			_D - Exhibit 23-7
	, , _,	h	· ·	
	rision 1750 c 0	$\begin{array}{c c c c c c c } \hline \hline & $	Image: Constraint of the second system Design (N) Mission (N) N R General Terrain: General Terrain: Grade % Length Up/Down % Length Up/Down % Design (N) Design (N) Design (N) Design (N) Design (N) Design (N) Design LOS vp = (V or DDHV) / (PHF x N x fp) S D = vp / S Required Number of Lanes, N P red sity set flow speed E_R - Exhibits 23-8, 23-10, 23-1 F2 - Page 23-12 S D S D S D S D S D S D S D S D S D S D S D S D S	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

HCS+TM Version 5.5

Generated: 12/5/2011 11:16 AM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed Fres-Flow Speed	Br C	150 1600 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	<u>Input</u> FFS, N, v _I FFS, LOS, FFS, LOS, FFS, N, AJ FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
≥ 30 1 0 400 800		1600 200) 2400			
General Information			Site Inform	nation		
Analyst	scf		Highway/Dire	ection of Travel	SR 32 Eas	
Agency or Company	TranSystems		From/To		Eastgate e Este	entrance to Glen
Date Performed	7/06/11		Jurisdiction		No-Build V	/olumes
Analysis Time Period	PM Peak		Analysis Yea	r	2030 Alt 1	
Project Description Segmer	nt IVa - P4031000	04				
Coper.(LOS)			Des.(N)		🗌 Planr	ning Data
Flow Inputs						
Volume, V AADT	3386	veh/h veh/day	Peak-Hour Face Not Peak-Hour Face Not Peak-Hour Face Not Peak Peak Peak Peak Peak Peak Peak Peak		0.90 3	
Peak-Hr Prop. of AADT, K		ven/uay	%RVs, P _R	- 20003, 1 _T	3 0	
Peak-Hr Direction Prop, D			General Terr	ain:	u Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5			^E _T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	\$	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3					
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)			
<u>Operational (LOS)</u>	vfv		Design LOS			
v _p = (V or DDHV) / (PHF x N i f)	1273 x 1273	pc/h/ln	v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	na/h
f _p) S	60.0	mi/h	f _p)			pc/h
D = y / S	21.2	pc/mi/ln	s			mi/h
D = v _p / S LOS	21.2 C	pc/m/m	$D = v_p / S$			pc/mi/ln
	C		Required Nu	mber of Lanes, N		
Glossary			Factor Lo	cation		
N - Number of lanes	S - Speed			22 0 22 10		
V - Hourly volume	D - Density		E _R - Exhibits			f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	speed		23-8, 23-10, 23-1		f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fre	e-flow speed	f _p - Page 23-			f _N - Exhibit 23-6
DDHV - Directional design ho			LUS, S, FFS	, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
Copyright © 2010 University of Florida				Varaian E E	Conor	ated: 12/5/2011 11:34

HCS+TM Version 5.5

Generated: 12/5/2011 11:34 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FIS = 75 min 70 65 min 70 min 60 65 min 60 min 50 55 min 55 min 40 55 min 60 min 90 40 800	B	50 1000 1000 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, N, FFS, LC FFS, LC	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
Concretion	Flow Rate (pc/h/ln)		Cite Inform			
General Information Analyst	scf		Site Inform Highway/Dire	nation ection of Travel	SR 32 E	astbound
Agency or Company Date Performed Analysis Time Period	TranSystems 7/06/11 AM Peak		From/To Jurisdiction Analysis Yea	r		74 to Olive Branch exi I Volumes T 1
	nt IVa - P4031000					
✓ Oper.(LOS) Flow Inputs			Des.(N)		□ Pla	nning Data
Volume, V AADT Peak-Hr Prop. of AADT, K	2404	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents					
f _p	1.00		E _R		1.2	
E _T	1.5		*	T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3		f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS		mi/h		-	00.0	111/11
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 904	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	(_p)			
$D = v_p / S$	15.1	pc/mi/ln	S D V (S			mi/h
LOS	В		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design ho				•		
Copyright © 2010 University of Florida,	All Rights Reserved		uce.TM	Version 5.5	Ger	nerated: 12/5/2011 11:39

HCS+TM Version 5.5

Generated: 12/5/2011 11:39 AM

Calculate Flow Adjustments f_p 1.00 E_R E_T 1.5 $f_{HV} = 1/[1+P_T(E_T)]$	Operational (LOS) F Design (N) F Design (vp) F Planning (LOS) F Planning (N) F Planning (N) F ation F tion of Travel SR Old No-203 Ctor, PHF 0.90 Buses, PT 3 O O	
General InformationSite InformationAnalystscfHighway/DirectAgency or CompanyTranSystemsFrom/ToDate Performed7/06/11JurisdictionAnalysis Time PeriodPM PeakAnalysis YearProject DescriptionSegment IVa - P403100004Image: Segment IVa - P403100004Image: Oper.(LOS)Des.(N)Flow InputsDes.(N)Volume, V3699veh/hAADTveh/day%Trucks and EPeak-Hr Prop. of AADT, K%RVs, PPeak-Hr Direction Prop, DGeneral TerraitDDHV = AADT x K x Dveh/hGrade %Driver type adjustment1.00UCalculate Flow Adjustmentsffp1.00EET1.5fHV = 11(1+PT(ET)Speed InputsCalc SpeedLane Width12.0ftInterchange Density0.50Number of Lanes, N3FFS (measured)60.0mi/hFEQ	tion of Travel SR Old No- 203 Ctor, PHF 0.90 Buses, P _T 3 0 n: Lev Length mi	SR 74 to Olive Branch exi Build Volumes 80 ALT 1 Planning Data
AnalystscfHighway/DirectAgency or CompanyTranSystemsFrom/ToDate Performed7/06/11JurisdictionAnalysis Time PeriodPM PeakAnalysis YearProject DescriptionSegment IVa - P403100004Des.(N)Flow InputsOper.(LOS)Des.(N)Volume, V3699veh/hAADTveh/day%Trucks and EPeak-Hr Prop. of AADT, K%RVs, P _R Peak-Hr Direction Prop, DGeneral TerraitDDHV = AADT x K x Dveh/hGrade %Driver type adjustment1.00UCalculate Flow Adjustments $f_{\rm P}$ 1.00 f_p 1.00 E_R E_T 1.5 $f_{\rm HV} = 1/[1+P_T(E_T))$ Speed InputsCalc SpeedLane Width12.0ftInterchange Density0.50I/miNumber of Lanes, N3 f_N FFS (measured)60.0mi/h	tion of Travel SR Old No- 203 Ctor, PHF 0.90 Buses, P _T 3 0 n: Lev Length mi	SR 74 to Olive Branch exi Build Volumes 80 ALT 1 Planning Data
Flow InputsVolume, V3699veh/hPeak-Hour FacAADTveh/day%Trucks and EPeak-Hr Prop. of AADT, K%RVs, PPeak-Hr Direction Prop, DGeneral TerraiDDHV = AADT x K x Dveh/hGrade %Driver type adjustment1.00UCalculate Flow Adjustments f_p 1.00E E_T 1.5 $f_{HV} = 1/[1+P_T(E_T)]$ Speed InputsLane Width12.0ftInterchange Density0.50I/miNumber of Lanes, N3fFFS (measured)60.0mi/hFC	Buses, P _T 3 0 n: <i>Lev</i> Length <i>mi</i>	0
Volume, V3699veh/hPeak-Hour FacAADTveh/day%Trucks and EPeak-Hr Prop. of AADT, K%RVs, PPeak-Hr Direction Prop, DGeneral TerraiDDHV = AADT x K x Dveh/hGrade %Driver type adjustment1.00UCalculate Flow Adjustments f_p 1.00 E_R E_T 1.5 $f_{HV} = 1/[1+P_T(E_T \cdot T_T)]$ Speed InputsCalc SpeedLane Width12.0ftInterchange Density0.50I/miNumber of Lanes, N3 f_N FFS (measured)60.0mi/h	Buses, P _T 3 0 n: <i>Lev</i> Length <i>mi</i>	
Calculate Flow Adjustments f_p 1.00 E_R E_T 1.5 $f_{HV} = 1/[1+P_T(E_T]]$ Speed InputsCalc SpeedLane Width12.0ftRt-Shoulder Lat. Clearance6.0ftInterchange Density0.50I/miNumber of Lanes, N3FFS (measured)60.0mi/h	p/Down %	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
E_T 1.5 $f_{HV} = 1/[1+P_T(E_T \cdot T_T)]$ Speed InputsCalc SpeedLane Width12.0ftRt-Shoulder Lat. Clearance6.0ftInterchange Density0.50I/miNumber of Lanes, N3FFS (measured)60.0mi/h	1.2	
Speed InputsCalc SpeedLane Width12.0ftRt-Shoulder Lat. Clearance6.0ftInterchange Density0.50I/miNumber of Lanes, N3FFS (measured)60.0mi/h	- 1) + P _R (E _R - 1)] 0.98	85
Rt-Shoulder Lat. Clearance 6.0 ft f_{LC} Interchange Density 0.50 I/mi f_{ID} Number of Lanes, N 3 f_N FFS (measured) 60.0 mi/h	Adj and FFS	
Interchange Density0.50I/miILCNumber of Lanes, N3f _{ID} FFS (measured)60.0mi/h		mi/h
FFS (measured) 60.0 mi/h		mi/h mi/h
		mi/h
	60.0	0 mi/h
LOS and Performance Measures Design (N)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IV) / (PHF x N x f _{HV} x	pc/h
S 60.0 mi/h S 23.2 pc/mi/ln $D = v_p / S$ C $D = v_p / S$	bor of Longo N	mi/h pc/mi/ln
Glossary Factor Loca	ber of Lanes, N	
N- Number of lanesS- SpeedV- Hourly volumeD- Density v_p - Flow rateFFS - Free-flow speed F_p I OS- Level of serviceBEES - Base free-flow speed	3-8, 23-10 3-8, 23-10, 23-11	f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 -3 f_{ID} - Exhibit 23-7

HCS+TM Version 5.5

Generated: 12/5/2011 11:37 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(yijuu) 70 70 70 70 70 70 70 70 70 70		50 1600 1750 1 1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, LC FFS, LC FFS, LC	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
General Information	Flow Rate (pc/h/ln)		Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period Project Description Segmer	scf TranSystems 7/06/11 AM Peak nt IVa - P4031000	04		ction of Travel	Glen Est	/estbound te to Eastgate exit o-Build Volumes 1
Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	3478	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.90 3 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 nents	veh/h	Grade %	Length Up/Down %	mi	
f _ρ Ε _Τ	1.00 1.5		Е _R f _{HV} = 1/[1+Р _т (Е	_T - 1) + P _R (E _R - 1)]	1.2 0.985	
Speed Inputs			1	d Adj and FFS	<u> </u>	
Lane Width	12.0	ft	f _{LW}	•		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	2	mi/h	f _N			mi/h
FFS (measured) Base free-flow Speed, BFFS	60.0	mi/h mi/h	FFS		60.0	mi/h
LOS and Performance	Moasuros	111/11	Dosign (N)	•		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N)$		pc/h/ln	Design (N) Design (N) Design LOS $V_p = (V \text{ or DD})$) HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S LOS	58.4 33.6 D	mi/h pc/mi/ln	r _p) S D = v _p / S			mi/h pc/mi/ln
	<i>D</i>			mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-′	23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design hc Copyright © 2010 University of Florida.				Version 5.5		nerated: 12/5/2011 11:19

HCS+TM Version 5.5

Generated: 12/5/2011 11:19 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(yiu) 70 70 70 60 60 60 60 60 60 60 60 60 6		50 1600 1750 10 10 10 100 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, N, FFS, LC FFS, LC	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
General Information	Flow Rate (pc/h/ln)		Site Inform	nation		
Analyst Agency or Company Date Performed Analysis Time Period	scf TranSystems 7/06/11 PM Peak nt IVa - P4031000	04		ction of Travel	Glen Est	/estbound te to Eastgate exit I Volumes T 1
Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	2738	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.90 3 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 nents	veh/h	Grade %	Length Up/Down %	mi	
f _p	1.00		E _R		1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E)]$	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3					mi/h
FFS (measured)	60.0	mi/h	f _N			
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x <i>1029</i>	pc/h/ln	Design (N) Design LOS v _p = (V or DD	9HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			• /•
D = v _p / S	17.1	pc/mi/ln	S D = v / S			mi/h
LOS	В		$D = v_p / S$	mbor of Longo N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
Copyright © 2010 University of Florida.				Version 5.5		nerated: 12/5/2011 11:43

HCS+TM Version 5.5

Generated: 12/5/2011 11:43 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(ujuu) 70 70 70 60 65 mih 60 60 mih 55 mih 60 60 mih 55 mih 60 60 mih 55 mih 60 60 mih 60 mih		50 1000 1750 1600 1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	і́́, v _p N, S, D S, N v _p , S, D AADT LOS, S, D IS, AADT N, S, D
General Information	Flow Rate (pc/h/ln)		Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period	scf TranSystems 7/06/11 AM Peak nt IVa - P4031000	04		ection of Travel	Olive Bra	/estbound anch ent to Old SR 74 Volumes 1
Oper.(LOS)			Des.(N)		🗌 Plai	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	2290	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.90 3 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustn	1.00 nents	veh/h	Grade %	Length Up/Down %	mi	
f _p	1.00		E _R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E	T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	2					
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N x f _p)	x f _{HV} x 1291	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			·
$D = v_p / S$	21.5	pc/mi/ln	S D v / C			mi/h
LOS	С		$D = v_p / S$			pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume			Version 5.5		

HCS+TM Version 5.5

Generated: 12/5/2011 11:20 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1)(iii) 70 70 70 70 70 70 70 70 70 70			2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
Concret Information	Flow Rate (pc/h/ln)		Cito Inform	matian		
General Information Analyst Agency or Company Date Performed Analysis Time Period Project Description Segmer	scf TranSystems 7/06/11 PM Peak nt IVa - P40310000	04	Site Inform Highway/Dire From/To Jurisdiction Analysis Yea	ction of Travel	Olive Bra	/estbound anch ent to Old SR 74 Volumes T 1
✓ Oper.(LOS)			Des.(N)		🗌 Plai	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	1915	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.90 3 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents			Up/Down %		
f _p	1.00		E _R		1.2	
Ē _T	1.5		f _{HV} = 1/[1+P _T (E	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance Interchange Density	6.0 0.50	ft I/mi	f _{LC} f _{ID}			mi/h mi/h
Number of Lanes, N	2		f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS		mi/h			00.0	111/11
LOS and Performance Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF x N x)$ f_p)		pc/h/ln	Design (N) Design (N) Design LOS $v_p = (V \text{ or } DD)$ f)) HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S LOS	60.0 18.0 B	mi/h pc/mi/ln	S D = v _p / S Required Nur	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre our volume		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2010 University of Florida.				Version 5.5		nerated: 12/5/2011 11:42

HCS+TM Version 5.5

Generated: 12/5/2011 11:42 AM

Analyst: scf Agency: TranSystems Date: 2/3/2011 Period: AM Peak Project ID: Segment IVa E/W St: SR 32 Inter.: SR 32 & Glen Este Area Type: All other areas Jurisd: Year : 2030 No Build improved

N/S St: Glen Este

			SIC	GNALI	ZED I	NTERSE	CTION	SUMMA	ARY				
	Eas	stboun	d	Wes	stbou	ınd	Nor	thbou	ınd	So	uthbo	und	
	L	Т	R	L 	Т	R	L	Т	R	L	Т	R	
No. Lanes	3	5	2	2	5	1	3	2	1	2	2	2	
LGConfig	ĹL	Т	R	L L	т	R	ĹL	Т	R	L	т	R	i
Volume	289	1670	370	247	2179	86	732	241	80	110	456	567	i
Lane Width	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	İ
RTOR Vol	İ		0	İ		0			0			0	İ
Duration	0.25		Area 1			other							
Phase Comb	inatio	 n 1	2	S19 3	gnai 4	Operat	ions	5	6	7		8	
EB Left	Inderoi	A	2	5	-	NB	Left	A	Ũ	,		0	
Thru			A				Thru		A				
Right			A				Right	:	A				
Peds							Peds	-					
WB Left		А				SB	Left	А					
Thru			A				Thru		А				
Right			A				Right		A				
Peds							Peds						
		P				EB	Right	: P					
NB RIGHL		Ρ				WB	Right						
5						1=							
SB Right			38.0					28.0) 20.!	5			
SB Right Green		13.5 3.5	38.0 3.5					28.(3.5) 20.! 3.5	5			
SB Right Green Yellow		13.5								5			
SB Right Green Yellow		13.5 3.5 1.5	3.5 1.5					3.5 1.5 Cyc	3.5		120.	0 se	cs
SB Right Green Yellow All Red		13.5 3.5 1.5 In	3.5 1.5 tersed			ormanc		3.5 1.5 Cyc nary	3.5 1.5 cle Lei	ngth:		0 se	cs
SB Right Green Yellow All Red Appr/ La		13.5 3.5 1.5 In In	3.5 1.5 tersed Sat	Ra	Perf		e Summ Lane	3.5 1.5 Cyc nary	3.5 1.5 cle Lei			0 se	cs
SB Right Green Yellow All Red Appr/ Lai Lane Gro	ne oup pacity	13.5 3.5 1.5 In In Adj Flow	3.5 1.5 tersed	Ra	atios			3.5 1.5 Cyc mary Groug	3.5 1.5 cle Len p App	ngth:	h	0 se 	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap	oup	13.5 3.5 1.5 In In Adj Flow	3.5 1.5 tersed Sat Rate	Ra	atios	; 	Lane	3.5 1.5 Cyc mary Groug	3.5 1.5 cle Len p App	ngth: oroac	h	0 se	CS
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound	oup pacity 	13.5 3.5 1.5 In Adj Flow (3.5 1.5 tersed Sat Rate s)	Ra v/c	atios 	g/C	Lane Delay	3.5 1.5 Cyc mary Group 7 LOS	3.5 1.5 cle Len p App	ngth: oroac	h	0 se	CS
SB Right Green Yellow All Red Appr/ Lan Grp Can Eastbound L 5	oup pacity 37	13.5 3.5 1.5 In Adj Flow (477	3.5 1.5 tersec Sat Rate s) 4	Ra v/c	atios 	g/C	Lane Delay 52.5	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Len Dela	ngth: oroac ay LO	h	0 se	CS
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 5 T 2	oup pacity 37 652	13.5 3.5 1.5 In Adj Flow (477 837	3.5 1.5 tersec Sat Rate s) 4 5	Ra v/c	atios) (0) (0	g/C 	Lane Delay 52.5 36.8	3.5 1.5 Cyc mary Group 7 LOS	3.5 1.5 cle Len p App	ngth: oroac ay LO	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 20 R 1	oup pacity 37	13.5 3.5 1.5 In Adj Flow (477	3.5 1.5 tersec Sat Rate s) 4 5	Ra v/c	atios) (0) (0	g/C	Lane Delay 52.5	3.5 1.5 Cyc Groug / LOS	3.5 1.5 cle Len Dela	ngth: oroac ay LO	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 20 R 10 Westbound	oup pacity 37 652	13.5 3.5 1.5 In Adj Flow (477 837	3.5 1.5 tersec Sat Rate s) 4 5 5	Ra v/c	atios 0 (0 5 (0	g/C 	Lane Delay 52.5 36.8	3.5 1.5 Cyc Groug / LOS	3.5 1.5 cle Len Dela	ngth: oroac ay LO	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 2 R 1 Westbound L 3	oup pacity 37 652 642	13.5 3.5 1.5 In Adj Flow (477 837 277	3.5 1.5 tersed Sat Rate s) 4 5 5 3	Ra v/c 0.60 0.70 0.25	atios 9 0 (0 0 (0 5 (0 2 (0	9/C 0.11 0.32 0.59	Lane Delay 52.5 36.8 11.8	3.5 1.5 Cyc Group 7 LOS D D B	3.5 1.5 cle Len Dela	ngth: proac ay LO 8 C	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 2 R 1 Westbound L 3 T 2	oup pacity 37 652 642 83	13.5 3.5 1.5 In Adj Flow (477 837 277 340	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5	Ra v/c 0.60 0.70 0.29	atios 0 C 0 C 5 C 2 C L C	, //C).11).32).59).11	Lane Delay 52.5 36.8 11.8 57.7	3.5 1.5 Cyc Group r LOS D D B E	3.5 1.5 cle Len p App Dela 34.8	ngth: proac ay LO 8 C	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 20 R 10 Westbound L 3 T 20 R 9	oup pacity 37 652 642 83 652 28	13.5 3.5 1.5 In Adj Flow (477 837 277 340 837	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5	Ra v/c 0.60 0.70 0.29 0.72 0.92 0.92	atios 9 0 (0 0 (0 5 (0 5 (0 2 (0 1 (0 0) (0	3 7/C 0.11 0.32 0.59 0.11 0.32 0.59 0.59	Lane Delay 52.5 36.8 11.8 57.7 44.8	3.5 1.5 Cyc Groug r LOS D D B E D	3.5 1.5 cle Len p App Dela 34.8	ngth: proac ay LO 8 C	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 2 R 1 Westbound L 3 T 2 R 9 Northbound L 1	oup pacity 37 652 642 83 652 28 125	13.5 3.5 1.5 I.5 In Adj Flow (477 837 277 340 837 156 482	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0	Ra v/c 0.60 0.70 0.29 0.72 0.92 0.92 0.10 0.10	atios 0 (0 0 (0 5 (0 2 (0 1 (0 0 (0 2 (0 2 (0 2 (0	5 7/C 0.11 0.32 0.59 0.11 0.32 0.59 0.23	Lane Delay 52.5 36.8 11.8 57.7 44.8	3.5 1.5 Cyc Groug r LOS D D B E D	3.5 1.5 cle Len Dela 34.8 44.9	ngth: proac ay LO 8 C 9 D	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 2 R 1 Westbound L 3 T 2 R 9 Northbound L 1	oup pacity 37 652 642 83 652 28	13.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0	Ra v/c 0.60 0.70 0.29 0.72 0.92 0.10 0.72 0.44	atios 0 C 0 C 5 C 2 C 1 C 0 C 2 C 4 C	<pre>.11 0.32 0.59 0.11 0.32 0.59 0.11 0.32 0.59 0.23 0.17</pre>	Lane Delay 52.5 36.8 11.8 57.7 44.8 10.7 44.7 45.1	3.5 1.5 Cyc Group J D B E D B	3.5 1.5 cle Len p App Dela 34.8	ngth: proac ay LO 8 C 9 D	h	0 se	CS
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 R 1 Westbound L 3 T 2 R 9 Northbound L 1 T 6	oup pacity 37 652 642 83 652 28 125	13.5 3.5 1.5 I.5 In Adj Flow (477 837 277 340 837 156 482	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7	Ra v/c 0.60 0.70 0.29 0.72 0.92 0.92 0.10 0.10	atios 0 C 0 C 5 C 2 C 1 C 0 C 2 C 4 C	5 7/C 0.11 0.32 0.59 0.11 0.32 0.59 0.23	Lane Delay 52.5 36.8 11.8 57.7 44.8 10.7 44.7	3.5 Cyc Groug Groug / LOS D B E D B D B D D D D D D D D D D D D D	3.5 1.5 cle Len Dela 34.8 44.9	ngth: proac ay LO 8 C 9 D	h	0 se	C S
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 2 R 1 Westbound L 3 T 2 R 9 Northbound L 1 T 6 R 5	oup pacity 37 652 642 83 652 28 125 06 14	13.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482 354	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7	Ra v/c 0.60 0.70 0.29 0.72 0.92 0.10 0.72 0.44	atios 0 C 0 C 5 C 2 C 1 C 0 C 2 C 4 C	<pre>.11 0.32 0.59 0.11 0.32 0.59 0.11 0.32 0.59 0.23 0.17</pre>	Lane Delay 52.5 36.8 11.8 57.7 44.8 10.7 44.7 45.1	3.5 Cyc Groug Groug / LOS D D B E D B D D D D D D D D D D D	3.5 1.5 cle Len Dela 34.8 44.9	ngth: proac ay LO 8 C 9 D	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 20 R 1 Westbound L 3 T 20 R 9 Northbound L 1 T 6 R 5 Southbound	oup pacity 37 652 642 83 652 28 125 06 14	13.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482 354	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7 3	Ra v/c 0.60 0.70 0.29 0.72 0.92 0.10 0.72 0.44	atios 0 C 0 C 5 C 2 C 1 C 0 C 2 C 4 C 7 C	<pre>.11 0.32 0.59 0.11 0.32 0.59 0.11 0.32 0.59 0.23 0.17</pre>	Lane Delay 52.5 36.8 11.8 57.7 44.8 10.7 44.7 45.1	3.5 Cyc Groug Groug / LOS D D B E D B D D D D D D D D D D D	3.5 1.5 cle Len Dela 34.8 44.9	ngth: proac ay LO 8 C 9 D	h	0 se	CS
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Can Eastbound L 5 T 20 R 10 Westbound L 3 T 20 R 9 Northbound L 1 T 6 R 5 Southbound L 8	oup pacity 37 652 642 83 652 28 125 06 14	13.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482 354 158	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7 3 7	Ra v/c 0.60 0.70 0.22 0.72 0.92 0.10 0.10 0.72 0.10	atios 0 C 0 C 0 C 5 C 2 C 1 C 0 C 2 C 4 C 7 C 5 C).11).32).59).11).32).59).23).17).32	Lane Delay 52.5 36.8 11.8 57.7 44.8 10.7 44.7 45.1 29.1	3.5 1.5 Cyc Group Group r LOS D D B E D B D D C	3.5 1.5 cle Len Dela 34.8 44.9	ngth: oroac ay LO 8 C 9 D 6 D	h	0 se	cs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 5 T 2 R 10 Westbound L 3 T 2 R 10 Northbound L 11 T 6 R 5 Southbound L 8 T 6	oup pacity 37 652 642 83 652 28 125 06 14 02	13.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482 354 158 343	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7 3 7 7	Ra v/c 0.60 0.72 0.22 0.72 0.92 0.10 0.12 0.12	atios D C D C D C D C D C D C D C D C	<pre>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	Lane Delay 52.5 36.8 11.8 57.7 44.8 10.7 44.7 45.1 29.1 36.7	3.5 Cyc Group Group / LOS / D B E D B D C D C D	3.5 1.5 cle Len Dela 34.3 44.9	ngth: oroac ay LO 8 C 9 D 6 D	h	0 se	cs

Analyst: scf Agency: TranSystems Date: 2/3/2011 Period: PM Peak Project ID: Segment IVa E/W St: SR 32 Inter.: SR 32 & Glen Este Area Type: All other areas Jurisd: No Build improved Year : 2030 ALT 1

N/S St: Glen Este

			SIC				CTION			·		
		stboun		!	stboı		1	thbou		!	uthbo	
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes	3	5	2	2	5	1	3	2	1	2	2	2
LGConfig	L	Т	R	L L	Т	R	L	Т	R	ļ L	Т	R
Volume	763	1938	685	228	1814	4 143	517	476	436	399	381	407
Lane Widt	h 12.0	12.0	12.0	12.0	12.0	0 12.0	12.0	12.0	12.0	12.0	12.0	12.0
RTOR Vol			0			0			0			0
Duration	0.25		Area 1			other Operat						
Phase Com	 binatio	 n 1	2	SI 3	-	operat 4	.10118	5	6	7		 8
EB Left		А				NB	Left	А				
Thru			А				Thru		A			
Right			А				Right	_	А			
Peds							Peds					
WB Left		А				SB	Left	А				
Thru			А				Thru		A			
Right			А				Right	_	А			
Peds							Peds					
		P				EB	Right	: P				
NB Right						!	Right					
5		Р				I WB	RIGHT					
SB Right		Р 23.5	33.5			WB	RIGII		5 21.	5		
SB Right Green		23.5	33.5 3.5			WB	RIGIII	21.		ō		
SB Right Green Yellow		23.5 3.5	3.5			WB	RIGII		5 21. 3.5 1.5	ō		
SB Right Green Yellow		23.5 3.5 1.5	3.5 1.5			1	_	21.! 3.5 1.5 Cyc	3.5 1.5 cle Lei	ngth:	120.	0 sec
SB Right Green Yellow All Red		23.5 3.5 1.5 In	3.5 1.5 tersed			formanc	e Summ	21.9 3.5 1.5 Cyc nary_	3.5 1.5 cle Lei	ngth:		0 sec
SB Right Green Yellow All Red Appr/ L	 ane	23.5 3.5 1.5 In In	3.5 1.5 tersec Sat	Ra	Peri	formanc	_	21.9 3.5 1.5 Cyc nary_	3.5 1.5 cle Lei	ngth:		0 sec
SB Right Green Yellow All Red Appr/ L Lane G		23.5 3.5 1.5 In Adj Flow	3.5 1.5 tersed	Ra	atio:	formanc	e Summ	21.9 3.5 1.5 Cyc mary Group	3.5 1.5 cle Len p App	ngth:	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C	ane roup apacity	23.5 3.5 1.5 In Adj Flow	3.5 1.5 tersec Sat Rate	Ra	atio:	formanc s	e Summ Lane	21.9 3.5 1.5 Cyc mary Group	3.5 1.5 cle Len p App	ngth: proac	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound	ane roup apacity	23.5 3.5 1.5 In Adj Flow (3.5 1.5 tersec Sat Rate s)	Ra v/c	atio:	formanc s g/C	e Summ Lane Delay	21.9 3.5 1.5 Cyc ary Group 7 LOS	3.5 1.5 cle Len p App	ngth: proac	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L	ane roup apacity 935	23.5 3.5 1.5 In Adj Flow (477	3.5 1.5 tersec Sat Rate s) 4	Ra v/c 0.91	atios 1 (Eormanc 3 	e Summ Lane Delay 59.6	21.9 3.5 1.5 Cyc ary Group / LOS	3.5 1.5 cle Len o App Dela	ngth: proac ay LO	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T	ane roup apacity 935 2338	23.5 3.5 1.5 In Adj Flow (477 837	3.5 1.5 tersec Sat Rate s) 4 5	Ra v/c	atios 1 (2 (Eormanc 5 g/C 0.20 0.28	e Summ Lane Delay 59.6 48.6	21.9 3.5 1.5 Cyc ary Group / LOS E D	3.5 1.5 cle Len p App	ngth: proac ay LO	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R	ane roup apacity 935 2338 1388	23.5 3.5 1.5 In Adj Flow (477	3.5 1.5 tersec Sat Rate s) 4 5	Ra v/c 0.91	atios 1 (2 (Eormanc 3 	e Summ Lane Delay 59.6	21.9 3.5 1.5 Cyc ary Group / LOS	3.5 1.5 cle Len o App Dela	ngth: proac ay LO	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound	ane roup apacity 935 2338 1388	23.5 3.5 1.5 In Adj Flow (477 837 277	3.5 1.5 tersec Sat Rate s) 4 5 5	Ra v/c 0.92 0.55	1 (2 (5 (Eormand 3 g/C 0.20 0.28 0.50	ce Summ Lane Delay 59.6 48.6 21.1	21.9 3.5 1.5 Cyc ary Group 7 LOS E D C	3.5 1.5 cle Len o App Dela	ngth: proac ay LO	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L	ane roup apacity 935 2338 1388 666	23.5 3.5 1.5 In Adj Flow (477 837 277 340	3.5 1.5 tersec Sat Rate s) 4 5 5 3	Ra v/c 0.92 0.92 0.55	1 (2 (5 (8 (Eormanc 5 g/C 0.20 0.28 0.50 0.20	29.6 48.6 21.1 42.3	21.9 3.5 1.5 Cyc ary Group 7 LOS E D C D	3.5 1.5 cle Len p App Dela	ngth: proac ay LO	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L T	ane roup apacity 935 2338 1388 666 2338	23.5 3.5 1.5 In Adj Flow (477 837 277 340 837	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5	Ra v/c 0.9: 0.9: 0.5: 0.3: 0.3: 0.8:	atios 	Eormanc 5 	29.6 48.6 21.1 42.3 44.6	21.9 3.5 1.5 Cyc Group F LOS E D C D D	3.5 1.5 cle Len o App Dela	ngth: proac ay LO	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L T R R	ane roup apacity 935 2338 1388 666 2338 784	23.5 3.5 1.5 In Adj Flow (477 837 277 340	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5	Ra v/c 0.92 0.92 0.55	atios 	Eormanc 5 g/C 0.20 0.28 0.50 0.20	29.6 48.6 21.1 42.3	21.9 3.5 1.5 Cyc ary Group 7 LOS E D C D	3.5 1.5 cle Len p App Dela	ngth: proac ay LO	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C ———— Eastbound L T R Westbound L T R Northboun	ane roup apacity 935 2338 1388 666 2338 784 d	23.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8	Ra v/c 0.92 0.92 0.55 0.33 0.33 0.33 0.33 0.20	L (0 2 (0 5 (0 6 (0) 0 (0)	Eormanc 5 7/C 0.20 0.28 0.50 0.20 0.28 0.50	29.6 48.6 21.1 42.3 44.6 16.8	21.9 3.5 1.5 Cyc ary_ Group / LOS / E D C D B	3.5 1.5 cle Len p App Dela	ngth: proac ay LO	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L T R Northboun L	ane roup apacity 935 2338 1388 666 2338 784 d 864	23.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0	Ra v/c 0.92 0.92 0.55 0.33 0.86 0.20 0.66	atios 1 ((2 () 5 () 8 () 5 () 5 () 5 ()	Eormanc 5 g/C 0.20 0.28 0.50 0.20 0.28 0.50 0.28 0.50	e Summ Lane Delay 59.6 48.6 21.1 42.3 44.6 16.8 47.8	21.9 3.5 1.5 Cyc Group Group / LOS / LOS / LOS / D D B D D B	3.5 1.5 cle Lei p App Dela 45.1	ngth: proac ay LO 5 D	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L T R Northboun L T R	ane roup apacity 935 2338 1388 666 2338 784 d 864 636	23.5 3.5 1.5 I.5 Adj Flow (477 837 277 340 837 156 482 354	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7	Ra v/c 0.92 0.92 0.55 0.33 0.35 0.35 0.35 0.20 0.60 0.85	atios 1 ((2 () 5 () 5 () 5 () 5 () 5 () 5 () 5 () 5	Eormanc s g/C 0.20 0.28 0.50 0.28 0.50 0.28 0.50 0.28 0.50 0.18 0.18	e Summ Lane Delay 59.6 48.6 21.1 42.3 44.6 16.8 47.8 56.7	21. 3.5 1.5 Cyc ary_ Group / LOS / D D B D E D C	3.5 1.5 cle Len p App Dela	ngth: proac ay LO 5 D	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L T R Northboun L T R Northboun L T R	ane roup apacity 935 2338 1388 666 2338 784 d 864 636 660	23.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7	Ra v/c 0.92 0.92 0.55 0.33 0.86 0.20 0.66	atios 1 ((2 () 5 () 5 () 5 () 5 () 5 () 5 () 5 () 5	Eormanc 5 g/C 0.20 0.28 0.50 0.20 0.28 0.50 0.28 0.50	e Summ Lane Delay 59.6 48.6 21.1 42.3 44.6 16.8 47.8	21.9 3.5 1.5 Cyc Group Group / LOS / LOS / LOS / D D B D D B	3.5 1.5 cle Lei p App Dela 45.1	ngth: proac ay LO 5 D	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L T R Northboun L T R Southboun	ane roup apacity 935 2338 1388 666 2338 784 d 864 636 630 d	23.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482 354 158	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7 3	Ra v/c 0.9: 0.9: 0.9: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.2: 0.9	1 () 2 () 5 () 6 () 6 () 3 () 3 ()	Eormanc 5 7 7 7 7 7 7 7 7 7 7 7 7 7	29.6 48.6 21.1 42.3 44.6 16.8 47.8 56.7 33.6	21. 3.5 1.5 Cyc ary_ Group / LOS / D D B D E D C D D B D E	3.5 1.5 cle Lei p App Dela 45.1	ngth: proac ay LO 5 D	h	0 sec
SB Right Green Yellow All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L T R Northboun L T R Southboun L	ane roup apacity 935 2338 1388 666 2338 784 d 864 636 660 d 616	23.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482 354 158 343	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7 3 7	Ra v/c 0.93 0.93 0.55 0.33 0.33 0.80 0.20 0.60 0.83 0.73 0.73	atios 1 (0 2 (0 5 (0 5 (0 5 (0 5 (0 3 (0 3 (0 3 (0 2 (0	formances g/C 0.20 0.28 0.50 0.28 0.50 0.28 0.50 0.18 0.18 0.18 0.42	20 Summ Lane Delay 59.6 48.6 21.1 42.3 44.6 16.8 47.8 56.7 33.6 50.5	21. 3.5 Cyc Group Group / LOS / E D C D B D E C D D B D E C D D D E C D D D D D D D D D D D D D	3.5 1.5 cle Len 0 App Dela 45.1 42.0 46.1	ngth: proac ay LO 5 D 5 D	h	0 sec
SB Right Green Yellow All Red All Red Appr/ L Lane G Grp C Eastbound L T R Westbound L T R Northboun L T R Southboun L T	ane roup apacity 935 2338 1388 666 2338 784 d 864 636 630 d	23.5 3.5 1.5 In Adj Flow (477 837 277 340 837 156 482 354 158	3.5 1.5 tersec Sat Rate s) 4 5 5 3 5 8 0 7 3 7 7	Ra v/c 0.9: 0.9: 0.9: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.3: 0.2: 0.9	atios 	Eormanc 5 7 7 7 7 7 7 7 7 7 7 7 7 7	29.6 48.6 21.1 42.3 44.6 16.8 47.8 56.7 33.6	21. 3.5 Cyc Group Group / LOS E D C D B D E C	3.5 1.5 cle Lei p App Dela 45.1	ngth: proac ay LO 5 D 5 D	h	0 sec

Analyst	: scf		
Agency:	TranSystems		
Date:	2/4/2011		
Period:	AM		
Project	ID: Segment	IVa;	P403100004
E/W St:	SR 32		

Inter.: SR 32 & Elick Lane Area Type: All other areas Jurisd: No Build improved Year : 2030 Alt 1

N/S St: Elick Lane

			SIC	GNALIZ	ZED II	NTERSE	CTION	SUMMA	ARY				
	Ea	stbour	nd	Wes	stboui	nd	Noi	thbou	ind	So	uthbo	und	
	L 	Т	R	L 	Т	R	L	Т	R	L	Т	R	
No. Lanes	1	5	1	1	4	1	2	1	1	2	1	0	i
LGConfig	ļ L	Т	R	L L	Т	R	L L	т	R	L	TR		İ
Volume	15	1650	240	79	1965	173	495	146	60	66	170	45	ĺ
Lane Width	12.0	12.0	12.0	12.0		12.0	12.0	12.0	12.0	12.0	12.0		ĺ
RTOR Vol			0	İ		0			0			0	
Duration	0.25		Area 1										
Phase Combi	natio	n 1	2	S19 3	gnai (4	 	ions	5	6	7		8	
EB Left		A				NB	Left	А	А				
Thru			A			i	Thru		P	A			
Right			А			i	Right	_	P	A			
Peds							Peds						
WB Left		A				SB	Left	А					
Thru			A				Thru			P			
Right			A				Right	-		Ā			
Peds							Peds	-		n			
NB Right		P				 EB	Right	: P	P				
SB Right		-				MB	Right		-				
Green		8.5	42.0				Right	10.5	5 8.5	25	5		
Yellow		3.5	3.5					3.5	3.5	3.			
All Red		1.5	1.5					1.5	1.5	1.			
ATT Red		1.5	1.5						cle Ler		-	0	secs
			nterse			ormanc		_					
Appr/ Lan Lane Gro			j Sat w Rate		atios		Lane	Group	o Apt	proac	[]		
	acity		(s)	v/c	g	/C	Delay	/ LOS	Dela	ay LO	S		
Eastbound													
ь 12	4	175		0.14		.07	52.8	D					
	31	835		0.63		.35	32.9	С	30.4	4 C			
R 92	8	156	68	0.29	9 0	.59	12.2	В					
Westbound													
ь 12	4	175	52	0.71		.07	71.7	Е					
т 23	45	670	0 0	0.93		.35	45.0	D	43.9	D			
R 75	1	156	68	0.20	5 0	.48	18.7	В					
Northbound													
ь 69		347	71	0.79		.20	51.9	D					
т 61		188		0.2		.32	30.1	С	44.6	5 D			
r 70	0	159	99	0.10	0 C	.44	19.9	В					
Southbound													
ь 30	4	347	71	0.24	1 0	.09	51.4	D					
TR 38	7	182	22	0.62	2 0	.21	50.0	D	50.4	1 D			

Analyst	: scf
Agency:	TranSystems
Date:	2/4/2011
Period:	PM
Project	ID: Segment IVa; P403100004
E/W St:	SR 32

Inter.: SR 32 & Elick Lane Area Type: All other areas Jurisd: No Build improved Year : 2030 ALT 1

N/S St: Elick Lane

			SIC	GNALIZ	ED II	ITERSE	CTION	SUMMA	ARY				
	Eas	stbour	nd	Wes	tbour	nd	Nor	thbou	ınd	So	uthbo	und	
	L 	Т	R	L 	Т	R	L	Т	R	L 	Т	R	
No. Lanes	1	5	1	j 1	4	1	2	1	1	2	1	0	İ
LGConfig	ļ Г	Т	R	L	Т	R	ļ Г	Т	R	ļ L	TR		İ
Volume	103	2462	415	93	1694	62	431	277	257	515	145	37	İ
Lane Width	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0		j
RTOR Vol			0			0			0			0	Ì
Duration	0.25		Area 1				areas ions						
Phase Combi	natio	n 1	2	01g	4		10110	5	6	7		8	
EB Left		А	А			NB	Left	А					
Thru			А	А		İ	Thru		A				
Right			А	А		İ	Right	:	A				
Peds						İ	Peds						
WB Left		А				SB	Left	А					
Thru				А		İ	Thru		A				
Right				А		İ	Right		A				
Peds						İ	Peds						
		Ρ				EB	Right	: P					
NB Right			Р			WB	Right						
5						1	5	24.5		-			
NB Right SB Right Green		9.5	1.0	36.5				Z4.:	5 23.	5			
SB Right		9.5 3.5	1.0 3.5	36.5 3.5				3.5	3.5	5			
SB Right Green Yellow										5			
SB Right Green		3.5 1.5	3.5 1.5	3.5 1.5		ormanc	e Summ	3.5 1.5 Cyc	3.5 1.5 cle Lei		120.	0	secs
SB Right Green Yellow	 1e	3.5 1.5 Ir	3.5	3.5 1.5 ction		ormanc	e Summ Lane	3.5 1.5 Cyc mary	3.5 1.5 cle Lei			0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro	oup	3.5 1.5 Ir Ad Flow	3.5 1.5 ntersec j Sat v Rate	3.5 1.5 ction Ra	Perfo		Lane	3.5 1.5 Cyc mary Group	3.5 1.5 cle Len p App	ngth: proacl	h	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro		3.5 1.5 Ir Ad Flow	3.5 1.5 ntersec j Sat	3.5 1.5 ction Ra	Perfo	ormanc		3.5 1.5 Cyc mary Group	3.5 1.5 cle Len p App	ngth:	h	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound	oup Dacity	3.5 1.5 Ir Ad (3.5 1.5 ntersec j Sat v Rate (s)	3.5 1.5 ction Ra v/c	Perfo tios g,	/C	Lane Delay	3.5 1.5 Cyc mary Group	3.5 1.5 cle Len p App	ngth: proacl	h	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22	oup bacity 	3.5 1.5 Ir Ad Flov (3.5 1.5 ntersec j Sat v Rate (s) 	3.5 1.5 ction Ra v/c 0.50	Perfo tios g,	/c .13	Lane Delay 50.5	3.5 1.5 Cyc ary Group / LOS	3.5 1.5 cle Len Dela	ngth: proac ay LO	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29	oup Dacity 26 966	3.5 1.5 Ir Ad Flov (175 837	3.5 1.5 ntersec j Sat v Rate (s) 52 75	3.5 1.5 ction Ra v/c 0.50 0.92	Perfo tios g, 0	.13 .35	Lane Delay 50.5 42.7	3.5 1.5 Cyc Groug T LOS	3.5 1.5 cle Len p App	ngth: proac ay LO	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94	oup Dacity 26 966	3.5 1.5 Ir Ad Flov (3.5 1.5 ntersec j Sat v Rate (s) 52 75	3.5 1.5 ction Ra v/c 0.50	Perfo tios g, 0	/c .13	Lane Delay 50.5	3.5 1.5 Cyc ary Group / LOS	3.5 1.5 cle Len Dela	ngth: proac ay LO	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound	oup pacity 26 966 11	3.5 1.5 Ir Ad Flov (175 837 156	3.5 1.5 ntersec j Sat v Rate (s) 52 75	3.5 1.5 ction Ra v/c 0.50 0.92 0.49	Perfo tios g, 0 0	.13 .35 .60	Lane Delay 50.5 42.7 14.0	3.5 1.5 Cyc Group r LOS D D B	3.5 1.5 cle Len Dela	ngth: proac ay LO	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13	oup pacity 26 966 11 39	3.5 1.5 Ad Flov 175 837 156	3.5 1.5 ntersec j Sat v Rate (s) 52 75 58	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74	Perfo tios g, 0 0	.13 .35 .60	Lane Delay 50.5 42.7 14.0 73.0	3.5 1.5 Cyc Group r LOS D D B E	3.5 1.5 cle Len p App Dela	ngth: proacl ay LO 9 D	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20	bup bacity 26 966 11 39 038	3.5 1.5 Ad Flow 175 837 156 175 670	3.5 1.5 ntersec j Sat v Rate (s) 52 75 58 52 00	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74 0.92	Perfo tios 0 0 0	.13 .35 .60 .08 .30	Lane Delay 50.5 42.7 14.0 73.0 48.1	3.5 1.5 Cyc Groug r LOS D D B E D	3.5 1.5 cle Len Dela	ngth: proacl ay LO 9 D	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20 R 86	bup bacity 26 966 11 39 038	3.5 1.5 Ad Flov 175 837 156	3.5 1.5 ntersec j Sat v Rate (s) 52 75 58 52 00	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74	Perfo tios 0 0 0	.13 .35 .60	Lane Delay 50.5 42.7 14.0 73.0	3.5 1.5 Cyc Group r LOS D D B E	3.5 1.5 cle Len p App Dela	ngth: proacl ay LO 9 D	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20 R 86 Northbound	Dup Dacity 26 26 26 26 26 26 26 20 20 20 20 20 20 20 20 20 20 20 20 20	3.5 1.5 Ir Ad Flov () 175 837 156 175 670 156	3.5 1.5 ntersec j Sat v Rate (s) 52 75 58 52 00 58	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74 0.92 0.08	Perfo tios g, 0 0 0 0	/C .13 .35 .60 .08 .30 .55	Lane Delay 50.5 42.7 14.0 73.0 48.1 12.7	3.5 1.5 Cyc Groug Groug LOS D B E D B	3.5 1.5 cle Len p App Dela	ngth: proacl ay LO 9 D	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20 R 86 Northbound L 70	Dup Dacity 26 966 11 39 38 52	3.5 1.5 Ir Ad Flow () 175 837 156 175 670 156 347	3.5 1.5 ntersec j Sat v Rate (s) 52 75 58 52 58 52 58 52 58 52 58 52 58	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74 0.92 0.08 0.68	Perfo tios g, 0 0 0 0 0	.13 .35 .60 .08 .30 .55 .20	Lane Delay 50.5 42.7 14.0 73.0 48.1 12.7 46.6	3.5 1.5 Cyc Groug J D B E D B D D D D D D D D D D D D D	3.5 1.5 cle Len Dela 38.1 48.1	ngth: proac ay LO 9 D 1 D	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20 R 86 Northbound L 70 T 36	Dup Dacity 26 966 11 39 38 52 99 58	3.5 1.5 Ir Ad Flov 175 837 156 175 670 156 347 188	3.5 1.5 ntersec j Sat v Rate (s) 52 75 58 52 00 58 71 31	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74 0.92 0.08 0.68 0.68	Perfo tios g, 0 0 0 0 0 0 0 0	. 13 . 35 . 60 . 08 . 30 . 55 . 20 . 20	Lane Delay 50.5 42.7 14.0 73.0 48.1 12.7 46.6 61.9	3.5 1.5 Cyc Group T LOS D D B E D B E D E	3.5 1.5 cle Len p App Dela	ngth: proac ay LO 9 D 1 D	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20 R 86 Northbound L 70 T 36 R 50	Dup Dacity 26 966 11 39 38 52 99 58	3.5 1.5 Ir Ad Flow () 175 837 156 175 670 156 347	3.5 1.5 ntersec j Sat v Rate (s) 52 75 58 52 00 58 71 31	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74 0.92 0.08 0.68	Perfo tios g, 0 0 0 0 0 0 0 0	.13 .35 .60 .08 .30 .55 .20	Lane Delay 50.5 42.7 14.0 73.0 48.1 12.7 46.6	3.5 1.5 Cyc Groug J D B E D B D D D D D D D D D D D D D	3.5 1.5 cle Len Dela 38.1 48.1	ngth: proac ay LO 9 D 1 D	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20 R 86 Northbound L 70 T 36 R 50 Southbound	Dup Dacity 26 966 11 39 038 52 09 58 06	3.5 1.5 Ir Ad Flow 175 837 156 175 670 156 347 188 159	3.5 1.5 ntersec j Sat v Rate (s) 52 75 58 52 00 58 71 31 99	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74 0.92 0.08 0.68 0.84 0.57	Perfo tios g, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.13 .35 .60 .08 .30 .55 .20 .20 .32	Lane Delay 50.5 42.7 14.0 73.0 48.1 12.7 46.6 61.9 35.6	3.5 1.5 Cyc Group r LOS D D B E D B D E D E D	3.5 1.5 cle Len Dela 38.1 48.1	ngth: proac ay LO 9 D 1 D	h S	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20 R 94 Northbound L 70 T 36 R 50 Southbound L 70	Dup Dacity 26 966 11 39 038 52 99 58 06	3.5 1.5 Ir Ad Flow 175 837 156 175 670 156 347 188 159 347	3.5 1.5 htersec j Sat v Rate (s) 52 75 58 52 75 58 52 75 58 52 75 58 52 75 58 52 75 58 71 31 99 71	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74 0.92 0.08 0.68 0.84 0.57 0.81	Perfo tios g, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>/C .13 .35 .60 .08 .30 .55 .20 .20 .32 .20</pre>	Lane Delay 50.5 42.7 14.0 73.0 48.1 12.7 46.6 61.9 35.6 52.4	3.5 1.5 Cyc Group r LOS D D B E D B D E D D D D D D D D D D D D D	3.5 1.5 cle Len App Dela 38.2 48.2	ngth: proac ay LO 9 D 1 D	h 	0	secs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 22 T 29 R 94 Westbound L 13 T 20 R 86 Northbound L 70 T 36 R 50 Southbound	Dup Dacity 26 966 11 39 038 52 99 58 06	3.5 1.5 Ir Ad Flow 175 837 156 175 670 156 347 188 159	3.5 1.5 htersec j Sat v Rate (s) 52 75 58 52 75 58 52 75 58 52 75 58 52 75 58 52 75 58 71 31 99 71	3.5 1.5 ction Ra v/c 0.50 0.92 0.49 0.74 0.92 0.08 0.68 0.84 0.57	Perfo tios g, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.13 .35 .60 .08 .30 .55 .20 .20 .32	Lane Delay 50.5 42.7 14.0 73.0 48.1 12.7 46.6 61.9 35.6	3.5 1.5 Cyc Group r LOS D D B E D B D E D E D	3.5 1.5 cle Len Dela 38.1 48.1	ngth: proac ay LO 9 D 1 D	h 	0	secs

Analyst	: scf	
Agency:	TranSystems	
Date:	2/4/2011	
Period:	AM	
Project	ID: Segment IVa; P4031000	04
E/W St:	SR 32	

Inter.: SR 32 & Old 74 Area Type: All other areas Jurisd: No Build improved Year : 2030 ALT 1

N/S St: Old 74

			SIC	SNALIZ	LED TI	NTERSE	CTION	SUMMA	.RY				
	Eas	stbour			stbou			Northbound			Southbound		
		Т	R	L	Т	R	L	Т	R	L	Т	R	ļ
No. Lanes	2	5	0	2	4	1		2	1	2	1	1	
LGConfig	L	TR		L	Т	R	L	Т	R	L	Т	R	
Volume	44	1730	2	154	1825	311	13	59	332	342	104	380	
Lane Width	12.0	12.0		12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	
RTOR Vol			0			0			0			0	
Duration	0.25		Area 1			other Operat							
Phase Comb	ination	1 1	2	SIQ 3	4 gina) 	TOUR	5	6	7		8	
EB Left		A				NB	Left	А	P				
Thru			А			i	Thru		A				
Right			A			İ	Right		A				
Peds						İ	Peds						
WB Left		A				SB	Left	А					
Thru			A			i	Thru		A				
Right			A			i	Right		A				
Peds						İ	Peds						
NB Right		P				EB	Right	P					
SB Right		Р				I WB	Right	Ρ					
Green		9.5	36.0			1=	5	17.5	25.0				
		9.5 3.5	36.0 3.5			1=			25.0 3.5				
Yellow						1		17.5					
Yellow		3.5 1.5	3.5 1.5			1	_	17.5 3.5 1.5 Cyc	3.5 1.5 le Len		108.	0 s	ecs
Yellow All Red		3.5 1.5 Ir	3.5 1.5 ntersed			1	e Summ	17.5 3.5 1.5 Cyc ary	3.5 1.5 le Len	gth:		0 s	ecs
Yellow All Red Appr/ La:	ne oup	3.5 1.5 Ir Ir	3.5 1.5		Perfo	1	_	17.5 3.5 1.5 Cyc ary	3.5 1.5 le Len			0 s	ecs
Yellow All Red Appr/ La: Lane Gr		3.5 1.5 Ir Ad	3.5 1.5 ntersec j Sat		atios	1	e Summ	17.5 3.5 1.5 Cyc ary Group	3.5 1.5 le Len App	gth:	1 	0 s 	ecs
Lane Gr Grp Ca Eastbound	oup pacity 	3.5 1.5 Ir Ad	3.5 1.5 ntersec j Sat v Rate	Ra	atios	ormanc	e Summ Lane	17.5 3.5 1.5 Cyc ary Group	3.5 1.5 le Len App	gth: roach	1 	0 s	ecs
Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound	oup	3.5 1.5 Ir Ad	3.5 1.5 ntersec j Sat v Rate (s)	Ra v/c	atios g	ormanc /C .09	e Summ Lane Delay 45.8	17.5 3.5 1.5 Cyc ary Group	3.5 1.5 le Len App	gth: roach	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2	oup pacity 	3.5 1.5 Ir Ad 5 Flow (3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c	atios g	ormanc	e Summ Lane Delay	17.5 3.5 1.5 Cyc ary Group LOS	3.5 1.5 le Len App	gth: roach y LOS	1 	0 s 	ecs
Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 2 TR 2	oup pacity 99	3.5 1.5 Ir. Ad flow (340	3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c	atios g	ormanc /C .09	e Summ Lane Delay 45.8	17.5 3.5 1.5 Cyc Group LOS	3.5 1.5 le Len App Dela	gth: roach y LOS	1 	0 s 	ecs
Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2	oup pacity 99 791 96	3.5 1.5 Ad Flow (340 837 337	3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c 0.16 0.69	g 5 0 9 0 3 0	.09 .09	e Summ Lane Delay 45.8 31.9 50.1	17.5 3.5 1.5 Cyc Group LOS	3.5 1.5 le Len App Dela 32.2	gth: roach y LOS C	1 	0 s 	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 T 2	oup pacity 99 791 96 212	3.5 1.5 Ad Flow (340 837 663	3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c 0.16 0.69 0.58 0.92	g 5 0 9 0 8 0 2 0	.09 .33	e Summ Lane Delay 45.8 31.9 50.1 41.2	17.5 3.5 1.5 Cyc ary Group LOS D C	3.5 1.5 le Len App Dela	gth: roach y LOS C	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 T 2	oup pacity 99 791 96	3.5 1.5 Ad Flow (340 837 337	3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c 0.16 0.69	g 5 0 9 0 8 0 2 0	.09 .09	e Summ Lane Delay 45.8 31.9 50.1	17.5 3.5 1.5 Cyc ary Group LOS D C	3.5 1.5 le Len App Dela 32.2	gth: roach y LOS C	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 R 8 Northbound	oup pacity 99 791 96 212 41	3.5 1.5 Ad Flow (340 837 663 155	3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c 0.16 0.58 0.92 0.42	g 5 0 6 0 8 0 2 0 1 0	.09 .33 .54	e Summ Lane Delay 45.8 31.9 50.1 41.2 14.9	17.5 3.5 1.5 Cyc Group LOS D C	3.5 1.5 le Len App Dela 32.2	gth: roach y LOS C	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 R 8 Northbound L 5	oup pacity 99 791 96 212 41 67	3.5 1.5 Ir Ad Flow (340 837 663 155 175	3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c 0.16 0.58 0.92 0.42 0.02	g 5 0 6 0 8 0 2 0 1 0 2 0	.09 .33 .54 .44	e Summ Lane Delay 45.8 31.9 50.1 41.2 14.9 17.3	17.5 3.5 1.5 Cyc Group LOS D C D B B	3.5 1.5 le Len App Dela 32.2 38.2	gth: roach y LOS C D	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 R 8 Northbound L 5	oup pacity 99 791 96 212 41	3.5 1.5 Ad Flow (340 837 663 155	3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c 0.16 0.58 0.92 0.42	g 5 0 5 0 6 0 7 0 8 0 2 0 2 0 3 0	.09 .33 .54 .44 .23	e Summ Lane Delay 45.8 31.9 50.1 41.2 14.9	17.5 3.5 1.5 Cyc Group LOS D C D B	3.5 1.5 le Len App Dela 32.2	gth: roach y LOS C D	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 R 8 Northbound L 5 T 8	oup pacity 99 791 96 212 41 67	3.5 1.5 Ir Ad Flow (340 837 663 155 175	3.5 1.5 ntersec j Sat v Rate (s) 	Ra v/c 0.16 0.58 0.92 0.42 0.02	g 5 0 5 0 6 0 7 0 8 0 2 0 2 0 3 0	.09 .33 .54 .44	e Summ Lane Delay 45.8 31.9 50.1 41.2 14.9 17.3	17.5 3.5 1.5 Cyc Group LOS D C D B B	3.5 1.5 le Len App Dela 32.2 38.2	gth: roach y LOS C D	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 T 2 R 8 Northbound L 5 T 8 R 5	oup pacity 99 791 96 212 41 67 13 73	3.5 1.5 Ir Ad Flow (340 837 663 155 175 351	3.5 1.5 ntersec j Sat v Rate (s) 	Ra V/C 0.16 0.69 0.58 0.92 0.42 0.02 0.02	g 5 0 5 0 6 0 7 0 8 0 2 0 2 0 3 0	.09 .33 .54 .44 .23	e Summ Lane Delay 45.8 31.9 50.1 41.2 14.9 17.3 32.5	17.5 3.5 1.5 Cyc Group LOS D C D B B C	3.5 1.5 le Len App Dela 32.2 38.2	gth: roach y LOS C D	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 T 2 R 8 Northbound L 5 T 8 R 5 Southbound	oup pacity 99 791 96 212 41 67 13 73	3.5 1.5 Ad Flow (340 837 663 155 175 351 156	3.5 1.5 ntersec j Sat v Rate (s) 	Ra V/C 0.16 0.69 0.58 0.92 0.42 0.02 0.02	g 5 0 5 0 6 0 7 0 8 0 2 0 4 0	.09 .33 .54 .44 .23	e Summ Lane Delay 45.8 31.9 50.1 41.2 14.9 17.3 32.5	17.5 3.5 1.5 Cyc Group LOS D C D B B C	3.5 1.5 le Len App Dela 32.2 38.2	gth: roach y LOS C D	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 R 8 Northbound L 5 T 8 R 5 Southbound L 5	oup pacity 99 791 96 212 41 67 13 73	3.5 1.5 Ad Flow (340 837 663 155 175 351 156	3.5 1.5 htersec j Sat v Rate (s) 03 73 70 35 53 52 12 58 87	Ra v/c 0.16 0.58 0.92 0.42 0.02 0.02 0.08 0.64	g 5 0 5 0 6 0 7 0 8 0 2 0 2 0 3 0 4 0 3 0	.09 .33 .09 .33 .54 .44 .23 .37	e Summ Lane Delay 45.8 31.9 50.1 41.2 14.9 17.3 32.5 30.9 46.0	17.5 3.5 1.5 Cyc Group LOS D C D B B C C	3.5 1.5 le Len App Dela 32.2 38.2	gth: roach y LOS C D	1 	0 s	ecs
Yellow All Red Appr/ La: Lane Gr Grp Ca Eastbound L 2 TR 2 Westbound L 2 R 8 Northbound L 5 T 8 R 5 Southbound L 5 T 8 R 4	oup pacity 99 791 96 212 41 67 13 73 57	3.5 1.5 	3.5 1.5 ntersec j Sat v Rate (s) 03 73 70 35 53 52 12 58 37 53	Ra v/c 0.16 0.69 0.58 0.92 0.42 0.02 0.08 0.68	g 5 0 5 0 6 0 7 0	.09 .33 .09 .33 .54 .44 .23 .37 .16	e Summ Lane Delay 45.8 31.9 50.1 41.2 14.9 17.3 32.5 30.9 46.0 34.4	17.5 3.5 1.5 Cyc Group LOS D C D B B C C D D D D D D D D D D D D D	3.5 1.5 le Len App Dela 32.2 38.2 38.2	gth: roach y LOS C D	1 	0 s	ecs

Analyst	: scf	
Agency:	TranSystems	
Date:	2/4/2011	
Period:	PM	
Project	ID: Segment IVa; P	403100004
E/W St:	SR 32	

Inter.: SR 32 & Old 74 Area Type: All other areas Jurisd: No Build improved Year : 2030 ALT 1

N/S St: Old 74

SIGNALIZED	INTERSECTION	SUMMARY
	11111101011011	

	Ea:	stbour	nd	Wes	tbour		Nor	thbou	ind	So	uthbo	und	
	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
No. Lanes	2	5	0	2	4	1		2	 1	2	1	1	
LGConfig	ј L	TR		ј L	Т	R	L L	Т	R	L	Т	R	İ
Volume	364	2876	б	270	1518	127	10	257	398	425	155	328	
Lane Width	12.0	12.0		12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	
RTOR Vol			0			0			0			0	
Duration	0.25			Type:			areas ions						
Phase Comb	inatio	n 1	2	33	11a1 (4		10115	5	6	7		8	
EB Left		A	A			NB	Left	А	P				
Thru			A	A		İ	Thru		А				
Right			A	A		İ	Right		А				
Peds						İ	Peds						
WB Left		A				SB	Left	А					
Thru				A		ĺ	Thru		A				
Right				A			Right		А				
Peds							Peds						
ND Diah+		Ρ				EB	Right						
NB Right		Ρ				WB	Right	Р					
SB Right								19.5	5 20.5	5			
SB Right Green		12.0	10.0					± 2 • • •		•			
SB Right Green Yellow		3.5	3.5	3.5				3.5	3.5	,			
SB Right Green Yellow								3.5 1.5	3.5 1.5				
SB Right Green Yellow		3.5 1.5	3.5 1.5	3.5 1.5)rman a	G Gumm	3.5 1.5 Cyc	3.5 1.5 cle Ler	igth:	120.	0 s	ecs
SB Right Green Yellow All Red	 ne	3.5 1.5 Ir	3.5 1.5	3.5 1.5 ction	Perfo	ormanc	e Summ Lane	3.5 1.5 Cyc ary	3.5 1.5 cle Ler	igth:		0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr	oup	3.5 1.5 Ir Ad Flow	3.5 1.5 nterse j Sat v Rate	3.5 1.5 ction Ra	Perfo tios		Lane	3.5 1.5 Cyc ary Grour	3.5 1.5 cle Ler D App	igth: proacl	h	0 s 	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr	oup	3.5 1.5 Ir Ad Flow	3.5 1.5 nterse j Sat v Rate	3.5 1.5 ction Ra	Perfo tios		Lane	3.5 1.5 Cyc ary Grour	3.5 1.5 cle Ler	igth: proacl	h	0 s 	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound	oup pacity 	3.5 1.5 Ir. Ad flow (3.5 1.5 ntersed j Sat v Rate (s)	3.5 1.5 ction Ra v/c	Perfo tios g/	/C	Lane Delay	3.5 1.5 Cyc ary Grour	3.5 1.5 cle Ler D App	igth: proacl	h	0 s 	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7	oup pacity 	3.5 1.5 Ir. Ad flow (3.5 1.5 ntersed j Sat v Rate (s) 	3.5 1.5 ction Ra v/c 0.53	Perfo tios g/	/C . 22	Lane Delay 41.6	3.5 1.5 Cyc ary Group LOS D	3.5 1.5 cle Ler App Dela	oroacl	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7	oup pacity 	3.5 1.5 Ir. Ad flow (3.5 1.5 ntersed j Sat v Rate (s) 	3.5 1.5 ction Ra v/c	Perfo tios g/	/C	Lane Delay	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Ler D App	oroacl	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound	oup pacity 66 349	3.5 1.5 Ir Ad Flow (340 837	3.5 1.5 ntersed j Sat v Rate (s))3 72	3.5 1.5 ction Ra v/c 0.53 0.96	Perfc tios g/ 0.	. 22 . 40	Lane Delay 41.6 42.8	3.5 1.5 Cyc ary Group LOS D	3.5 1.5 cle Ler App Dela	oroacl	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3	oup pacity 66 349 37	3.5 1.5 Ir. Ad Flow (340 837 337	3.5 1.5 ntersed j Sat v Rate (s))3 72	3.5 1.5 ction Ra 0.53 0.96 0.89	Perfc tios 0. 0. 0.	.22 .40	Lane Delay 41.6 42.8 77.5	3.5 1.5 Cyc ary Groug LOS D D	3.5 1.5 cle Ler App Dela 42.7	ngth: proacl ny LOS	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1	oup pacity 66 349 37 825	3.5 1.5 Ad Flow (340 837 663	3.5 1.5 ntersed j Sat v Rate (s) 03 72	3.5 1.5 ction Ra v/c 0.53 0.96 0.89 0.92	Perfc tios 0. 0. 0. 0.	C . 22 . 40 . 10 . 28	Lane Delay 41.6 42.8 77.5 50.8	3.5 1.5 Cyc ary Group LOS D D D E D	3.5 1.5 cle Ler App Dela	ngth: proacl ny LOS	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7	oup pacity 66 349 37 825 44	3.5 1.5 Ir. Ad Flow (340 837 337	3.5 1.5 ntersed j Sat v Rate (s) 03 72	3.5 1.5 ction Ra 0.53 0.96 0.89	Perfc tios 0. 0. 0. 0.	.22 .40	Lane Delay 41.6 42.8 77.5	3.5 1.5 Cyc ary Groug LOS D D	3.5 1.5 cle Ler App Dela 42.7	ngth: proacl ny LOS	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7 Northbound	oup pacity 66 349 37 825 44	3.5 1.5 Ad Flow (340 837 663 155	3.5 1.5 ntersed j Sat v Rate (s) 03 72	3.5 1.5 ction Ra v/c 0.53 0.96 0.89 0.92 0.19	Perfc tios 	C . 22 . 40 . 10 . 28 . 48	Lane Delay 41.6 42.8 77.5 50.8 18.0	3.5 Cyc ary Group LOS D D E D B	3.5 1.5 cle Ler App Dela 42.7	ngth: proacl ny LOS	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7 Northbound L 4	oup pacity 66 349 37 825 44 34	3.5 1.5 Ir Ad Flow (340 837 663 155 175	3.5 1.5 ntersed j Sat v Rate (s))3 72 70 35 53	3.5 1.5 ction Ra v/c 0.53 0.96 0.92 0.19 0.03	Perfc tios g/ 0. 0. 0. 0. 0. 0. 0. 0.	C . 22 . 40 . 10 . 28 . 48 . 38	Lane Delay 41.6 42.8 77.5 50.8 18.0 24.1	3.5 Cyc ary Group LOS D D E D B C	3.5 1.5 2le Len 0 App Dela 42.7	ngth: proacl ay LO: y D	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7 Northbound L 4 T 6	oup pacity 66 349 37 825 44 34 00	3.5 1.5 Ir Ad Flow (340 837 663 155 175 351	3.5 1.5 ntersed j Sat v Rate (s))3 72 70 35 53 52 12	3.5 1.5 ction Ra v/c 0.53 0.96 0.92 0.19 0.03 0.48	Perfc tios g/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	. 22 . 40 . 10 . 28 . 48 . 38 . 17	Lane Delay 41.6 42.8 77.5 50.8 18.0 24.1 45.5	3.5 1.5 Cyc ary Group LOS D D D E D B C D	3.5 1.5 cle Ler App Dela 42.7	ngth: proacl ay LO: y D	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7 Northbound L 4 T 6 R 4	oup pacity 66 349 37 825 44 34 00 90	3.5 1.5 Ir Ad Flow (340 837 663 155 175	3.5 1.5 ntersed j Sat v Rate (s))3 72 70 35 53 52 12	3.5 1.5 ction Ra v/c 0.53 0.96 0.92 0.19 0.03	Perfc tios g/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C . 22 . 40 . 10 . 28 . 48 . 38	Lane Delay 41.6 42.8 77.5 50.8 18.0 24.1	3.5 Cyc ary Group LOS D D E D B C	3.5 1.5 2le Len 0 App Dela 42.7	ngth: proacl ay LO: y D	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7 Northbound L 4 T 6 R 4 Southbound	oup pacity 66 349 37 825 44 34 00 90	3.5 1.5 Ad Flow (340 837 663 155 175 351 156	3.5 1.5 htersed j Sat v Rate (s) 03 72 70 85 53 52 12 58	3.5 1.5 ction Ra v/c 0.53 0.96 0.92 0.92 0.19 0.03 0.48 0.90	Perfc tios 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C . 22 . 40 . 10 . 28 . 48 . 38 . 17 . 31	Lane Delay 41.6 42.8 77.5 50.8 18.0 24.1 45.5 59.3	3.5 1.5 Cyc ary Group LOS D D D E D B C D E	3.5 1.5 2le Len 0 App Dela 42.7	ngth: proacl ay LO: y D	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7 Northbound L 4 T 6 R 4 Southbound L 5	oup pacity 66 349 37 825 44 34 00 90 59	3.5 1.5 Ad Flow (340 837 340 837 663 155 175 351 156 343	3.5 1.5 htersed j Sat v Rate (s) 03 72 70 35 53 52 12 58 87	3.5 1.5 ction Ra v/c 0.53 0.96 0.92 0.92 0.92 0.19 0.03 0.48 0.90 0.84	Perfc tios g/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C . 22 . 40 . 10 . 28 . 48 . 38 . 17 . 31 . 16	Lane Delay 41.6 42.8 77.5 50.8 18.0 24.1 45.5 59.3 60.2	3.5 1.5 Cyc ary Group LOS D D D E D B C D E E E	3.5 1.5 2le Len 0 App Dela 42.7 52.4 53.4	ngth: proacl y LO: D d D	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7 Northbound L 4 T 6 R 4 Southbound L 5 T 3	oup pacity 66 349 37 825 44 34 00 90 59 18	3.5 1.5 Ir. Ad Flow (340 837 663 155 175 351 156 343 186	3.5 1.5 nterse j Sat v Rate (s)) 3 72 70 35 53 52 12 58 87 53	3.5 1.5 ction Ra v/c 0.53 0.96 0.92 0.92 0.19 0.03 0.48 0.90 0.84 0.54	Perfc tios g/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C . 22 . 40 . 10 . 28 . 48 . 38 . 17 . 31 . 16 . 17	Lane Delay 41.6 42.8 77.5 50.8 18.0 24.1 45.5 59.3 60.2 47.3	3.5 Cyc ary Group LOS D D B C D E D E D E D E D	3.5 1.5 2le Len 0 App Dela 42.7	ngth: proacl y LO: D d D	h	0 s	ecs
SB Right Green Yellow All Red Appr/ La Lane Gr Grp Ca Eastbound L 7 TR 3 Westbound L 3 T 1 R 7 Northbound L 4 T 6 R 4 Southbound L 5 T 3 R 4	oup pacity 66 349 37 825 44 34 00 90 59	3.5 1.5 Ir Ad Flow (340 837 663 155 175 351 156 343 186 158	3.5 1.5 ntersed j Sat v Rate (s) 03 72 70 35 53 52 12 58 37 53 33	3.5 1.5 ction Ra v/c 0.53 0.96 0.92 0.92 0.92 0.92 0.19 0.03 0.48 0.90 0.84 0.90 0.84 0.54 0.54	Perfo tios g/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C .22 .40 .10 .28 .48 .38 .17 .31 .16 .17 .31	Lane Delay 41.6 42.8 77.5 50.8 18.0 24.1 45.5 59.3 60.2 47.3 42.5	3.5 1.5 Cyc ary Group LOS D D D B C D E D E D D E	3.5 1.5 2le Len 0 App - Dela 42.7 52.4 53.4 51.6	ngth: proacl y LO: D D D D	n S	0 s	ecs

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, LC FFS, LC	NS, V _P N, S, D NS, N V _P , S, D AADT LOS, S, D NS, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	scf		Site Inform	nation ection of Travel	SR 32 F	astbound
Agency or Company Date Performed Analysis Time Period Project Description Segmer	TranSystems 2/7/2011 AM Peak	74	From/To Jurisdiction Analysis Year		Bach Bu	xton Ent to Olive Exit cenario 7
✓ Oper.(LOS)	11102 - 1 -031000		Des.(N)		🗌 Pla	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	1992	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjust	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			1	d Adj and FFS		
Lane Width	12.0	ft	f _{LW}	•		mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi				
Number of Lanes, N	2		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 1123	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	9HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	f _p)			
D = v _p / S	18.7	pc/mi/ln	S D = v / S			mi/h
LOS	С		$D = v_p / S$	mber of Lance N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design ho	All Rights Reserved			Version 5.5		nerated: 12/5/2011 12:14 F

HCS+TM Version 5.5

Generated: 12/5/2011 12:14 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FIS = 75 min 70 60 65 min 60 55 min 50 10 K A 50 10 K A 50 10 K A 50 10 K A 50 10 K A 60 60 min 60 55 min 10 60 min 50 10 K A 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min 60 60 min	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	scf		Site Inform	nation ection of Travel	SR 32 F	astbound
Agency or Company Date Performed Analysis Time Period	<i>TranSystems</i> 2/7/2011 <u>PM Peak</u> nt IVa - P4031000	04	From/To Jurisdiction Analysis Yea			xton Ent to Olive Exit cenario 7
Project Description Segmen ✓ Oper.(LOS)	11174 - F4031000		Des.(N)		Plai	nning Data
Flow Inputs			()			5
Volume, V AADT Peak-Hr Prop. of AADT, K	3346	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents					
f _p	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1+P_{T}(E)]$	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
_ane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
nterchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	2		f _N			mi/h
FFS (measured)	60.0	mi/h			00.0	
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N f _p)	x f _{HV} x 1887	pc/h/ln	Design (N) Design LOS v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	pc/h
S	59.1	mi/h	t _p)			•
$D = v_p / S$	31.9	pc/mi/ln	S D u (O			mi/h
_OS	D		$D = v_p / S$	mbor of Longe N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume			, 'p Exhibits 20-2	_, 20.0	
Copyright © 2010 University of Florida,	All Rights Reserved		HCS.TM	Version 5.5	Gen	erated: 12/5/2011 12:15

HCS+TM Version 5.5

Generated: 12/5/2011 12:15 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 milh 70 70 minh 70 60 minh 60 60 minh 50 55 minh 60 55 minh 70 70 minh 70 70 minh 70 60 minh 70 55 minh 70 70 minh	B	150 1750 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, N, A FFS, LOS FFS, LOS	, ν _p N, S, D , N ν _p , S, D IADT LOS, S, D , AADT N, S, D
~~ 0 400 800	1200 Flow Rate (pc/h/ln)	1600 2000) 2400			
General Information			Site Inforr			
Analyst	scf		Highway/Dire	ection of Travel	SR 32 Ea	
Agency or Company	TranSystems		From/To		Easigale	Ent to Bach Buxton
Date Performed	2/7/2011		Jurisdiction		HNTB Sc	
Analysis Time Period	AM Peak		Analysis Yea	r	2030 ALT	2
	nt IVa- P40310000					
Oper.(LOS)			Des.(N)		🗆 Plan	ning Data
<i>Flow Inputs</i> Volume, V	2289	veh/h	Peak-Hour F		0.90	
AADT	2209	ven/n veh/day	%Trucks and		0.90 3	
Peak-Hr Prop. of AADT, K		von/day	%RVs, P _R		0	
Peak-Hr Direction Prop, D			General Terr	ain:	Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	\$	
_ane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
nterchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3					
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
OS and Performance	Measures		Design (N)		
			Design (N)			
<u>Operational (LOS)</u>			Design LOS			
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 860	pc/h/ln	v _p = (V or DD) (PHF x N x	f _{HV} x	
(p)	<u> </u>		f _p)			pc/h
	60.0	mi/h	s			mi/h
$D = v_p / S$	14.3	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	В		F .	mber of Lanes, N		
Glossary			Factor Lo			
N - Number of lanes	S - Speed		1			
/ - Hourly volume	D - Density		E _R - Exhibits			f _{LW} - Exhibit 23-4
$v_{\rm p}$ - Flow rate	FFS - Free-flow	speed		23-8, 23-10, 23-1		f _{LC} - Exhibit 23-5
_OS - Level of service	BFFS - Base fre	-	f _p - Page 23-			f _N - Exhibit 23-6
DDHV - Directional design ho			LOS, S, FFS	, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
convright © 2010 University of Florida				Version E E		vrated: 12/5/2011 12:11

HCS+TM Version 5.5

Generated: 12/5/2011 12:11 PM

	BASIC F	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FrS = 75 milh 70 65 milh 60 60 milh 50 105 A 90 50	Br C	50 (600 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _F FFS, LOS, FFS, LOS, FFS, N, A FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
a 50 10 800 0 400 800	1200 Flow Rate (pc/h/ln)	1600 200	0 2400			
General Information			Site Inforr	nation		
Analyst	scf		Highway/Dire	ection of Travel	SR 32 Eas	
Agency or Company	TranSystems		From/To		Eastgate E	Ent to Bach Buxton
Date Performed	2/7/2011		Jurisdiction		HNTB Sce	enario 7
Analysis Time Period	PM Peak		Analysis Yea	r	2030 Alt 2	
	nt IVa- P40310000				_	
Oper.(LOS)			Des.(N)		Plann	ning Data
<i>Flow Inputs</i> Volume, V	4006	veh/h	Peak-Hour F	actor PUE	0.90	
AADT	4000	ven/n veh/day	%Trucks and		0.90 3	
Peak-Hr Prop. of AADT, K			%RVs, P _R	· 1	0	
Peak-Hr Direction Prop, D			General Terr	ain:	Level	
DDHV = AADT x K x D	1.00	veh/h	Grade %	Length	mi	
Driver type adjustment Calculate Flow Adjustr	1.00			Up/Down %		
	1.00		E _R		1.2	
f _p						
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	10.0	<i>c</i> ,	Calc Spee	d Adj and FFS	D	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft L/m:	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3		f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS	NA	mi/h		\		
LOS and Performance	weasures		Design (N)		
Operational (LOS)			<u>Design (N)</u>			
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x	n = /l= /l	Design LOS		fv	
f _p)	1506	pc/h/ln	$v_p = (v \text{ or } DL)$	0HV) / (PHF x N x	' _{HV} ×	pc/h
S	60.0	mi/h	'p)			mi/h
$D = v_p / S$	25.1	pc/mi/ln	0 0-v /9			mi/h pc/mi/lp
LOS	С		$D = v_p / S$	mbor of Longo N		pc/mi/ln
Glossary			Factor Lo	mber of Lanes, N		
Glossary N - Number of lanes	S - Speed			Lation		
V - Hourly volume	S - Speed D - Density		E _R - Exhibits	23-8, 23-10	t	f _{LW} - Exhibit 23-4
v - Hourry volume v _p - Flow rate	FFS - Free-flow	sneed	E _⊤ - Exhibits	23-8, 23-10, 23-1	1 1	f _{LC} - Exhibit 23-5
LOS - Level of service			f _p - Page 23-	12	t	f _N - Exhibit 23-6
	BFFS - Base fre	e-now speed	LOS, S, FFS	, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
DDHV - Directional design ho						ated: 12/5/2011 12:13

HCS+TM Version 5.5

Generated: 12/5/2011 12:13 PM

	BASIC F		EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 min 70 65 min 70 min 60 65 min 60 min 50 105 Å 55 min 10 65 min 60 min 90 400 200	B	150 1750 1	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _F FFS, LOS, FFS, LOS, FFS, N, A FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	f		Site Inform			athound
Analyst	scf		• •	ection of Travel	SR 32 We Bach Buxt	on ent to Eastgate
Agency or Company	TranSystems		From/To		Ex	
Date Performed	2/7/2011		Jurisdiction		HNTB Sce	nario 7
Analysis Time Period	AM Peak	0.4	Analysis Yea	r	2030 Alt 2	
¥	nt IVa - P4031000					
Oper.(LOS)			Des.(N)		🗆 Planr	ning Data
<i>Flow Inputs</i> Volume, V	2000	u e le /le	Deals Have E		0.00	
AADT	3906	veh/h veh/day	Peak-Hour Face 8 Peak-8 Pe		0.90 3	
Peak-Hr Prop. of AADT, K		ven/day	%RVs, P _R	Dubbe, T	0	
Peak-Hr Direction Prop, D			General Terr	ain [.]	Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr	nents					
f _p	1.00		E _R		1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E)]$		0.985	
Speed Inputs			Calc Spee	d Adj and FFS	3	
_ane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft				
nterchange Density	0.50	l/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
OS and Performance	Measures		Design (N)		
	incasures		Design (N)	/		
<u> Operational (LOS)</u>			Design LOS			
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1468	pc/h/ln	-)HV) / (PHF x N x	fv	
p)	1400	P0/11/11	$r_p = (v \ o r \ D L)$		'HV ^	pc/h
S	60.0	mi/h	'p'			mi/h
$D = v_p / S$	24.5	pc/mi/ln	о П У / С			mi/h
_os É	С		D = v _p / S			pc/mi/ln
				mber of Lanes, N		
Glossary	.		Factor Lo	cation		
N - Number of lanes	S - Speed		E _R - Exhibits	23-8, 23-10	f	LW - Exhibit 23-4
 Hourly volume 	D - Density			23-8, 23-10, 23-1		LVV LC - Exhibit 23-5
v _p - Flow rate	FFS - Free-flow		f _p - Page 23-			_N - Exhibit 23-6
LOS - Level of service	BFFS - Base fre	e-flow speed	r -	, v _p - Exhibits 23-2		N Exhibit 20 0
DDHV - Directional design ho	our volume			, 'p	_, _0 0	
Copyright @ 2010 University of Florida	All Dischts Deserved		TM	Version F.F.	Cana	ated: 12/5/2011 12:18

HCS+TM Version 5.5

Generated: 12/5/2011 12:18 PM

N, v _p LOS, S, D LOS, V _p N, S, D LOS, N V _p , S, D LOS, N V _p , S, D N, AADT LOS, S, D
LOS, AADT N, S, D LOS, N v _p , S, D
Westbound
Buxton ent to Eastgate
Scenario 7
lt 2
anning Data
mi/h
1111/11
pc/h
mi/h
pc/mi/ln
f _{LW} - Exhibit 23-4
f _{LC} - Exhibit 23-5
f _N - Exhibit 23-6
f _{ID} - Exhibit 23-7
ID

HCS+TM Version 5.5

Generated: 12/5/2011 12:19 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, N, FFS, LC FFS, LC	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	scf		Site Inform	nation ection of Travel	SR 32 M	/estbound
Agency or Company Date Performed Analysis Time Period Project Description Segmer	TranSystems 2/7/2011 AM Peak	04	From/To Jurisdiction Analysis Year		Olive Bra	anch Exit to Bach Ent cenario 7
✓ Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	3327	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	<u>1.00</u>	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
f _p	1.00		E _R		1.2	
Ε _T	1.5		f _{HV} = 1/[1+P _T (E	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3					mi/h
FFS (measured)	60.0	mi/h	f _N			
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 1251	pc/h/ln	Design (N) Design LOS v _p = (V or DD	HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			• /•
D = v _p / S	20.9	pc/mi/ln	S D = v / S			mi/h
LOS	С		$D = v_p / S$	mbor of Longo N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design hc Copyright © 2010 University of Florida.				Version 5.5		nerated: 12/5/2011 12:15 F

HCS+TM Version 5.5

Generated: 12/5/2011 12:15 PM

	BASIC FF	REEWAY SI	EGMENTS W	ORKSHEET		
80 FrœFlow Spzed FLS = 75 min. 70 65 min. 70 min. 60 55 min. 55 min. 60 55 min. 55 min. 90 0 55 min. 90 400 200	B	50 (600 1750 0 1750 100 200	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, LC FFS, LC	NS, V _p N, S, D NS, N V _P , S, D AADT LOS, S, D NS, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	scf		Site Inform	nation ection of Travel		/estbound
Analyst Agency or Company Date Performed Analysis Time Period Project Description Segmer	TranSystems 2/7/2011 <u>PM Peak</u> nt IVa - P4031000	04	From/To Jurisdiction Analysis Year		Olive Bra	anch Exit to Bach Ent cenario 7
Project Description Segmen ✓ Oper.(LOS)	11112 - 1 4031000		Des.(N)		□ Pla	nning Data
Flow Inputs		-	2001(11)			
Volume, V AADT Peak-Hr Prop. of AADT, K	2270	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
Ε _T	1.5		f _{HV} = 1/[1+P _T (E-	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3		f _N			mi/h
FFS (measured)	60.0	mi/h			60.0	
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N ; f _p)	x f _{HV} x 853	pc/h/ln	5	PHV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			
$D = v_p / S$	14.2	pc/mi/ln	S D-v/S			mi/h
LOS	В		D = v _p / S Required Nur	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
Copyright © 2010 University of Florida.				Version 5.5		nerated: 12/5/2011 12:16

HCS+TM Version 5.5

Generated: 12/5/2011 12:16 PM

Analyst: sta Inter.: Old 74 @ New Bach Buxton Agency: TranSystems Area Type: All other areas Date: 7/18/2011 Jurisd: Period: AM Peak Year : Alt 2 (HNTB Alt 7) Project ID: Segment IVa Alt 8A1 E/W St: Old 74 WB N/S St: Bach Buxton NB and Old 74 SB SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T Т Τ. Т R R L Т R L R 2 1 0 No. Lanes 0 1 0 2 0 1 0 0 1 LGConfig Т Т R L L R 491 504 Volume 124 340 711 123 Lane Width 12.0 12.0 |12.0 12.0 12.0 12.0 RTOR Vol 0 0 Area Type: All other areas Duration 0.25 ____Signal Operations___ 5 Phase Combination 1 2 3 4 б 7 8 EB Left NB Left Α Thru Α Thru Right Α Right A Peds Peds SB Left WB Left Α Thru Ρ Thru А Right Right Peds Peds NB Right EΒ Right A Α SB Right Right WΒ Green 27.0 15.0 33.0 3.5 Yellow 3.5 3.5 All Red 1.5 1.5 1.5 Cycle Length: 90.0 secs __Intersection Performance Summary__ Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate q/C Delay LOS Delay LOS Grp Capacity (s) v/c Eastbound т 0.17 34.8 16.8 311 1863 0.44 С В 932 1583 0.41 0.59 10.3 R В Westbound 0.53 0.30 26.7 1031 3437 С L 21.1 Т 973 1863 0.58 0.52 15.5 В С Northbound 0.63 0.37 С 1260 3437 24.4 L 21.4 С 0.12 R 1143 1583 0.72 3.8 Α Southbound

Intersection Delay = 20.3 (sec/veh) Intersection LOS = C

Analyst: sta Inter.: Old 74 @ New Bach Buxton Agency: TranSystems Area Type: All other areas 7/18/2011 Date: Jurisd: Period: PM Peak Year : Alt 2 (HNTB Alt 7) Project ID: Segment IVa Alt 8A1 E/W St: Old 74 WB N/S St: Bach Buxton NB and Old 74 SB SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound Т Τ. Т R L T R L Т R L R 2 1 0 No. Lanes 0 1 0 2 0 1 0 0 1 LGConfig Т Т R L L R 255 364 384 Volume 756 570 462 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 Area Type: All other areas Duration 0.25 ____Signal Operations___ 5 Phase Combination 1 2 3 4 б 7 8 EB Left NB Left Α Thru Α Thru Right Α Right A Peds Peds SB Left WB Left Α Thru Ρ Thru А Right Right Peds Peds NB Right EΒ Right A А SB Right Right WΒ Green 9.0 43.0 23.0 3.5 3.5 Yellow 3.5 All Red 1.5 1.5 1.5 Cycle Length: 90.0 secs __Intersection Performance Summary___ Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate q/C Delay LOS Grp Capacity (s) v/c Delay LOS Eastbound т 890 0.94 0.48 40.4 1863 D 24.6 С 1249 1583 0.51 0.79 3.7 R Α Westbound 0.82 0.10 344 3437 54.5 L D Т 1180 1863 0.34 0.63 7.9 А 27.1 С Northbound 878 0.58 0.26 С 3437 30.3 L 27.3 С 0.66 0.41 651 1583 23.8 R С Southbound

Intersection Delay = 26.0 (sec/veh) Intersection LOS = C

7

Analyst	scf
Agency:	TranSystems
Date:	12/22/2010
Period:	AM DHV
Project	ID: Segment IVA Alt
E/W St:	SR 32 EB Ramps

Inter.: SR 32 EB Ramps & BB
Area Type: All other areas
Jurisd:
Year : 2030 Alt 2

N/S St: Bach Buxton Road

			SIC	эΝΑЦΙΔ	ED I.	NTERSE	CTION	SUMM	ARY				
	Eas	tboun	nd	Wes	tbou	nd	Nor	thbo	und	So	uthbo	und	
	L	Т	R	L	Т	R	L	Т	R	L 	Т	R	
No. Lanes LGConfig Volume Lane Width RTOR Vol	 L 158 n 12.0	0	1 R 384 12.0 0	0	0	0	0	2 TR 916 12.0	0 58 0	 L 187 12.0	Т	0	
Duration	0.25		Area 1										
Phase Com		1	2	Sig 3	nal 4	Operat	ions	 5	6	7		8	
EB Left	JINALION	A	2	3	4	 NB	Left	С	0	/		0	
Thru		А					Thru		A				
Right		A					Right	:	A				
Peds						Ì	Peds						
WB Left						SB	Left	A	P				
Thru							Thru		A				
Right							Right	:					
Peds							Peds						
NB Right							Right						
SB Right Green		32.0				WB	Right	8.5	34.	5			
Yellow		3.5						3.5	3.5				
All Red		1.5						1.5	1.5				
								Су	cle Le	ngth:	90.0		secs
		_			-								
							e Summ	nary_					
	ane roup	Adj	j Sat		Perf tios		e Summ Lane	_		proac	 h		
Lane Gi	ane roup apacity	Adj Flow			tios			Grou	р Ар 	proac ay LO			
Lane Gi	roup	Adj Flow	j Sat / Rate	Ra	tios		Lane	Grou	р Ар 				
Lane Gr Grp Ca Eastbound	roup	Adj Flow	j Sat 7 Rate s)	Ra	tios g		Lane	Grou	p Ap Del	ay L0	 S		
Lane Gr Grp Ca Eastbound L G R !	roup apacity	Adj Flow (j Sat 7 Rate 5) 70	Ra v/c	tios g 0	/C	Lane Delay	Grouj / LOS	р Ар 	ay L0	 S		
Lane Gr Grp Ca Eastbound L G	roup apacity 529	Adj Flow (j Sat 7 Rate 5) 70	Ra v/c 0.28	tios g 0	/C .36	Lane Delay 21.0	Grouj / LOS C	p Ap Del	ay L0	 S		
Lane Gr Grp Ca Eastbound L G R !	roup apacity 529 563	Adj Flow (j Sat 7 Rate 5) 70	Ra v/c 0.28	tios g 0	/C .36	Lane Delay 21.0	Grouj / LOS C	p Ap Del	ay L0	 S		
Lane Gr Grp Ca Eastbound L G R S Westbound	roup apacity 529 563	Adj Flow (177 158	j Sat 7 Rate 5) 70	Ra v/c 0.28 0.76	tios 0 0	/C .36	Lane Delay 21.0 31.5	Grouj / LOS C C	p Ap	ay LO 4 C	 S		
Lane Gi Grp Ca Eastbound L G R S Westbound Northbound	roup apacity 529 563 1 1347	Adj Flow (177 158	j Sat 7 Rate 8) 70	Ra v/c 0.28 0.76	tios 0 0	/c .36 .36	Lane Delay 21.0 31.5	Grouj / LOS C C	p Ap Del 	ay LO 4 C	 S		
Lane Gr Grp Ca Eastbound L G R Southbound TR Southbound	roup apacity 529 563 1 1347 1	Adj Flow (177 158 351	j Sat 7 Rate 5) 70 33	Ra v/c 0.28 0.76	tios 0 0 0	/C . 36 . 36 . 38	Lane Delay 21.0 31.5 28.4	Grouj / LOS C C	p Ap Del 	ay LO 4 C	 S		
Lane Gr Grp Ca Eastbound L G R Southbound TR Southbound L Southbound	roup apacity 529 563 1 1347	Adj Flow (177 158	j Sat 7 Rate 5) 70 33	Ra v/c 0.28 0.76	tios 0 0 0	/c .36 .36	Lane Delay 21.0 31.5	Grouj / LOS C C	p Ap Del 	ay LO 4 C	 S		

7

Analyst	scf
Agency:	TranSystems
Date:	12/22/2010
Period:	PM DHV
Project	ID: Segment IVA Alt
E/W St:	SR 32 EB Ramps

Inter.: SR 32 EB Ramps & BB
Area Type: All other areas
Jurisd: ODOT
Year : 2030 Alt 2

N/S St: Bach Buxton Road

		SIG	NALIZED	INTERSE	CTION	SUMMA	RY				
		tbound	Westk			thbou			uthbo		ļ
	L	TR	L I	R	L	Т	R	L	Т	R	
No. Lanes LGConfig Volume Lane Widtl RTOR Vol	L 430	0 1 R 536 12.0 0	0	0 0		12.0	0 89 0	1 L 217 12.0	Т	0	
Duration	0.25	Area T		l other							
Phase Coml EB Left Thru Right		1 2 A A	S1911a 3	1 Operat 4 NB 	Left Thru Right	5	6 A A	7		8	
Peds WB Left Thru Right		-		 SB 	Peds Left Thru Right	A P	P A				
Peds NB Right SB Right Green Yellow		37.5 3.5		 EB WB	Peds Right Right		27.5	5			
All Red		1.5 Intersec	tion Pe	erformanc	e Summ	_	1.5 le Ler	-	90.0		secs
Appr/ La	 ane	Intersec Adj Sat	tion Pe Rati		ce Summ Lane	Cyc ary	le Ler	-			secs
Appr/La		Intersec		.os		Cyc ary Group	le Ler Apr		h		secs
Appr/ La Lane G: Grp Ca Eastbound	ane roup apacity	Intersec Adj Sat Flow Rate	Rati	.os	Lane	Cyc ary Group	le Ler App Dela	proac ay LO	h		secs
Appr/ La Lane G Grp Ca Eastbound L R	ane roup apacity 737 660	Intersec Adj Sat Flow Rate (s) 	Rati v/c	os g/C	Lane Delay	Cyc ary Group LOS	le Ler Apr	proac ay LO	h		secs
Appr/ La Lane G Grp Ca Eastbound L R Westbound	ane roup apacity 737 660	Intersec Adj Sat Flow Rate (s) 1770	Rati v/c 0.65	.os g/C 0.42	Lane Delay 23.0	Cyc ary Group LOS C	le Ler App Dela	proac ay LO	h		secs
Appr/ La Lane G Grp Ca Eastbound L R Westbound	ane roup apacity 737 660	Intersec Adj Sat Flow Rate (s) 1770	Rati v/c 0.65	.os g/C 0.42	Lane Delay 23.0 40.4	Cyc ary Group LOS C	le Ler Apr Dela 32.6	ay LO	h		secs
Appr/ La Lane G Grp Ca Eastbound L R Westbound Northbound TR Southbound	ane roup apacity 737 660 d 1065 d	Intersec Adj Sat Flow Rate (s) 1770 1583 3484	Rati	os g/C 0.42 0.42 0.42	Lane Delay 23.0 40.4	Cyc ary Group LOS C D	le Ler App Dela 32.6	ay LO	h		secs
Lane G Grp Ca Eastbound L R Westbound Northbound TR Southbound	ane roup apacity 737 660 d 1065	Intersec Adj Sat Flow Rate (s) 1770 1583	Rati	.os g/C 0.42 0.42	Lane Delay 23.0 40.4	Cyc ary Group LOS C D	le Ler App Dela 32.6	ay LO	h		secs

Analyst: scf Agency: TranSystems Date: 12/22/2010 Period: AM DHV Project ID: Segment IVA Alt 7 E/W St: SR 32 WB Ramps Inter.: SR 32 WB Ramps & BB
Area Type: All other areas
Jurisd: ODOT
Year : 2030 Alt 2

N/S St:

		S	IGNALIZEI	INTERSE	CTION S	UMMAR	Y			
	Eas	tbound	Westh			hboun		Sou	thbou	ind
		T R	LI		1		R	L	Т	R
No. Lanes LGConfig Volume Lane Widt RTOR Vol	İ	0 0	 114 12	0 2 LR R 390 2.0 12.0 0	2 L 630 4 12.0 1	1 T 44 2.0	0		1 T 378 12.0	1 R 453 12.0 0
Duration	0.25	Area	Type: Al	l other						
Phase Cor EB Left Thru Right Peds		1 2	3	4 4 NB	Left Thru Right Peds	5 A P	6 A	7		3
WB Left Thru Right Peds		A		SB 	Left Thru Right Peds		A A			
NB Right SB Right Green	2	20.5		EB WB	Right Right	22.0	32.5			
Yellow All Red		3.5 1.5				3.5 1.5	3.5 1.5 e Leng	gth:	90.0	secs
± ±	Lane	Adj Sat		erformanc .os	e Summa Lane G			roach		
	Group Capacity	Flow Rat (s)	v/c	g/C	Delay	LOS	Delay	/ LOS		
Eastbound										
Westbound										
LR R Northbour	381 638 nd	1673 2803	0.73 0.44	0.23 0.23	39.3 30.3	D C	34.8	С		
L T	840 1232	3437 1863	0.83 0.40	0.24 0.66	39.5 7.2	D A	26.2	С		
Southbour	nd									
			0.62	0.36	25.5					

Analyst: scf Agency: TranSystems Date: 12/22/2010 Period: PM DHV Project ID: Segment IVA Alt 7 E/W St: SR 32 WB Ramps Inter.: SR 32 WB Ramps & BB
Area Type: All other areas
Jurisd: ODOT
Year : 2030 Alt 2

N/S St:

		SI	GNALIZEI) INTERSE	CTION S	SUMMAR	ΥY				
	Eas	tbound		oound		hboun		Sou	thbo	und	
		T R					!	L	Т	R	
No. Lar	nes 0	0 0	0	0 2	2	1	 0	0	1	1	-
LGConfi	1			LR R	ĹL	т		-	Т	R	i
Volume	- 5		75	228		518			548	277	ł
Lane Wi	idth		1	2.0 12.0	12.0 1					12.0	
RTOR Vo			±2	0	1 2.0 1	12.0			12.0	0	
			 		I 		I				
Duratio	on 0.25	Area		ll other al Operat							
	Combination	n 1 2	3	4		5	6	7		8	
EB Lef	ft			NB	Left	A					
Thr	ru				Thru	P	A				
Rig	ght				Right						
Pec	ds				Peds						
WB Lef	ft	A		SB	Left						
Thr	ru				Thru		A				
Rig	ght	A		İ	Right		A				
Pec	ds			i	Peds						
NB Rig	ght			EB	Right						
SB Ric	ght			WB	Right						
Green	-	18.5			-	22.0	34.5				
Yellow		3.5				3.5	3.5				
Yellow All Red		3.5 1.5				3.5 1.5	3.5 1.5				
		1.5				1.5 Cycl	1.5 .e Leng	th:	90.0	S	ecs
All Rec	d 	1.5 Interse		erformanc		1.5 Cycl ary	1.5 .e Leng			S (ecs
All Red Appr/	d Lane	1.5 Interse Adj Sat	Rati		e Summa Lane G	1.5 Cycl ary	1.5 .e Leng			S (ecs
All Red Appr/ Lane	d Lane Group	1.5 Interse Adj Sat Flow Rate	Rati	los	Lane G	1.5 Cycl ary Group	1.5 .e Leng Appr	oach		S (ecs
All Rec Appr/	d Lane	1.5 Interse Adj Sat	Rati	los		1.5 Cycl ary Group	1.5 .e Leng Appr	oach		S(ecs
All Red Appr/ Lane	d Lane Group Capacity	1.5 Interse Adj Sat Flow Rate	Rati	los	Lane G	1.5 Cycl ary Group	1.5 .e Leng Appr	oach			ecs
All Red Appr/ Lane Grp	d Lane Group Capacity und	1.5 Interse Adj Sat Flow Rate	Rati	los	Lane G	1.5 Cycl ary Group	1.5 .e Leng Appr	oach			ecs
All Red Appr/ Lane Grp Eastbou	d Lane Group Capacity und	1.5 Interse Adj Sat Flow Rate	Rati	ios g/C	Lane G Delay	1.5 Cycl Ary Froup LOS	1.5 .e Leng Appr	oach LOS		S (ecs
All Red Appr/ Lane Grp Eastbou Westbou LR	d Lane Group Capacity und	1.5 Interse Adj Sat Flow Rate (s) 	Rati v/c	ios g/C	Lane G Delay 32.6	1.5 Cycl ary Froup LOS	1.5 e Leng Appr Delay	oach LOS			ecs
All Red Appr/ Lane Grp Eastbou Westbou LR	d Lane Group Capacity und 345 576	1.5 Interse Adj Sat Flow Rate (s) 	Rati v/c	0.21	Lane G Delay 32.6	1.5 Cycl ary Froup LOS	1.5 e Leng Appr Delay	oach LOS			ecs
All Red Appr/ Lane Grp Eastbou Westbou LR R	d Lane Group Capacity und 345 576 ound	1.5 Interse Adj Sat Flow Rate (s) 1680 2803	Rati v/c	0.21 0.21	Lane G Delay 32.6 30.5	C C C C C	1.5 e Leng Appr Delay	oach LOS			ecs
All Red Appr/ Lane Grp Eastbou Westbou LR R Northbo	d Lane Group Capacity und 345 576 5000 840	1.5 Interse Adj Sat Flow Rate (s) 	Rati v/c	0.21	Lane G Delay 32.6 30.5 31.9	1.5 Cycl Group LOS C C	1.5 e Leng Appr Delay	oach LOS		S (ecs
All Red Appr/ Lane Grp Eastbou Westbou LR R Northbo L	d Lane Group Capacity und 345 576 ound 840 1273	1.5 Interse Adj Sat Flow Rate (s) 	Rati v/c	0.21 0.21 0.24	Lane G Delay 32.6 30.5 31.9	1.5 Cycl Group LOS C C	1.5 .e Leng Delay 31.5	C			ecs
All Red Appr/ Lane Grp Eastbou Westbou LR R Northbo L T Southbo	d Lane Group Capacity und 345 576 ound 840 1273 ound	1.5 Interse Adj Sat Flow Rate (s) 1680 2803 3437 1863	Rati v/c	0.21 0.21 0.21 0.24 0.68	Lane G Delay 32.6 30.5 31.9 7.6	1.5 Cycl Group LOS C C C A	1.5 Leng Appr Delay 31.5 18.2	oach LOS C B		50	ecs
All Red Appr/ Lane Grp Eastbou Westbou LR R Northbo L T Southbo T	d Lane Group Capacity und 345 576 ound 840 1273 ound 714	1.5 Interse Adj Sat Flow Rate (s) 	Rati v/c	0.21 0.21 0.21 0.24 0.68	Lane G Delay 32.6 30.5 31.9 7.6 35.2	1.5 Cycl Group LOS C C C A	1.5 Leng Appr Delay 31.5 18.2	oach LOS C B		5	ecs
All Red Appr/ Lane Grp Eastbou Westbou LR R Northbo L T Southbo	d Lane Group Capacity und 345 576 ound 840 1273 ound 714 607	1.5 Interse Adj Sat Flow Rate (s) 1680 2803 3437 1863	Rati v/c	0.21 0.21 0.21 0.24 0.68 0.38 0.38	Lane G Delay 32.6 30.5 31.9 7.6 35.2 21.9	1.5 Cycl ary Froup LOS C C C A D C	1.5 Le Leng Appr Delay 31.5 18.2 30.8	C C C C	L	S(ecs

	RA	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	ET				
General Infor	mation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Period	2/7/2011 Jurisdiction HNTB Scenario 7									
	Segment IVa -	P403100004								
Inputs		Terrain: Level							-	
Jpstream Adj Ramp									Downstrea Ramp	am Adj
Yes On									T Yes	🗆 On
🗹 No 📃 Off									🗹 No	C Off
_{-up} = ft									L _{down} =	ft
/ _u = veh/h		S	_{FF} = 60.0 mph Sketch(s	show lanes, L _A	$S_{FR} = 45$	5.0 mph			V _D =	veh/h
Conversion to	o pc/h Un	l der Base (Α	' D' R' 1'					
	V	PHF		0/ Truck	0/ Dv	f		f	v = V/PHF	vf vf
(pc/h)	(Veh/hr)		Terrain	%Truck	%Rv	f _{HV}		'		
Freeway	1747	0.90	Level	3	0	0.985		00		970
Ramp	245	0.90	Level	3	0	0.985	1.	00		276
UpStream DownStream		+								
Soundation		Merge Areas					Diverg	e Areas		
Estimation of		•			Estimati	on of v				
	$V_{12} = V_{F}$	(P.,.)					$V_{12} = V_R +$	(V V	_)P	
EQ =	·= ·	ation 25-2 or	25-3)		L _{EQ} =			•	5-8 or 25-9)
EQ P _{FM} =			on (Exhibit 25-5)		-εq P _{FD} =				on (Exhibit:	
μ 1 ₁₂ =	1165				V ₁₂ =		pc/h	, Equal		20 12)
V_3 or V_{av34}			a 25-4 or 25-5)		V_3^{12} or V_{av34}^{12}		•	Faultion	25-15 or 25	.16)
ls V ₃ or V _{av34} > 2,700			20 4 01 20 0)		Is V_3 or V_{av34}	. > 2 700 r				10)
s V ₃ or V _{av34} > 1.5 *					Is V_3 or V_{av34}	-				
Yes,V _{12a} =		Equation 25	-8)		If Yes,V _{12a} =				on 25-18)	
Capacity Che			-0)				-	(Lquaii	511 25-10)	
зарасну спе	Actual		apacity	LOS F?		1	Actual	0	apacity	LOS F?
	Actual		арасну	LUGT	V _F	′		xhibit 25-	<u> </u>	20011
V	2246	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	V		xhibit 25-	_	
V _{FO}	2240	EXHIDIC 20-7		INU		V R				_
					V _R			xhibit 25		
Flow Entering				Violation	Flow Ent	1				
	Actual 1441	Exhibit 25-7	Desirable 4600:All	Violation?	V	Actua		Max Desi it 25-14	rable	Violation?
V _{R12}				No	V ₁₂	Comila				4 F)
Level of Servi			/		Level of					t r)
		0.0078 V ₁₂ - 0.0	0627 L _A				52 + 0.008	5 v ₁₂ - (J.009 L _D	
0 _R = 13.5 (pc/mi	,					c/mi/ln)				
OS = B (Exhibit 2						xhibit 25				
Speed Detern	nination				Speed D					
M _S = 0.292 (Exit	oit 25-19)				3	hibit 25-19				
S _R = 54.7 mph (Exhibit 25-19)					h (Exhibit				
	Exhibit 25-19)				S ₀ = mp	h (Exhibit	25-19)			
S = 56.2 mph (Exhibit 25-14)				S = mp	h (Exhibit	25-15)			
opyright © 2010 Unive	reity of Elorida	All Rights Reserv	ed		HCS+TM V			G	anorated: 12	5/2011 12:22

HCS+TM Version 5.5

Generated: 12/5/2011 12:22 PM

		RAN					ET				
Genera	l Infori				Site Infor						
Analyst Agency or (Date Perfor Analysis Tir	Company rmed	scf TranS 2/7/20		Fre Ju Ju	eeway/Dir of Tr nction risdiction alysis Year	avel s I	Bach E	Eastbound Buxton Entr Scenario 7 It 2			
Project Des	scription	Segment IVa -	P403100004		•						
Inputs											
Jpstream A			Terrain: Leve	l						Downstre Ramp	eam Adj
□ Yes										TYes	🗌 On
	C Off									Mo	
- _{up} = V _u =	ft veh/h		S	_{FF} = 60.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 4$ L_{D}, V_{R}, V_{f}	5.0 mp	bh		L _{down} = V _D =	ft veh/h
Conver	rsion to	pc/h Und	ler Base (Conditions	Λ.						
(pc/		V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway		3040	0.90	Level	3	0	0.	985	1.00		3428
Ramp		306	0.90	Level	3	0	0.	985	1.00		345
UpStream											
DownStrea	am										
Estima	tion of		lerge Areas			Estimati	ion c		Diverge Area	15	
Suma						LSumau		12			
		V ₁₂ = V _F ((P _{FM})					V ₁₂ =	V _R + (V _F -	V _R)P _{FD}	
EQ =		(Equa	ation 25-2 or	25-3)		L _{EQ} =				25-8 or 25-	9)
P _{FM} =		0.591	using Equat	ion (Exhibit 25-5)		P _{FD} =				ation (Exhibit	
/ ₁₂ =		2028 p	oc/h			V ₁₂ =			pc/h		20 12)
				on 25-4 or 25-							- 40)
V_3 or V_{av34}		5)				V ₃ or V _{av34}				on 25-15 or 2	5-16)
Is V_3 or V_a	_{v34} > 2,700) pc/h? 🔲 Yes	s 🗹 No			Is V_3 or V_{av3}					
Is V_3 or V_a	_{v34} > 1.5 *	V ₁₂ /2 TYes	s 🗹 No			Is V_3 or V_{av3}					
Yes,V _{12a}	=	pc/h (Equation 25	5-8)		If Yes,V _{12a} =			pc/h (Equa	ation 25-18))
120	ty Che					Capacity	v Ch	ecks			
	ΎΙ	Actual	C	apacity	LOS F?			Actual	1	Capacity	LOS F?
				· ·		V _F			Exhibit 2	25-14	
V _F		3773	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V_		Exhibit 2	25-14	
. Ի	.0	0110					- R		Exhibit 2		
						V _R					
-low E	ntering	Merge In	î .			Flow En	i i	-		ence Are	
		Actual	î r	Desirable	Violation?			Actual		esirable	Violation?
V _R		2373	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-1		
		ce Detern		,		1				tion (if n	ot F)
D _R :	= 5.475 + (0.00734 v _R + 0	.0078 V ₁₂ - 0.0	0627 L _A			D _R = 4	4.252 + 0	.0086 V ₁₂	- 0.009 L _D	
0 _R = 2	20.7 (pc/mi	/ln)				D _R = (p	c/mi/l	n)			
.OS = 0	C (Exhibit 2	25-4)				LOS = (E	xhibit	25-4)			
Speed	Detern	nination				Speed D	Deter	minatio	on		
-).318 (Exib					+ · · · · · · · · · · · · · · · · · · ·	xhibit 2				
-								nibit 25-19)			
		Exhibit 25-19)									
0		Exhibit 25-19)						nibit 25-19)			
		Exhibit 25-14)				S = mp	oh (Exl	nibit 25-15)			
opyright © 2	2010 Unive	rsity of Florida, A	II Rights Reserv	ved		HCS+TM	/ersion	5.5		Generated: 12	2/5/2011 12:23

		RAMP	S AND RAM	P JUNCTI	ONS WOR	RKSI	HEET			
General Infor	mation			Site Infor	mation					
Analyst	scf		Fre	eway/Dir of Tr	avel S	SR 32 E	astbound			
Agency or Company	Trans	Systems	Jur	nction	E	Bach Bu	uxton Exit R	amp		
Date Performed	2/7/20	011	Jur	isdiction	ŀ	INTB S	Scenario 7			
Analysis Time Period			Ana	alysis Year						
Project Description	Segment IVa -	P403100004								
Inputs		he i i								
Upstream Adj Ramp		Terrain: Leve	51						Downstrea Ramp	ım Adj
Yes Or									🗆 Yes	🗌 On
🗹 No 🔲 Off	f								Mo No	C Off
L _{up} = ft			6 _{FF} = 60.0 mph		S _{FR} = 45	5 0 mpl	<u></u>		L _{down} =	ft
V _u = veh/h	I			how lanes, L _A ,		5.0 mpi			V _D =	veh/h
Conversion to	o pc/h Und	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	f _{HV}	f _p	v = V/PHF	${\rm x}~{\rm f}_{\rm HV}~{\rm x}~{\rm f}_{\rm p}$
Freeway	2289	0.90	Level	3	0	0.9	985	1.00	25	81
Ramp	542	0.90	Level	3	0	0.9	985	1.00	6	11
UpStream										
DownStream										
Estimation of		Merge Areas			Ectimoti	<u></u>		verge Areas		
Estimation of	v ₁₂				Estimati	011 0				
	V ₁₂ = V _F	(P _{FM})					V ₁₂ = V	V _R + (V _F - V	_R)P _{FD}	
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-8	3 or 25-9)	
P _{FM} =	using	Equation (I	Exhibit 25-5)		P _{FD} =		0.66	67 using Ed	uation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		192	6 pc/h		
V ₃ or V _{av34}	pc/h (Equation 2	5-4 or 25-5)		V ₃ or V _{av34}		655	pc/h (Equa	ation 25-15	or 25-16)
Is V ₃ or V _{av34} > 2,70			,			₄ > 2.70		Yes 🗹 No		,
Is V_3 or $V_{av34} > 1.5$								Yes 🗹 No		
If Yes,V _{12a} =		Equation 2	5-8)		If Yes,V _{12a} =	4		/h (Equation	25-18)	
Capacity Che			5 0)			Cha			20 10)	
	Actual		Capacity	LOS F?			Actual		pacity	LOS F?
	Actual		Japacity	LUGT	V _F		2581	Exhibit 25-1		No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V_	1970	Exhibit 25-1		No
• FO					V _{FO} = V _R	*R	611	Exhibit 25-		No
Flow Entering	l Morgo In	fluonoo (1.00			torin		ge Influen		NO
FIOW Entering	Actual		Desirable	Violation?	FIOW EIT		ctual	Max Desiral		Violation?
V _{R12}	Actual	Exhibit 25-7	Desirable	violation:	V ₁₂	1		Exhibit 25-14	4400:All	No
Level of Serv	ice Detern	nination (if not F)			Serv		erminatio		
$D_{\rm R} = 5.475 + 0.$			· · · · ·					086 V ₁₂ - 0	1	
D _R = (pc/mi/ln		12	A			.3 (pc/		12	D	
LOS = (Exhibit 2	,						it 25-4)			
Speed Detern	nination				Speed D	eteri	mination	า		
M _s = (Exibit 2					<u> </u>		hibit 25-1			
-	, ibit 25-19)					6 mph	(Exhibit 2	5-19)		
	ibit 25-19)					-	(Exhibit 2	-		
	ibit 25-13)				1	•	(Exhibit 2	,		
					J ^{- 00.}			5 10,		

HCS+TM Version 5.5

Generated: 12/5/2011 12:20 PM

		RAMP	S AND RAM	P JUNCTI	ONS WO	RKS	HEET					
General Infor	mation			Site Infor	mation							
Analyst scf Freeway			eway/Dir of Tr	ravel SR 32 Eastbound								
				Junction			Bach Buxton Exit Ramp					
				isdiction alysis Year		HNTB Scenario 7						
Analysis Time Period			2030 Alt 2									
Project Description Segment IVa - P403100004												
Inputs		Terrain: Lev							L			
Upstream Adj Ramp		Terrain. Levi	51						Downstrea Ramp	am Adj		
☐ Yes ☐ Or ☑ No ☐ Of							Tes	C On				
									⊠ No L _{down} =	☐ Off ft		
L _{up} = ft		$S_{FF} = 60.0 \text{ mph}$ $S_{FR} = 45.0 \text{ mph}$							down	п		
V _u = veh/h		$S_{FF} = 45.0$ mpm Sketch (show lanes, L_A , L_D , V_R , V_f)							V _D =	veh/h		
Conversion to	o pc/h Und	ler Base	Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	fp	v = V/PHF	x f _{HV} x f _p		
Freeway	4006	0.90	Level	3	0	0.9	985	1.00	45	518		
Ramp	966	0.90	Level	3	0	0.9	985	1.00	10	189		
UpStream												
DownStream												
Estimation of		vierge Areas			Estimat	iono		iverge Areas				
LSUMATION					12							
$V_{12} = V_F (P_{FM})$				$V_{12} = V_{R} + (V_{F} - V_{R})P_{FD}$								
L _{EQ} =	Q = (Equation 25-2 or 25-3)											
P _{FM} =	(Equation 25-2 or 25-3) L_{EQ} =(Equation 25-8 or 25-9)using Equation (Exhibit 25-5) P_{FD} =0.597 using Equation (Exhibit 25-pc/h V_{12} =3136 pc/h					nibit 25-12)						
V ₁₂ =	pc/h	uation 25-2 or 25-3) $L_{EQ} =$ (Equation 25-8 or 25-9) g Equation (Exhibit 25-5) $P_{FD} =$ 0.597 using Equation (Exhibit 25-12) n $V_{12} =$ 3136 pc/h n (Equation 25-4 or 25-5) V_3 or V_{av34} 1382 pc/h (Equation 25-15 or 25-16) es No Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No es No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No										
V ₃ or V _{av34}	pc/h (Equation 2	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		13	82 pc/h (Eq	uation 25-1	5 or 25-16)		
Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No												
Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No												
lf Yes,V _{12a} =	pc/h (Equation 2	5-8)		If Yes,V _{12a} =	=	p	c/h (Equatio	n 25-18)			
Capacity Che	cks				Capacit		ecks					
	Actual	(Capacity	LOS F?		<u> </u>	Actual	C	apacity	LOS F?		
					V _F		4518	Exhibit 25-		No		
V _{FO}		Exhibit 25-7			$V_{FO} = V_F$	- V _D	3429	Exhibit 25-	_	No		
FU					V _R		1089	Exhibit 25	_	No		
Flow Entering	<u>.</u> n Morgo In	l fluonco /	1/02			torin		ge Influe				
	Actual	ù.	Desirable	Violation?			Actual	Max Desira		Violation?		
V _{R12}	/ lotadi	Exhibit 25-7		violation.	V ₁₂	1	8136	Exhibit 25-14	1	No		
Level of Serv	ice Detern		(if not F)					terminatio				
$D_R = 5.475 + 0.$					1			0086 V ₁₂ - 0	· ·	• /		
		12						12				
$D_{R} = (pc/mi/ln) LOS = (Exhibit 25-4) D_{R} = 26.7 (pc/mi/ln) LOS = C (Exhibit 25-4) D_{R} = 26.7 (pc/mi/ln) LOS = C (Exhibit 25-4) D_{R} = 26.7 (pc/mi/ln) LOS = C (Exhibit 25-4) D_{R} = 26.7 (pc/mi/ln) LOS = C (Exhibit 25-4) D_{R} = 26.7 (pc/mi/ln) LOS = C (Exhibit 25-4) D_{R} = 26.7 (pc/mi/ln) LOS = C (Exhibit 25-4) D_{R} = 26.7 (pc/mi/ln) D_{R$												
Speed Determination				Speed Determination								
Speed Determination M _s = (Exibit 25-19)					$D_s = 0.396$ (Exhibit 25-19)							
-	ibit 25-19)					-	(Exhibit 2	-				
$S_0^{=}$ mph (Exhibit 25-19) $S_0^{=}$ 64.3 mph					,							
0 - IIIpii (Extiluit 20-14)					S = 55.9 mph (Exhibit 25-15)							

HCS+TM Version 5.5

Generated: 12/5/2011 12:21 PM

		RAN					ET					
General I	Inform				Site Infor							
Analyst scf Freeway/Dir of Tra						SR 32	Westbound	1				
Agency or Cor	mpany		Systems		nction		Bach E	uxton Entr	ance Ramp			
Date Performed 2/7/2011			Ju	Jurisdiction			Scenario 7					
Analysis Time Period AM Peak Analysis Year				2030 Alt 2								
Project Descri	ption	Segment IVa -	P403100004									
Inputs												
Jpstream Adj			Terrain: Leve					Downstre Ramp	am Adj			
Yes										TYes	□ On	
🗹 No	C Off									🗹 No	C Off	
- _{up} =	ft							L _{down} =	ft			
V _u =	veh/h		S _{FF} = 60.0 mph S _{FR} = 45.0 mph Sketch (show lanes, L _A , L _D ,V _R ,V _f)							V _D =	veh/h	
Conversi	ion to	pc/h Und	ler Base (Conditions								
(pc/h)		V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p	
Freeway		2823	0.90	Level	3	0	0.	985	1.00		3184	
Ramp		1083	0.90	Level	3	0	0.	985	1.00		1221	
UpStream												
DownStream												
			lerge Areas			Diverge Areas						
Estimatio	on of	v ₁₂				Estimation of v ₁₂						
		V ₁₂ = V _F (P _{EM})					V _	$V \pm (V = V)$			
		·= ·	ation 25-2 or	25-3)		$V_{12} = V_R + (V_F - V_R)P_{FD}$						
						$L_{EQ} = (Equation 25-8 \text{ or } 25-9)$						
	P_{FM} = 0.591 using Equation (Exhibit 25-5)					P _{FD} = using Equation (Exhibit 25-12)						
V ₁₂ = 1883 pc/h 1301 pc/h (Equation 25-4 or 25-					V ₁₂ = pc/h							
V_3 or V_{av34}		1301 p 5)	c/h (Equation	on 25-4 or 25-		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)						
s Va or Va	> 2 700) pc/h?				Is V ₃ or V _{av34} > 2,700 pc/h? □ Yes □ No						
		V ₁₂ /2 ☐ Yes				$ SV_3 \text{ or } V_{av34} > 1.5 * V_{12}/2 Yes = No$						
0 4001	- 1.5	12				If Yes, $V_{12a} = pc/h$ (Equation 25-18)						
Yes,V _{12a} =			Equation 25	-8)								
Capacity	Che	cks				Capacity	y Ch	ecks				
		Actual	C	apacity	LOS F?			Actual		Capacity	LOS F?	
						V _F			Exhibit 28	5-14		
V_{FO}		4405	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 28	5-14		
						V _R			Exhibit 2	5-3		
Flow Ent	orina	Merge In	l fluence Δ	rea	I		torir	na Dive	rge Influe			
		Actual		Desirable	Violation?		i	ctual	Max De		Violation?	
V _{R12}		3104	Exhibit 25-7	4600:All	No	V ₁₂	1 -		Exhibit 25-14	II.		
					NO						<u> </u>	
Level of Service Determination (if not F)					Level of Service Determination (if not F)							
D _R = 5.475 + 0.00734 v _R + 0.0078 V ₁₂ - 0.00627 L _A					$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$							
						D _R = (pc/mi/ln)						
LOS = C (Exhibit 25-4)						LOS = (Exhibit 25-4)						
Speed Determination					Speed Determination							
-					D _s = (Exhibit 25-19)							
-					S_R = mph (Exhibit 25-19)							
S ₀ = 57.1 mph (Exhibit 25-19)												
S = 54.5 mph (Exhibit 25-14)						S = mph (Exhibit 25-15)						
opyright © 201	0 Univer	sity of Florida, A	II Rights Reserv	ved		HCS+TM	Version	5.5	C	Generated: 12	2/5/2011 12:26	

Concrol Infor		• • • • • • • •							
General Infor				Site Infor					
Analyst	scf			eeway/Dir of Ti		SR 32 West			
Agency or Company		Systems		Inction			Entrance Ramp		
Date Performed	2/7/2			irisdiction	-	HNTB Scena	ario 7		
Analysis Time Period			Ar	nalysis Year		2030 Alt 2			
Project Description	Segment Iva -	P403100004							
Inputs		Tamaina Laural						.	
Upstream Adj Ramp		Terrain: Level						Downstrea	am Adj
□Yes □On								Ramp	
								🗌 Yes	🗌 On
🗹 No 👘 Off								🗹 No	C Off
- "									
- _{up} = ft			- 60.0 mmh		C 4	E O mah		L _{down} =	ft
V _u = veh/h		5	_{FF} = 60.0 mph		$S_{FR} = 4$	5.0 mpn		V _D =	veh/h
-				show lanes, L _A	, L _D ,V _R ,V _f)			D	
Conversion te	o pc/h Un	der Base C	Conditions						
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PHF	x f _{uv} x f _n
	(Veh/hr)	0.00	11	2	0		· ·		
Freeway	1911	0.90	Level	3	0	0.985	1.00		155
Ramp	753	0.90	Level	3	0	0.985	1.00	3	349
UpStream DownStream		┼──┼			<u> </u>				
DownStream		Merge Areas					Diverge Area		
Estimation of		Merge Areas			Estimati	on of v		3	
LStimation of					LSumau	-	=		
	V ₁₂ = V _F	(P _{FM})				V.	$_{12} = V_R + (V_F -)$	V _R)P _{FD}	
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =		(Equation 2	25-8 or 25-9)
P _{FM} =	0.591	using Equation	on (Exhibit 25-5)		P _{FD} =		using Equa	tion (Exhibit 2	25-12)
V ₁₂ =	1275		,		V ₁₂ =		pc/h	,	,
V_3 or V_{av34}			25-4 or 25-5)		V_3^{12} or V_{av34}^{12}			n 25-15 or 25-	16)
			125-4 01 25-5)			> 2 700 pg			10)
Is V_3 or $V_{av34} > 2,700$						-	/h? 🗌 Yes 🔲 N		
Is V_3 or $V_{av34} > 1.5 *$							/2 🗌 Yes 🗌 N		
f Yes,V _{12a} =	pc/h	(Equation 25-	-8)		If Yes,V _{12a} =		pc/h (Equa	tion 25-18)	
Capacity Che	cks				Capacity	/ Check	s		
	Actual	Ca	pacity	LOS F?		Ac	tual (Capacity	LOS F
					V _F		Exhibit 2	5-14	
V _{FO}	3004	Exhibit 25-7		No	$V_{FO} = V_F$	- V_	Exhibit 2	5-14	
- FO	0001	Exhibit 20 7		110		- R			
					V _R		Exhibit 2		
Flow Entering					Flow En	tering D	iverge Influ	ý l	
	Actual	- i	Desirable	Violation?		Actual	Max De		Violation
V _{R12}	2124	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-14		
Level of Serv	ice Deterr	nination (i	f not F)		Level of	Service	Determinat	tion (if no	t F)
D _p = 5.475 +	0.00734 v _P + (0.0078 V ₁₂ - 0.0	0627 L			$D_{p} = 4.252$	2 + 0.0086 V ₁₂ ·	• 0.009 L _D	
D _R = 18.5 (pc/m		12	A			c/mi/ln)	12	D	
	,					,	0		
OS = B (Exhibit 2					· · · ·	xhibit 25-4			
Speed Detern	nination				Speed D				
M _S = 0.309 (Exit	oit 25-19)				D _s = (Ex	khibit 25-19)			
-	Exhibit 25-19)				S _R = mp	h (Exhibit 2	5-19)		
K · ·	Exhibit 25-19)					h (Exhibit 2	5-19)		
• • •	Exhibit 25-19)					oh (Exhibit 2			
J JJ.U IIIIII (-AINOR 20-14)				μ- m		5 10/		

HCS+TM Version 5.5

Generated: 12/5/2011 12:27 PM

		RAMF	S AND RAM	P JUNCTI	ONS WO	RKS	HEET			
General Infor	mation			Site Infor	mation					
Analyst	scf		Fre	eway/Dir of Tr	avel	SR 32 \	Westbound			
Agency or Company	Trans	Systems	Jur	nction		Bach B	uxton Exit R	amp		
Date Performed	2/7/20			risdiction			Scenario 7			
Analysis Time Period			An	alysis Year		2030 A	lt 2			
Project Description	Segment IVa -	P403100004								
Inputs		Torroin: Lou							L	
Upstream Adj Ramp		Terrain: Lev							Downstrea Ramp	ım Adj
Yes Or									T Yes	☐ On
	r								I ■ No	Coff ft
L _{up} = ft			S _{FF} = 60.0 mph		S _{FR} = 4	5 0 mn			_L _{down} =	п
V _u = veh/h	I			show lanes, L _A		10.0 mp			V _D =	veh/h
Conversion to	o pc/h Und	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3327	0.90	Level	3	0	0.	985	1.00	37	52
Ramp	504	0.90	Level	3	0	0.	985	1.00	50	68
UpStream										
DownStream	ļ							verge Areas		
Estimation of	Merge Areas Estimation of v ₁₂				Estimat	ion o		verge Areas		
LStimation of					LSumau					
	V ₁₂ = V _F							V _R + (V _F - V		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-	8 or 25-9)	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		0.64	40 using E	quation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		260	16 pc/h		
$V_3^{}$ or $V_{av34}^{}$	pc/h (Equation 2	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		114	6 pc/h (Equ	uation 25-1	5 or 25-16)
Is V ₃ or V _{av34} > 2,70	0 pc/h? 🕅 Yes	s 🗌 No			Is V_3 or V_{av3}	₃₄ > 2,7	00 pc/h? 🥅	Yes 🗹 No		
Is V ₃ or V _{av34} > 1.5 '	[•] V ₁₂ /2	s 🔲 No			Is V_3 or V_{av3}	₃₄ > 1.5	* V ₁₂ /2	Yes 🗹 No		
lf Yes,V _{12a} =	pc/h (Equation 2	5-8)		If Yes,V _{12a} =	:	рс	h (Equatio	า 25-18)	
Capacity Che	cks				Capacit		ecks			
	Actual	(Capacity	LOS F?		<u> </u>	Actual	C	apacity	LOS F?
					V _F	Ī	3752	Exhibit 25-	14 6900	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_F$	- V _D	3184	Exhibit 25-	14 6900	No
10					V _R		568	Exhibit 25-		No
Flow Entering	<u>.</u> n Morgo In	fluonco	l Nroa			torin		ge Influer		
	Actual		Desirable	Violation?			Actual	Max Desira		Violation?
V _{R12}	7101000	Exhibit 25-7		violation.	V ₁₂			Exhibit 25-14	4400:All	No
Level of Serv	ice Detern		(if not F)					erminatio		
$D_{\rm R} = 5.475 + 0.$					1			0086 V ₁₂ - 0		,
D _R = (pc/mi/ln		12					/mi/ln)	12		
LOS = (Exhibit 2	,						,			
Speed Deterr	-				LOS = C (Exhibit 25-4) Speed Determination					
					$D_s = 0.349$ (Exhibit 25-19)					
-	ibit 25-19)				$S_{R}^{=}$ 53.7 mph (Exhibit 25-19)					
	ibit 25-19)				$S_0^{=}$ 65.3 mph (Exhibit 25-19) S_0^{=} 65.3 mph (Exhibit 25-19)					
	iibit 25-19) iibit 25-14)						•			
S – mpn (Exn	iidit 25-14)				5 = 56	o.o mph	(Exhibit 2	:5-15)		

HCS+TM Version 5.5

Generated: 12/5/2011 12:24 PM

		RAMP	S AND RAM	P JUNCTI	ONS WOR	RKSI	IEET			
General Infor	mation			Site Infor	mation					
Analyst Agency or Company Date Performed Analysis Time Perioc Project Description	2/7/20 3 PM P	eak	Jur Jur	eeway/Dir of Tr nction isdiction alysis Year	Bi H	ach Bu	Vestbound uxton Exit Ra ccenario 7 2	mp		
Inputs	U									
Upstream Adj Ramp		Terrain: Lev	el						Downstrea Ramp	am Adj
□ Yes □ Or	ı								T Yes	🗖 On
🗹 No 🗖 Of	f									C Off
L _{up} = ft			S _{FF} = 60.0 mph		S _ 45	0 mpł	<u></u>		L _{down} =	ft
V _u = veh/h	I			how lanes, L _A	S _{FR} = 45 , L _D ,V _R ,V _f)	.0 mpi	I		V _D =	veh/h
Conversion to	o pc/h Und	der Base	Conditions						•	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	: HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2214	0.90	Level	3	0	0.9	85	1.00	24	97
Ramp	303	0.90	Level	3	0	0.9	85	1.00	3	42
UpStream										
DownStream Merce Areas										
Estimation of	Merge Areas Estimation of v ₁₂				Estimatio			erge Areas		
Estimation of		· - ·			LSuman					
	$V_{12} = V_{F}$	1.00						′ _R + (V _F - V		
L _{EQ} =		ation 25-2 o	-		L _{EQ} =			uation 25-8	,	
P _{FM} =	-	Equation (Exhibit 25-5)		P _{FD} =			2 using Ed	quation (Exl	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =			pc/h		
$V_3^{}$ or $V_{av34}^{}$			5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$			pc/h (Equa	ation 25-15	or 25-16)
Is V_3 or $V_{av34} > 2,70$					Is $\rm V_3$ or $\rm V_{av34}$					
Is V_3 or $V_{av34} > 1.5$ '					Is V_3 or V_{av34}	> 1.5				
12a	-	Equation 2	5-8)		If Yes,V _{12a} =		pc/	h (Equatior	า 25-18)	
Capacity Che	ecks				Capacity	Che	ecks			
	Actual	(Capacity	LOS F?			Actual	Ca	apacity	LOS F?
					V _F		2497	Exhibit 25-1	4 6900	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$ -	V_{R}	2155	Exhibit 25-1	4 6900	No
					V _R		342	Exhibit 25-	3 2100	No
Flow Entering	g Merge In	fluence A	Area		Flow Ent	erin	g Diverg	e Influen	ice Area	
	Actual	1	Desirable	Violation?		A	ctual	Max Desira	ble	Violation?
V _{R12}		Exhibit 25-7			V ₁₂	1	811 E	xhibit 25-14	4400:All	No
Level of Serv	ice Detern	nination (if not F)		Level of	Serv	vice Dete	erminatio	n (if not	F)
$D_{R} = 5.475 + 0.$	00734 v _R + (0.0078 V ₁₂	- 0.00627 L _A		D	_R = 4	.252 + 0.0	086 V ₁₂ - 0	.009 L _D	
D _R = (pc/mi/ln)				D _R = 15.3	3 (pc/	mi/ln)			
LOS = (Exhibit 2	25-4)				LOS = B (I	Exhib	it 25-4)			
Speed Determ	peed Determination				Speed Determination					
M _S = (Exibit 2	= (Exibit 25-19)				D _s = 0.329 (Exhibit 25-19)					
S _R = mph (Exh	nibit 25-19)				S _R = 54.1 mph (Exhibit 25-19)					
	ibit 25-19)				S ₀ = 65.8	8 mph	(Exhibit 25	5-19)		
	nibit 25-14)				S = 56.9	9 mph	(Exhibit 25	5-15)		

HCS+TM Version 5.5

Generated: 12/5/2011 12:25 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1)(ii)(ii) 70 70 70 70 70 70 70 70 70 70	B C C C	50 1600 1750 10 10 100 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)		Cite Inform			
General Information Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 AM Peak		Site Inform Highway/Dire From/To Jurisdiction Analysis Year	ction of Travel	SR 32 Ea Eastgate Scenario 2030 Alt	Ent to Glen Este Ent 8 L1
Project Description Segmer	nt IVa- P40310000		Des.(N)		- Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	2380	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.90 3 0 Level mi	
Driver type adjustment Calculate Flow Adjustr				Up/Down %		
f _p Ε _τ	1.00 1.5		E _R f=1/[1+P.(F.	_T - 1) + P _R (E _R - 1)]	1.2 0.985	
Speed Inputs				d Adj and FFS		
Lane Width	12.0	ft	f _{LW}		-	mi/h
Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N	6.0 0.50 3	ft I/mi	f _{LC} f _{ID}			mi/h mi/h
FFS (measured) Base free-flow Speed, BFFS	60.0	mi/h mi/h	f _N FFS		60.0	mi/h mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 895	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S LOS	60.0 14.9 B	mi/h pc/mi/ln	t _p) S D = v _p / S Required Nur	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre ur volume		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2010 University of Florida.				Version 5.5		erated: 12/5/2011 12:34 F

HCS+TM Version 5.5

Generated: 12/5/2011 12:34 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)		Oite Inform			
General Information Analyst	sta		Site Inform	nation ection of Travel	SR 32 F	astbound
Agency or Company Date Performed Analysis Time Period	TranSystems 2/7/2011 PM Peak		From/To Jurisdiction Analysis Yea			Ent to Glen Este Ent
-	nt IVa- P40310000)4		•	2000 / 11	<u> </u>
Voper.(LOS)			Des.(N)		🗌 Plai	nning Data
Flow Inputs						
Volume, V AADT	4025	veh/h veh/day	Peak-Hour Fa %Trucks and		0.90 3	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	4.00	veh/h	%RVs, P _R General Terra Grade %	Length	0 Level mi	
Driver type adjustment Calculate Flow Adjustn	1.00 nents			Up/Down %		
f _p	1.00		E _R		1.2	
Έ _Τ	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs				d Adj and FFS		
Lane Width	12.0	ft			,	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3	0,111	f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
LOS and Performance	Measures	111/11	Design (N))		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)		pc/h/ln	<u>Design (N)</u> Design LOS))HV) / (PHF x N x	f _{HV} x	pc/h
p [,] S	60.0	mi/h	f _p)			F */
$D = v_p / S$	25.2	pc/mi/ln	S D			mi/h
LOS	С		$D = v_p / S$	anh an af l		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	All Rights Reserved			Version 5.5		erated: 12/5/2011 12:35 F

HCS+TM Version 5.5

Generated: 12/5/2011 12:35 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
	Flow Rate (pc/h/ln)	1000 2000				
General Information			Site Inform		00.00	
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 AM Peak		From/To Jurisdiction Analysis Yea	ction of Travel r		astbound xton Ent to Olive Ext 3
Project Description Segmer	nt IVa - P4031000					
Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	2450	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 nents	veh/h	Grade %	Length Up/Down %	Level mi	
f _p	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	-			d Adj and FFS		
Lane Width	12.0	ft	f _{LW}		-	mi/h
Rt-Shoulder Lat. Clearance	6.0	ft				mi/h
Interchange Density	0.50	I/mi	f _{LC}			
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 921	pc/h/ln	Design (N) Design LOS v _p = (V or DD	9HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	(p)			: //-
D = v _p / S	15.4	pc/mi/ln	S D-V/S			mi/h
LOS	В		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design hc Copyright © 2010 University of Florida.				Version 5.5		nerated: 12/5/2011 12:38

HCS+TM Version 5.5

Generated: 12/5/2011 12:38 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed FFS = 75 min 70 60 65 min 60 65 min 50 55 min 50 100 min 50 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 50			2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information Analyst	sta		Site Inform	nation ection of Travel	SR 32 Ea	esthound
Agency or Company Date Performed Analysis Time Period	TranSystems 2/7/2011 PM Peak		From/To Jurisdiction Analysis Yea			xton Ent to Olive Ext
	nt IVa - P4031000					
Oper.(LOS)			Des.(N)		Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	4045	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn					1.0	
f _p	1.00 1.5		E _R		1.2 0.985	
E _T	1.5			T - 1) + P _R (E _R - 1)]		
Speed Inputs Lane Width	12.0	ft		d Adj and FFS		
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
nterchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3	1/1111	f _{ID}			mi/h
	60.0	mi/h	f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS LOS and Performance	Mogeuros	mi/h		<u>\</u>		
$\frac{\text{Operational (LOS)}}{v_p = (V \text{ or DDHV}) / (PHF x N x_p)}$		pc/h/ln	Design (N) Design LOS $V_p = (V \text{ or } DD)$) DHV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	(p)			
$D = v_p / S$	25.4	pc/mi/ln	S D = V / S			mi/h
_OS	С		$D = v_p / S$	mber of Longe N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	All Rights Reserved			Version 5.5		erated: 12/5/2011 12:39

HCS+TM Version 5.5

Generated: 12/5/2011 12:39 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed FFS = 75 min 70 60 65 min 60 65 min 50 55 min 50 100 min 50 100 min 50 100 min 50 100 min 50 100 min 50 100 min 60 55 min 60 100 min 50 100 min 60 100 min 60 100 min			2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO: FFS, LO: FFS, LO: FFS, LO:	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	sta		Site Inform	nation ection of Travel	SR 32 Ea	athound
Agency or Company Date Performed Analysis Time Period	TranSystems 2/7/2011 AM Peak		From/To Jurisdiction Analysis Yea			e Ent to Elick Ext
-	nt IVa- P40310000)4		-		-
Oper.(LOS)			Des.(N)		🗌 Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	2580	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn			_			
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	10.0	<i>t</i> 1	Calc Spee	d Adj and FFS	5	
ane Width	12.0	ft 4	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0 0.50	ft L/m:	f _{LC}			mi/h
nterchange Density	0.50 3	l/mi	f _{ID}			mi/h
Number of Lanes, N	-		f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS -OS and Performance	Maggurag	mi/h		<u>\</u>		-
$\frac{\text{Dorational (LOS)}}{V_p = (V \text{ or DDHV}) / (PHF x N x_p)}$		pc/h/ln	Design (N) Design (N) Design LOS $V_p = (V \text{ or DD})$) DHV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			
$D = v_p / S$	16.2	pc/mi/ln	S D v / S			mi/h
_OS	В		$D = v_p / S$	mbor of Lanca N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ui voiume			Version 5.5		erated: 12/5/2011 12:36

HCS+TM Version 5.5

Generated: 12/5/2011 12:36 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
S0 Froe-Flow Speed FFS = 75 mith 70 65 mith 70 mith 60 65 mith 60 mith 50 10 mith 55 mith 50 10 mith 55 mith 40 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 57 mith 60 55 mith 56 mith 60 60 mith 57 mith 50 10 mith 58 mith 60 60 mith 50 mith 60 60 mith 60 mith 60 60 mith 60 mith 60 60 mith 60 mith 60 60 mith 60 mith 60 60 mith 60 mith 60 60 mith 60 mith	B- C		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO: FFS, LO: FFS, LO: FFS, LO:	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
<u> </u>	Flow Rate (pc/h/ln)					
General Information	sta		Site Inform	nation ection of Travel	SR 32 Ea	asthound
Agency or Company Date Performed Analysis Time Period	TranSystems 2/7/2011 PM Peak		From/To Jurisdiction Analysis Yea			e Ent to Elick Ext
-	it IVa- P40310000)4	7	·	2000 /	
Moper.(LOS)			Des.(N)		🗌 Plar	ning Data
Flow Inputs Volume, V	4365	veh/h	Peak-Hour Fa		0.90	
AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D		veh/day	%Trucks and %RVs, P _R General Terra	ain:	3 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustn	1.00	veh/h	Grade %	Length Up/Down %	mi	
f _p	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs				d Adj and FFS	3	
Lane Width	12.0	ft	f _{LW}	,	-	mi/h
Rt-Shoulder Lat. Clearance	6.0	ft				mi/h
nterchange Density	0.50	l/mi	f _{LC}			
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N › f _p)	< f _{HV} x 1641	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	9HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			. //
$D = v_p / S$	27.4	pc/mi/ln	S D=v /S			mi/h
LOS	D		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume			۲		<u>ح</u> .

HCS+TM Version 5.5

Generated: 12/5/2011 12:37 PM

			FREEWA	Y WEAV	ING WOR	KSHEE	Т			
Genera	al Informat	ion			Site Info	rmation				
Analyst Agency/Co Date Perfo Analysis T		STA TRAN 8/3/20 AM PI			Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	g Location	GLEN	SR 32 EASTBOUND GLEN ESTE ON TO ELICK OFF 2030 alt 3 (L 1)		
Inputs					1					
Freeway fr Weaving n Weaving s Terrain	ree-flow speed, s number of lanes, seg length, L (ft)	N	60 4 200 Lev	el	Weaving type Volume ratio Weaving ratio	, VR			.19 .36	
	rsions to p	1	1	1	ù.		1 (1 ,	<u> </u>	
(pc/h)	V	PHF	Truck %	RV %	Ε _Τ	E _R	f _{HV}	fp	V	
V _{o1}	2060	0.90	3	0	1.5	1.2	0.985	1.00	2323	
V _{o2}	20	0.90	3	0	1.5	1.2	0.985	1.00	22	
V _{w1}	320	0.90	3	0	1.5	1.2	0.985	1.00	360	
V _{w2}	180	0.90	3	0	1.5	1.2	0.985	1.00	203	
V _w		I	I	563	V _{nw}				2345	
V V				000	* nw				2908	
	ng and No	n Waavin	a Speed	<u> </u>					2900	
weavii	ng and No	n-weavin	Unconstr				Cons	trained		
		Weaving			/ing (i = nw)	Weavi	ng (i = w)		ving (= nw)	
a (Exhibit :	24-6)	0.1	· /		035	weavi	iig (i – w)	Non-wea	vilig (= 11w)	
b (Exhibit 2	· · · · · · · · · · · · · · · · · · ·	2.20		4.						
c (Exhibit 2	24-6)	0.9	7	1.3	30			ĺ		
d (Exhibit 2	/	0.80		0.						
	nsity factor, Wi	0.30)	0.	12			ļ		
Weaving and speeds, Si (m	non-weaving ii/h)	53.4	0	59	.46					
Maximum	f lanes required number of lanes If Nw < Nw	s, Nw (max) (max) uncons	trained operat	ion			w (max) const	rained operati	on	
	ng Segmer		Density,	1	Service,	and Cap	pacity			
Weaving s	egment speed,	S (mi/h)		58.18						
Weaving s	egment density,	D (pc/mi/ln)		12.50						
Level of se	ervice, LOS			В						
Capacity o	of base condition	, c _b (pc/h)		8175						
Capacity a	as a 15-minute fl	ow rate, c (vel	h/h)	8054						
Capacity a	as a full-hour vol	ume, c _h (veh/ł	ו)	7249						
Notes										
Junctions". b. Capacity c. Capacity d. Three-la such cases e. Four-land such cases f. Capacity g. Five-lane cases.	e Type A segmen	asic freeway ca hstrained opera nts do not oper ts do not opera aximum allowa ts do not opera	apacity. ting conditions. ate well at volu te well at volum ble weaving flo te well at volum	me ratios grea ne ratios greate w rate: 2,800 p ne ratios greate	ter than 0.45. P er than 0.35. Po bc/h (Type A), 4, er than 0.20. Poo	oor operation or operations 000 (Type B) or operations	s and some loc and some loca , 3,500 (Type C and some local	al queuing are l queuing are e :). queuing are e	expected in expected in xpected in suc	
cases. i. Type C w cases.	veaving segments	do not operate	well at volume	Ū	than 0.50. Poor	·	nd some local c		Dected in such	

			FREEWA	Y WEAV	ING WOF					
Genera	I Informat	ion			Site Info	rmation				
Analyst Agency/Co Date Perfo Analysis Ti	rmed	STA TRAN 8/3/20 AM PI			Freeway/Dir of Travel Weaving Seg Location Jurisdiction Analysis Year		GLEN	SR 32 EASTBOUND GLEN ESTE ON TO ELICK OFF 2030 alt 3 (L 1)		
Inputs					Л					
Freeway fro Weaving n Weaving se Terrain	ee-flow speed, s umber of lanes, eg length, L (ft)	N	60 4 200 Lev	el	Weaving type Volume ratio Weaving ratio	, VR		A 0.1 0.1		
(pc/h)	rsions to p	PHF	Truck %	RV %		F	f	fp	v	
						E _R	f _{HV}	<u> </u>		
V _{o1}	3455	0.90	3	0	1.5	1.2	0.985	1.00	3896	
V _{o2}									56	
V _{w1}									642	
V _{w2}	290	0.90	3	0	1.5	1.2	0.985	1.00	327	
V _w		•	•	969	V _{nw}		•	•	3952	
V	-			L		1			4921	
	ig and Nor	n-Weavin	a Speed	5						
mourn	ig and rio		Unconstr				Cons	trained		
		Weaving			ving (i = nw)	Weavi	ng (i = w)		ving (= nw)	
a (Exhibit 2	24-6)	0.1	· /		035	ĺ		1		
b (Exhibit 2		2.20		*	00			ļ		
c (Exhibit 2	/	0.97			30	ļ		ļ		
d (Exhibit 2	/	0.80		1	75 25	ļ		<u> </u>		
Weaving inten Weaving and r		0.5		ł						
speeds, Si (mi	/h)	48.2			.01			,		
	lanes required the number of lanes		ned operation	, Nw	1.27 1.40					
	If Nw < Nw		trained onerat	ion		if Nw > N	w (max) const	rained onerati	on	
Weavin	ng Segmer	()					\ /			
	egment speed,		Density,	53.52			Juony			
	egment density,	, ,		22.99						
	rvice, LOS			C						
	f base condition	. a. (na/h)								
		~	. //. \	8157						
	s a 15-minute fl		,	8036						
	s a full-hour volu	ume, c _h (veh/h	1)	7232						
Notes										
Junctions". b. Capacity c. Capacity d. Three-lan such cases. e. Four-lane such cases. f. Capacity o g. Five-lane cases.	Type A segmen constrained by m Type A segment	asic freeway ca hstrained opera nts do not opera ts do not opera aximum allowa ts do not opera	apacity. ting conditions. ate well at volu te well at volun ble weaving flo te well at volun	me ratios great ne ratios great w rate: 2,800 p le ratios greate	ater than 0.45. P er than 0.35. Po bc/h (Type A), 4 er than 0.20. Po	oor operation or operations ,000 (Type B) or operations	s and some loc and some loca , 3,500 (Type C and some local	al queuing are l queuing are e :). queuing are e	expected in expected in xpected in suc	
cases.	eaving segments	·		0	than 0.50. Poor	·	nd some local c			

Copyright $\ensuremath{\textcircled{O}}$ 2010 University of Florida, All Rights Reserved

	BASIC FF		EGMENTS W	ORKSHEET		
80 Free-Flow Speed FIS = 75 milh 70 70 milh 70 milh 70 65 milh 60 milh 60 55 milh 55 milh 50 10 S A 52 40 50 milh 55 milh		1750 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, Ν, ν _p FFS, LOS, FFS, LOS, FFS, Ν, AA FFS, LOS, FFS, LOS,	Ń v _P , S, D .DT LOS, S, D AADT N, S, D
	1200 Flow Rate (pc/h/ln)	1600 200	0 2400			
General Information			Site Inform	nation		
Analyst Agency or Company Date Performed	sta TranSystems 2/7/2011		From/To Jurisdiction	ection of Travel	Ext	stbound on ent toGlenEste
Analysis Time Period Project Description Segmer	AM Peak at IVa - P4031000	04	Analysis Yea	r	2030 Alt 3	
✓ Oper.(LOS)			Des.(N)		🗌 Plann	ing Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	4205	veh/h veh/day veh/h	Peak-Hour F %Trucks and %RVs, P _R General Terr Grade %	l Buses, P _T ain: Length	0.90 3 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents			Up/Down %		
f _p E _T	1.00 1.5		E _R funz = 1/[1+P+(E	_T - 1) + P _R (E _R - 1)]	1.2 0.985	
Speed Inputs	-			d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance Interchange Density Number of Lanes, N	12.0 6.0 0.50 3	ft ft I/mi	f _{LW} f _{LC} f _{ID}			mi/h mi/h mi/h
FFS (measured) Base free-flow Speed, BFFS	60.0	mi/h mi/h	f _N FFS		60.0	mi/h mi/h
LOS and Performance	Measures	111/11	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N		pc/h/ln	<u>Design (N)</u> Design LOS))HV) / (PHF x N x	f _{un} x	
f _p) S D = v _p / S LOS	60.0 26.4 D	mi/h pc/mi/ln	f _p) S D = v _p / S	mber of Lanes, N	HV -	pc/h mi/h pc/mi/ln
Glossary			Factor Lo	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-	23-8, 23-10, 23-1	1 f	_{LW} - Exhibit 23-4 _{LC} - Exhibit 23-5 _N - Exhibit 23-6 _{ID} - Exhibit 23-7
Convright © 2010 University of Florida			TM	Varian E E	0	ated: 12/5/2011 12:41

Generated: 12/5/2011 12:41 PM

	BASIC FF	REEWAY SE	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 milh 70 70 milh 70 milh 70 65 milh 60 milh 60 55 milh 50 50 10 S A 2 10 50 10 S A 30 50 50	B	50 50 1/50 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v FFS, LOS, N FFS, N, AAI FFS, LOS, N FFS, LOS, N	Í v _p , S, D DT LOS, S, D ADT N, S, D
• • 0 400 800	1200 Flow Rate (pc/h/ln)	1600 200	0 2400			
General Information			Site Inforr	nation		
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 PM Peak		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	SR 32 West Bach Buxtor Ext 2030 Alt 3	bound n ent toGlenEste
	ent IVa - P403100	004	Analysis Tea	1	2000 All 0	
✓ Oper.(LOS) Flow Inputs			Des.(N)		🗌 Plannii	ng Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	3200	veh/h veh/day veh/h	Peak-Hour F %Trucks and %RVs, P _R General Terr Grade %	l Buses, P _T ain: Length	0.90 3 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents			Up/Down %		
f _p E _T	1.00 1.5		E _R f _{uv} = 1/[1+P _t (E		1.2 0.985	
Speed Inputs	-			d Adj and FFS		
Lane Width Rt-Shoulder Lat. Clearance nterchange Density	12.0 6.0 0.50	ft ft I/mi	f _{LW} f _{LC}	•		mi/h mi/h
Number of Lanes, N FFS (measured)	3 60.0	mi/h	f _{ID} f _N			mi/h mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N f)	x f _{HV} x 1203	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	pc/h
f _p) S D = v _p / S LOS	60.0 20.0 C	mi/h pc/mi/ln	f _p) S D = v _p / S Required Nu	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Lo	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-	23-8, 23-10, 23-1	1 f _L f _N	_W - Exhibit 23-4 _C - Exhibit 23-5 - Exhibit 23-6 _O - Exhibit 23-7
DDHV - Directional design ho	All Rights Reserved			Vorcion 5 5		ed: 12/5/2011 12:42

HCS+TM Version 5.5

Generated: 12/5/2011 12:42 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
S0 Frce-Flow Speed FIS = 75 min 70 60 65 min 60 55 min 50 10 K A 10 55 min 10 60 10 55 min 10 60	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
440 800	Flow Rate (pc/h/ln)	1000 2000	, 2400			
General Information			Site Inform		0.0.00.14	
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 AM Peak		From/To Jurisdiction Analysis Yea	ection of Travel r		/estbound e Ext to Eastgate Exit 3
	nt IVa - P4031000		- 6.0			
Oper.(LOS)			Des.(N)		l Pla	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	3940	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
,	1.00		E _R		1.2	
f _ρ Ε _τ	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	1.0		*	d Adj and FFS		
_ane Width	12.0	ft			5	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
nterchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
LOS and Performance	Moasuros	111//11	Design (N)	1		
$\frac{\text{Operational (LOS)}}{\text{v}_{p}} = (\text{V or DDHV}) / (\text{PHF x N})$		pc/h/ln	<u>Design (N)</u> Design LOS	/ DHV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			•
$D = v_p / S$	24.7	pc/mi/ln	S D - X / S			mi/h
LOS	С		$D = v_p / S$	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	our volume			, p	_, _0 0	
Copyright © 2010 University of Florida,	All Rights Reserved		uco TM	Version 5.5	Cor	nerated: 12/5/2011 12:43

HCS+TM Version 5.5

Generated: 12/5/2011 12:43 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	<u>Input</u> FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	NS, V _P N, S, D IS, NV _P , S, D AADTLOS, S, D IS, AADTN, S, D
	Flow Rate (pc/h/ln)					
General Information			Site Inform		0.5.00.14	
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 PM Peak		Fignway/Dire From/To Jurisdiction Analysis Yea	ection of Travel r		/estbound e Ext to Eastgate Exit 3
	nt IVa - P4031000					
✓ Oper.(LOS) Flow Inputs			Des.(N)		Pla	nning Data
Volume, V AADT Peak-Hr Prop. of AADT, K	2795	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R	Buses, P _T	0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
f _p	1.00		E _R		1.2	
Ε _τ	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs				d Adj and FFS		
Lane Width	12.0	ft			-	mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 1051	pc/h/ln	Design (N) Design LOS v _p = (V or DD	HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	^р)			
D = v _p / S	17.5	pc/mi/ln	S D = v _p / S			mi/h pc/mi/ln
LOS	В		F F	mber of Lanes, N		ρο/ΠΙ/Π
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
Copyright © 2010 University of Florida.				Version 5.5		nerated: 12/5/2011 12:44 F

HCS+TM Version 5.5

Generated: 12/5/2011 12:44 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
S0 Froe-Flow Speed FFS = 75 mith 70 65 mith 70 mith 60 65 mith 60 mith 50 10 mith 55 mith 50 10 mith 55 mith 40 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 56 mith 60 55 mith 57 mith 60 55 mith 56 mith 60 60 mith 57 mith 60 55 mith 56 mith 60 60 mith 57 mith 60 60 mith 60 mith 60 60 mith 60 mith 60 60 mith 60 mith 60 60 mith 60 mith 60 60 mith 60 mith 60 60 mith 60 mith	B- C	1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
<u> </u>	Flow Rate (pc/h/ln)					
General Information	sta		Site Inform	nation ection of Travel	SR 32 W	estbound
Agency or Company Date Performed Analysis Time Period	TranSystems 2/7/2011 AM Peak		From/To Jurisdiction Analysis Yea			nch Ent to Bach Ext
-	it IVa - P4031000	04				-
Moper.(LOS)			Des.(N)		🗌 Plar	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	4155	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn	nents					
f _p	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	5	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3		f _N			mi/h
FFS (measured)	60.0	mi/h			60.0	
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N › f _p)	(f _{HV} x 1562	pc/h/ln	Design (N) Design LOS V _p = (V or DD	9HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			
$D = v_p / S$	26.0	pc/mi/ln	S D v (S			mi/h
LOS	D		$D = v_p / S$	mbor of Longe N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume			۲		<u>م</u>

HCS+TM Version 5.5

Generated: 12/5/2011 12:40 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed FTS = 75 mith 70 65 mith 70 mith 80 60 65 mith 90 55 mith 55 mith 90 55 mith 55 mith 90 60 55 mith 90 60 55 mith 90 60 55 mith 90 60 55 mith 90 60 55 mith 90 60 60 mith			2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v FFS, LOS FFS, LOS FFS, LOS FFS, LOS	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
V 400 200	Flow Rate (pc/h/ln)	1000 2000	2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 PM Peak		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel r	SR 32 We Olive Bra 2030 Alt 3	nch Ent to Bach Ext
	nt IVa - P4031000					
✓ Oper.(LOS) Flow Inputs		I	Des.(N)		l Plan	ining Data
Volume, V AADT Peak-Hr Prop. of AADT, K	3125	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustn	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs				d Adj and FFS	3	
_ane Width	12.0	ft		·····	-	mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
nterchange Density	0.50	I/mi	f _{LC}			
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N x ^c p)	k f _{HV} x 1175	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	DHV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	(_p)			
$D = v_p / S$	19.6	pc/mi/ln	S D-v/S			mi/h
LOS	С		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume		_, _, •	· р		

HCS+TM Version 5.5

Generated: 12/5/2011 12:40 PM

Gener	al Informat				/ING WOR Site Info				
Analyst Agency/Co Date Perfo	ompany	STA			Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	of Travel Location	SR 32 ELICI	2 WESTBOUN K ON TO GLE alt 3 (L 1)	ND EN ESTE OFF
-									
Weaving r Weaving s Terrain	ree-flow speed, number of lanes, seg length, L (ft)	N	60 4 200 Lev	/el	Weaving type Volume ratio Weaving ratio	, VR		A 0. 0.1	
	rsions to p	1	1	1			·		·
(pc/h)	V	PHF	Truck %	RV %	Ε _Τ	ER	f _{HV}	fp	v
V _{o1}	3370	0.90	3	0	1.5	1.2	0.985	1.00	3800
V _{o2}	30	0.90	3	0	1.5	1.2	0.985	1.00	33
V _{w1}	570	0.90	3	0	1.5	1.2	0.985	1.00	642
V _{w2}	235	0.90	3	0	1.5	1.2	0.985	1.00	265
		0.50		· · ·		1.2	0.000	1.00	
V _w	_			907	V _{nw}				3833
V									4740
Weavii	ng and No	<u>n-Weavin</u>							
		M/s suite s	Unconst		······································	\\/= =		strained	·····
a (Exhibit :	24.6)	Weaving 0.1			ving (i = nw) 1035	vveavi	ng (i = w)	INON-VVea	ving (= nw)
b (Exhibit :		2.2			.00				
c (Exhibit)	/	0.9		-	.30				
d (Exhibit		0.8			.75			1	
Weaving inter	nsity factor, Wi	0.4	8	0.	.23				
Weaving and speeds, Si (m		48.7	'1	55	5.54				
Maximum	f lanes required number of lanes If Nw < Nw ng Segmer	s, Nw (max) (max) uncons	trained operat	tion	P		w (max) const	rained operati	on
	egment speed,		, Density,	54.09	Jeivice,	anu Ca	Jacity		
— – – – –	0	\ /							
— – – – –	egment density	, ה (hc/וווו/ווו)		21.91 C					
		(no/h)		<u> </u>					
	of base condition	v		8188					
	as a 15-minute fl		,	8067					
Capacity a	as a full-hour vol	ume, c _h (veh/l	n)	7260					
Notes									
Junctions". b. Capacity c. Capacity d. Three-la such cases e. Four-lan such cases f. Capacity g. Five-lane cases.	e Type A segmen constrained by m e Type A segmen	asic freeway c: nstrained opera ents do not opera its do not opera aximum allowa ts do not opera	apacity. tting conditions. rate well at volu ate well at volun ble weaving flo te well at volun	ime ratios great ne ratios great w rate: 2,800 ne ratios great	ater than 0.45. P er than 0.35. Po pc/h (Type A), 4, er than 0.20. Poo	oor operation or operations 000 (Type B) or operations	s and some loc and some loca , 3,500 (Type C and some local	al queuing are l queuing are e ;). l queuing are e	expected in expected in xpected in suc
cases.	veaving segments			Ū	than 0.50. Poor	operations a	nd some local c		
ight © 2010	University of Flor	rida, All Rights	Reserved		HCS+	^{FM} Version 5	5.5	Generated:	12/5/2011

Copyright $\textcircled{\sc 0}$ 2010 University of Florida, All Rights Reserved

Generated: 12/5/2011 1:10 PM

Gonora	I Informat	ion			/ING WOR Site Info					
Genera	li informat	lon			Site info	rmation				
Analyst Agency/Co Date Perfo Analysis Ti	rmed	STA TRAN 8/3/2 AM P			Freeway/Dir o Weaving Seg Jurisdiction Analysis Year	Location	ELIC	SR 32 WESTBOUND ELICK ON TO GLEN ESTE (2030 alt 3 (L 1)		
Inputs										
Freeway fre Weaving nu Weaving se Terrain	ee-flow speed, umber of lanes, eg length, L (ft)	N	60 4 200 Lev	el	Weaving type Volume ratio, Weaving ratio	VR		A 0.2 0.4		
	sions to p	1	1	1	- u - u	_	1	<u> </u>	1	
(pc/h)	V	PHF	Truck %	RV %	Ε _Τ	E _R	f _{HV}	fp	V	
V _{o1}	2380	0.90	3	0	1.5	1.2	0.985	1.00	2684	
V _{o2}	20	0.90	3	0	1.5	1.2	0.985	1.00	22	
V _{w1}	415	0.90	3	0	1.5	1.2	0.985	1.00	468	
V _{w2}	385	0.90	3	0	1.5	1.2	0.985	1.00	434	
				902	V _{nw}				2706	
V _w V	-			302	* nw					
			0						3608	
weavin	ng and No	n-weavir	<u> </u>				Cana	trainad		
		Weaving	Unconstr		ving (i = nw)	Woavi	ng (i = w)	trained	ving (= nw)	
a (Exhibit 2	24-6)	vveavinų	y (i – w)	Non-wea	vilig (i – tiw)		.35	1	020	
b (Exhibit 2	!						.20	1	00	
c (Exhibit 2							.97	2	30	
d (Exhibit 2	24-6)					0	.80	0.	75	
Weaving intens						0	.96	0.	.11	
Weaving and r speeds, Si (mi/						4().49	59	.91	
Maximum r	lanes required number of lanes If Nw < Nw Ig Segmen	s, Nw (max) r(max) uncons	strained operat	ion	1.43 1.40 F Service,		w (max) consti pacity	rained operati	on	
Weaving se	egment speed,	S (mi/h)		53.49						
Weaving se	egment density	, D (pc/mi/ln)		16.86						
Level of se	rvice, LOS			В						
Capacity of	f base condition	ı, c _b (pc/h)		7805						
Capacity as	s a 15-minute fl	ow rate, c (ve	h/h)	7690						
Capacity as	s a full-hour vol	ume, c, (veh/	h)	6921						
Notes		2 11 2	,							
Junctions". b. Capacity c. Capacity d. Three-lan such cases. e. Four-lane such cases. f. Capacity of g. Five-lane cases.	constrained by b occurs under con le Type A segme Type A segmen Constrained by m Type A segmen	asic freeway c nstrained opera nts do not opera ts do not opera aximum allowa ts do not opera	apacity. ating conditions. rrate well at volui ate well at voluim able weaving flow ate well at voluim	me ratios great le ratios great w rate: 2,800 e ratios great	and diverge area ater than 0.45. Pot er than 0.35. Pot pc/h (Type A), 4, er than 0.20. Poc	por operation or operations 000 (Type B) or operations	s and some loc and some loca , 3,500 (Type C and some local	al queuing are l queuing are e). queuing are e	expected in expected in xpected in suc	
cases.		-		-	r than 0.80. Poor than 0.50. Poor	-			-	

Copyright $\textcircled{\sc 0}$ 2010 University of Florida, All Rights Reserved

Analyst: Agency: TranSystems Date: 7/20/2011 Period: AM Peak Hour Project ID: Segment IVa Alt 8 L1 E/W St: Old SR 74 Inter.: Elick @ Old 74 Area Type: All other areas Jurisd: Year : 2030 Alt 3

N/S St: Elick

		SI	GNALIZ	ZED IN	TERSE	CTION	SUMMAF	RY			
	Eastbo		1	stboun			thbour			hbou	
	L T	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes LGConfig Volume Lane Width RTOR Vol	0 1 T 200 12.	R	 L 340 12.0	1 T 530 12.0	0	1 L 320 12.0	1	1 R 330 12.0	0	0	0
Duration	0.25	Area 1									
 Phase Combi	nation 1	2	Sig 3	nal O 4	perat I	lons	5	6	7		
EB Left		2	C	т	 NB	Left	A	0	,	0	
Thru		A			Ì	Thru					
Right		A			İ	Right	A				
Peds						Peds					
WB Left	A	A			SB	Left					
Thru Right	A	A				Thru Right					
Peds						Peds					
NB Right	P				 EB	Right	А				
SB Right					WB	Right					
Green Yellow All Red	7.0 3.5 1.5	3.5					20.0 3.5 1.5 Cyc]	le Len	gth: (50.0	secs
		Interse					ary				
Appr/ Lan Lane Gro		dj Sat ow Rate		atios		Lane (Group	Арр	roach		
Grp Cap	acity	(s)	v/c	g/	C	Delay	LOS	Dela	y LOS		
Eastbound											
т 55		863	0.40		30	17.2	В	9.7	A		
	.34 1	583	0.22	2 0.	72	2.9	A				
Westbound L 53	6 1	770	0.71	0.	50	16.9	Ð				
L 53 T 93		863	0.71		50	16.9 12.4	B B	14.1	В		
	- 1		0.00		~ ~		2	- · · -			
Northbound											
L 59	0 1	770	0.60	0.0	33	18.4	В				
R 84 Southbound	4 1	583	0.43	30.	53	8.9	A	13.6	В		

Intersection Delay = 13.0 (sec/veh) Intersection LOS = B

Analyst: Agency: TranSystems Date: 7/20/2011 Period: PM Peak Hour Project ID: Segment IVa Alt 8 L1 E/W St: Old SR 74 Inter.: Elick @ Old 74 Area Type: All other areas Jurisd: Year : 2030 Alt 3

N/S St: Elick

							CTION						
		stbou		1	stbour		1	thbou			thbou		
	L 	Т	R	L 	Т	R	L	Т	R	L	Т	R	
No. La LGConf Volume Lane W RTOR V	ig idth	т 350	1 R 435 12.0 0	1 L 200 12.0	1 T 295 12.0	0	1 L 400 12.0	0	1 R 360 12.0 0	0	0	0	
 Durati	·		Area '	 Type:	All d	 other	 areas						I
				Sig		Operat							
	Combinatio	n 1	2	3	4		_	5	б	7	8		
EB Le			7			NB	Left	A					
	ru ght		A A				Thru Right	A					
Pe	-		А				Peds	А					
WB Le		A	A			SB	Left						
	ru	A	A				Thru						
	ght						Right						
Pe	ds ght	P					Peds Right	7					
	ght	P				EB WB	Right	A					
Green	9110	7.0	16.5			1 112	112 9110	21.5					
Yellow		3.5	3.5					3.5					
All Re	d	1.5	1.5					1.5					
		т,	ntorgo	ation	Dowf	- xm - n -	e Summ		le Len	igth:	60.0	S	ecs
 Appr/	 Lane		j Sat			Jrmanc		-		roach			
Lane	Group		w Rate					oroup		104011			
Grp	Capacity		(s)	v/c	g,	/C	Delay	LOS	Dela	y LOS			
Eastbo	und												
Т	512	18	63	0.70	5 0	.28	26.5	С	13.9	В			
R	1134	15	83	0.43	3 0	.72	3.7	А					
Westbo		1 🗆	70	0 6		4 17	14 0						
L T	364 885	17 18		0.61 0.31		.47 .47	14.0 10.3	B B	11.8	В			
Ŧ	005	10		0.5	, 0	. 1/	T0.0	CI.	±±.0	<u>с</u>			
Northb	ound												
Northb L	ound 634	17	70	0.70	0	.36	19.9	В					
	634 884	17 15		0.70 0.4		.36 .56	19.9 8.2	B A	14.4	в			

Intersection Delay = 13.6 (sec/veh) Intersection LOS = B

Analyst: Agency: TranSystems Date: 7/20/2011 Period: AM Peak Hour Project ID: Segment IVa Alt 8 L1 E/W St: SR 32 EB Off ramp Inter.: Elick @ SR 32 EB Off Ramp
Area Type: All other areas
Jurisd:
Year : 2030 Alt 3

N/S St: Elick

		SIG	GNALIZEI) INTERSE	CTION	SUMMA	ARY				
		stbound		oound	1	thbou	!		uthbou		
	L	TR	L .	r r	L	Т	R	L	Т	R	
No. Lan	nes 0	1 0	0	1 1		1	 0	1	1	0	
LGConfi	1	LTR		LT R	L L	TR	-	L	TR	-	
Volume	100	25 10	135 12	20 75	10	465	40	150	210	200	
Lane Wi	1	12.0		2.0 12.0	12.0		İ		12.0		i i
RTOR Vo	ol	0		0	Ì		0			0	İ
 Duratic	on 0.25	 Δrea 1	Type: A	ll other	areas						
			Signa	al Operat							
	Combinatior	n 1 2	3	4		5	б	7	:	8	
EB Lef		A		NB	Left	A					
Thr		A			Thru						
Rig		A			Right						
Ped		Х			Peds						
WB Lef		A		SB	Left						
Thr		A			Thru						
Rig		A			Right						
Ped		Х			Peds						
NB Rig				EB	0						
SB Rig	ht			WB	Right						
Green		22.5				27.5	5				
Yellow		3.5				3.5					
	-										
All Red	l	1.5				1.5					
All Red	l	1.5	rtion Pe	erformanc	e Summ	1.5 Cyc	cle Ler	-	60.0	se	CS
Appr/	Lane	1.5 Intersec Adj Sat	Rat	erformanc ios		1.5 Cyc nary		-		se	CS
		1.5 Intersec Adj Sat Flow Rate	Rat:	ios		1.5 Cyc nary Grour	o Apr		n	se	cs
Appr/ Lane Grp	Lane Group Capacity	1.5 Intersec Adj Sat Flow Rate	Rat:	ios	Lane	1.5 Cyc nary Grour	o Apr	proac	n	se	CS
Appr/ Lane	Lane Group Capacity	1.5 Intersec Adj Sat Flow Rate	Rat:	ios	Lane	1.5 Cyc nary Grour	o Apr	proac	n	se	cs
Appr/ Lane Grp	Lane Group Capacity	1.5 Intersec Adj Sat Flow Rate	Rat:	ios g/C	Lane Delay	1.5 Cyc Mary Groug LOS	Dela	oroaci	n	se	CS
Appr/ Lane Grp Eastbou	Lane Group Capacity and 356	1.5 Intersec Adj Sat Flow Rate (s)	Rat: v/c	ios g/C	Lane Delay	1.5 Cyc Mary Groug LOS	Dela	oroaci	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou	Lane Group Capacity and 356 and	1.5 Intersec Adj Sat Flow Rate (s) 950	Rat: v/c 0.42	ios g/C 0.38	Lane Delay 14.7	1.5 Cyc Group LOS B	Dela	broac by LO	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT	Lane Group Capacity and 356 and 535	1.5 Intersec Adj Sat Flow Rate (s) 950 1427	Rat: 0.42 0.53	ios g/C 0.38 0.38	Lane Delay 14.7 15.6	1.5 Cyc Groug LOS B	Dela	broac by LO	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT R	Lane Group Capacity and 356 and 535 594	1.5 Intersec Adj Sat Flow Rate (s) 950	Rat: v/c 0.42	ios g/C 0.38	Lane Delay 14.7	1.5 Cyc Group LOS B	Dela	broac by LO	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT R Northbo	Lane Group Capacity and 356 and 535 594 ound	1.5 Intersec Adj Sat Flow Rate (s) 950 1427 1583	Rat: v/c 0.42 0.53 0.14	ios g/C 0.38 0.38 0.38	Lane Delay 14.7 15.6 12.5	1.5 Cyc Group LOS B B B	Dela	broac by LO	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT R	Lane Group Capacity and 356 and 535 594	1.5 Intersec Adj Sat Flow Rate (s) 950 1427	Rat: 0.42 0.53	ios g/C 0.38 0.38	Lane Delay 14.7 15.6	1.5 Cyc Groug LOS B	Dela	proac	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT R Northbo L TR	Lane Group Capacity and 356 and 535 594 ound 334 844	1.5 Intersec Adj Sat Flow Rate (s) 950 1427 1583 729	Rat: v/c 0.42 0.53 0.14 0.03	ios g/C 0.38 0.38 0.38 0.38 0.46	Lane Delay 14.7 15.6 12.5 9.0	1.5 Cyc Group LOS B B B A	Dela Dela 14.7	proac	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT R Northbo L TR Southbo	Lane Group Capacity and 356 and 535 594 aund 334 844 aund	1.5 Intersec Adj Sat Flow Rate (s) 950 1427 1583 729 1841	Rat: v/c 0.42 0.53 0.14 0.03 0.66	ios g/C 0.38 0.38 0.38 0.46 0.46	Lane Delay 14.7 15.6 12.5 9.0 14.6	1.5 Cyc Groug LOS B B B B B B B B B B B B B B B B B B B	Dela Dela 14.7	proac	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT R Northbo L TR Southbo L	Lane Group Capacity and 356 and 535 594 and 334 844 aund 251	1.5 Intersec Adj Sat Flow Rate (s) 950 1427 1583 729 1841 547	Rat: v/c 0.42 0.53 0.14 0.03 0.66 0.67	ios g/C 0.38 0.38 0.46 0.46 0.46	Lane Delay 14.7 15.6 12.5 9.0 14.6 19.2	1.5 Cyc Groug LOS B B B B B B B B B B B B B B B B B B B	Dela Dela 14.7 14.9	proac y LO B B B B B	n	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT R Northbo L TR Southbo	Lane Group Capacity and 356 and 535 594 ound 334 844 ound 251 791	1.5 Intersec Adj Sat Flow Rate (s) 950 1427 1583 729 1841 547 1726	Rat: v/c 0.42 0.53 0.14 0.03 0.66 0.67 0.58	ios g/C 0.38 0.38 0.38 0.46 0.46 0.46 0.46	Lane Delay 14.7 15.6 12.5 9.0 14.6 19.2 13.0	1.5 Cyc Group LOS B B B B B B B B B B B B B	Dela Dela 14.7 14.9 14.9	proacl	n 5	se	cs
Appr/ Lane Grp Eastbou LTR Westbou LT R Northbo L TR Southbo L	Lane Group Capacity and 356 and 535 594 ound 334 844 ound 251 791	1.5 Intersec Adj Sat Flow Rate (s) 950 1427 1583 729 1841 547	Rat: v/c 0.42 0.53 0.14 0.03 0.66 0.67 0.58	ios g/C 0.38 0.38 0.38 0.46 0.46 0.46 0.46	Lane Delay 14.7 15.6 12.5 9.0 14.6 19.2 13.0	1.5 Cyc Group LOS B B B B B B B B B B B B B	Dela Dela 14.7 14.9	proacl	n 5	se	cs

Analyst: Agency: TranSystems Date: 7/20/2011 Period: PM Peak Hour Project ID: Segment IVa Alt 8 L1 E/W St: SR 32 EB Off ramp Inter.: Elick @ SR 32 EB Off Ramp
Area Type: All other areas
Jurisd:
Year : 2030 Alt 3

N/S St: Elick

		SIG	JNALLZEI) INTERSE	CTION	SUMMA	<u> </u>			
		stbound		oound		thbou			uthbou	
	L	T R	LI	r R	L	Т	R	L	Т	R
No. Lan	les 0	1 0	0	1 1	1	1	I 0	1	1	0
LGConfi	1	LTR		LT R	L	TR	- 1	L	TR	-
Volume	110	60 10	180 13	30 260	10	340	50	200	330	105
Lane Wi	dth	12.0	12	2.0 12.0	12.0	12.0		12.0	12.0	ĺ
RTOR Vo	1	0		0			0			0
Duratio	on 0.25	Area 1		ll other al Operat						
Phase C	ombination	n 1 2	SIGII6 3	4	10118	5	6	7		 8
EB Lef		A		NB	Left	А				
Thr	u	A		İ	Thru	A				
Rig	ht	A		İ	Right	A				
Ped	s	Х			Peds	Х				
WB Lef	t	A		SB	Left	A				
Thr		A		ļ	Thru					
Rig		A		ļ	Right					
Ped		Х		ļ	Peds	Х				
NB Rig				EB	Right					
SB Rig	nt	<u>ор</u> г		WB	Right	26.5				
Green Yellow		23.5 3.5				20.5 3.5				
All Red		1.5								
AII NEU										
		1.5				1.5 Cvc	le Ler	ath:	60.0	secs
		Intersec	ction Pe	erformanc	e Summ	Сус	le Ler	-	60.0	secs
 Appr/	Lane	Intersec Adj Sat	Rati	erformanc		Cyc ary		-		secs
Lane	Lane Group	Intersec Adj Sat Flow Rate	Rati	los	Lane	Cyc Group	o App	proacl	h	secs
	Lane Group	Intersec Adj Sat	Rati	los		Cyc Group	o App		h	secs
Lane	Lane Group Capacity	Intersec Adj Sat Flow Rate	Rati	los	Lane	Cyc Group	o App	proacl	h	secs
Lane Grp	Lane Group Capacity	Intersec Adj Sat Flow Rate	Rat: v/c	los	Lane Delay	Cyc ary Group LOS	App Dela	proac y LO:	h	secs
Lane Grp Eastbou	Lane Group Capacity Ind 351	Intersec Adj Sat Flow Rate (s)	Rat: v/c	g/C	Lane Delay	Cyc ary Group LOS	Dela	proac y LO:	h	secs
Lane Grp Eastbou LTR Westbou LT	Lane Group Capacity and 351 and 536	Intersec Adj Sat Flow Rate (s) 897 1369	Rat: v/c 0.57 0.64	g/C 0.39 0.39	Lane Delay 16.5 17.4	Cyc ary Group LOS B	Dela	proacl	h	secs
Lane Grp Eastbou LTR Westbou LT R	Lane Group Capacity and 351 and 536 620	Intersec Adj Sat Flow Rate (s) 897	Rat: v/c 0.57	0.39	Lane Delay 16.5	Cyc ary Group LOS B) App Dela 	proacl	h	secs
Lane Grp Eastbou LTR Westbou LT R Northbo	Lane Group Capacity and 351 and 536 620 ound	Intersec Adj Sat Flow Rate (s) 897 1369 1583	Rat: v/c 0.57 0.64 0.47	0.39 0.39 0.39	Lane Delay 16.5 17.4 14.1	Cyc Group LOS B B B) App Dela 	proacl	h	secs
Lane Grp Eastbou LTR Westbou LT R Northbo L	Lane Group Capacity and 351 and 536 620 ound 290	Intersec Adj Sat Flow Rate (s) 897 1369 1583 657	Rat: v/c 0.57 0.64 0.47 0.04	0.39 0.39 0.39 0.39 0.44	Lane Delay 16.5 17.4 14.1 9.6	Cyc Group LOS B B B A	App Dela	proacl	h	secs
Lane Grp Eastbou LTR Westbou LT R Northbo	Lane Group Capacity and 351 and 536 620 ound	Intersec Adj Sat Flow Rate (s) 897 1369 1583	Rat: v/c 0.57 0.64 0.47	0.39 0.39 0.39	Lane Delay 16.5 17.4 14.1	Cyc Group LOS B B B) App Dela 	proacl	h	secs
Lane Grp Eastbou LTR Westbou LT R Northbo L	Lane Group Capacity and 351 and 536 620 ound 290 807	Intersec Adj Sat Flow Rate (s) 897 1369 1583 657 1827	Rat: v/c 0.57 0.64 0.47 0.04 0.54	g/C 0.39 0.39 0.39 0.44 0.44	Lane Delay 16.5 17.4 14.1 9.6 13.0	Cyc Group LOS B B B A	App Dela	proacl	h	secs
Lane Grp Eastbou LTR Westbou LT R Northbo L TR Southbo L	Lane Group Capacity and 351 and 536 620 ound 290 807 ound 330	Intersec Adj Sat Flow Rate (s) 897 1369 1583 657 1827 748	Rat: v/c 0.57 0.64 0.47 0.04 0.54 0.67	g/C 0.39 0.39 0.39 0.44 0.44	Lane Delay 16.5 17.4 14.1 9.6 13.0 18.6	Cyc Group LOS B B B B B B B B B B B B B B	Dela Dela 16.5 15.9	proacl	h	secs
Lane Grp Eastbou LTR Westbou LT R Northbo L TR Southbo	Lane Group Capacity and 351 and 536 620 ound 290 807 ound	Intersec Adj Sat Flow Rate (s) 897 1369 1583 657 1827	Rat: v/c 0.57 0.64 0.47 0.04 0.54	g/C 0.39 0.39 0.39 0.44 0.44	Lane Delay 16.5 17.4 14.1 9.6 13.0	Cyc Group LOS B B B B B B B B B B	App Dela	proacl	h	secs

Analyst: sta Agency: TranSystems Date: 7/18/2011 Period: AM Peak Project ID: Segment IVa Alt 8L1 E/W St: Clepper Inter.: Glen Este @ Clepper Area Type: All other areas Jurisd: Year : 2030 Alt 3

N/S St: Glen Este

		SIGN	NALIZI	ED IN	TERSE	CTION	SUMMA	ARY			
	Eastbou	!		boun		1	thbou			uthbo	
	L T	R	L	Т	R	L 	Т	R	L 	Т	R
No. Lanes	1 1	0	1	1	0	1	1	0	1	1	1
LGConfig	L TR	2	L	TR		L	TR		ј L	Т	R
Volume	45 185	1	25 2		15	90	100	100	220	350	170
Lane Width	12.0 12.0	1	12.0 1		-	12.0			1	12.0	
RTOR Vol		0			0			0			0
Duration	0.25	Area Ty									
					perat	ions					
Phase Combi		2	3	4			5	б	7	:	8
EB Left	A				NB	Left	A	A			
Thru	A					Thru		A			
Right	A					Right		A			
Peds	Х					Peds					
WB Left	A				SB	Left	A	A			
Thru	A					Thru		A			
Right	A					Right		A			
Peds	Х					Peds					
NB Right					EB	Right					
SB Right					WB	Right					
2							7.0	34.0	0		
-	34.0	1					7.0	54.0	0		
Green	34.0 3.5)					3.5	3.5	0		
Green Yellow		1							0		
Green Yellow	3.5 1.5			-			3.5 1.5 Cyc	3.5 1.5 cle Lei	ngth:	90.0	sec
Green Yellow All Red	3.5 1.5 I	Intersect			rmanc		3.5 1.5 Cyc nary	3.5 1.5 cle Lei	ngth:		sec
Green Yellow All Red Appr/ Lan	3.5 1.5 I .e Ad			Perfo	rmanc	e Summ Lane	3.5 1.5 Cyc nary	3.5 1.5 cle Lei	ngth:		sec
Green Yellow All Red Appr/ Lan Lane Gro	3.5 1.5 I ne Ad pup Flo	intersect lj Sat		ios	_		3.5 1.5 Cyc Mary Group	3.5 1.5 cle Len p App	ngth:	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap	3.5 1.5 I ne Ad pup Flo	intersect lj Sat w Rate	Rat	ios	_	Lane	3.5 1.5 Cyc Mary Group	3.5 1.5 cle Len p App	ngth: proacl	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound	3.5 1.5 Le Ad oup Flo pacity	intersect lj Sat w Rate (s)	Rat	ios	c 	Lane	3.5 1.5 Cyc Mary Group	3.5 1.5 cle Len p App	ngth: proacl	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36	3.5 1.5 I ne Ad pup Flo pacity 5 96	intersect lj Sat w Rate (s)	Rat v/c	g/	 38	Lane Delay	3.5 1.5 Cyc Mary Groug / LOS	3.5 1.5 cle Len p App	ngth: proacl ay LOS	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68	3.5 1.5 I ne Ad pup Flo pacity 5 96	intersect lj Sat w Rate (s) 	Rat v/c 0.14	g/	 38	Lane Delay 18.5	3.5 1.5 Cyc ary Groug r LOS B	3.5 1.5 cle Len Dela	ngth: proacl ay LOS	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound	3.5 1.5 I bup Flo pacity 55 96 1 18	intersect J Sat w Rate (s) 7 03	Rat v/c	g/ 0. 0.	 38 38	Lane Delay 18.5 20.7	3.5 1.5 Cyc Groug LOS B C	3.5 1.5 cle Len Dela	ngth: proacl ay LOS	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36	3.5 1.5 I de Ad pup Flo pacity 55 96 1 18 54 96	intersect J Sat W Rate (s) 7 903	Rat v/c	g/	 38 38 38	Lane Delay 18.5 20.7 18.0	3.5 1.5 Cyc Groug F LOS B C	3.5 1.5 cle Len Dela Dela	ngth: proacl ay LOS 4 C	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36	3.5 1.5 I de Ad pup Flo pacity 55 96 1 18 54 96	intersect J Sat w Rate (s) 7 03	Rat v/c	g/ 0. 0.	 38 38 38	Lane Delay 18.5 20.7	3.5 1.5 Cyc Groug LOS B C	3.5 1.5 cle Len Dela	ngth: proacl ay LOS 4 C	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound	3.5 1.5 I ne Ad oup Flo pacity 5 96 1 18 54 96 7 18	Intersect J Sat W Rate (s) 7 03 4 4 4 5	Rat v/c	0. 0. 0.	C 38 38 38 38 38 38	Lane Delay 18.5 20.7 18.0 20.6	3.5 1.5 Cyc Groug F LOS B C	3.5 1.5 cle Len Dela Dela	ngth: proacl ay LOS 4 C	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39	3.5 1.5 I ne Ad oup Flo pacity 5 96 1 18 54 96 7 18 7 17	Intersect J Sat W Rate (s) 7 503 54 54 54 54 54 54 54 57	Rat v/c 0.14 0.38 0.08 0.37 0.25	0. 0. 0. 0. 0.	 38 38 38 38 38 38 51	Lane Delay 18.5 20.7 18.0 20.6 13.2	3.5 1.5 Cyc Group Group LOS B C B B	3.5 1.5 cle Len Dela 20.4	ngth: proach ay LOS 4 C 4 C	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39	3.5 1.5 I ne Ad oup Flo pacity 5 96 1 18 54 96 7 18 7 17	Intersect J Sat W Rate (s) 7 03 4 4 4 5	Rat v/c	0. 0. 0.	 38 38 38 38 38 38 51	Lane Delay 18.5 20.7 18.0 20.6	3.5 1.5 Cyc Group Group LOS B C B C	3.5 1.5 cle Len Dela Dela	ngth: proach ay LOS 4 C 4 C	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39 TR 65	3.5 1.5 I ne Ad oup Flo pacity 5 96 1 18 54 96 7 18 7 17	Intersect J Sat W Rate (s) 7 503 54 54 54 54 54 54 54 57	Rat v/c 0.14 0.38 0.08 0.37 0.25	0. 0. 0. 0. 0.	 38 38 38 38 38 38 51	Lane Delay 18.5 20.7 18.0 20.6 13.2	3.5 1.5 Cyc Group Group LOS B C B B	3.5 1.5 cle Len Dela 20.4	ngth: proach ay LOS 4 C 4 C	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39 TR 65 Southbound	3.5 1.5 I de Ad oup Flo pacity 5 96 1 18 5 96 1 18 5 18 7 18 7 17 1 17	Intersect J Sat W Rate (s) 	Rat v/c 0.14 0.38 0.08 0.37 0.25 0.34	0. 0. 0. 0. 0. 0.	 38 38 38 38 38 51 38	Lane Delay 18.5 20.7 18.0 20.6 13.2 20.3	3.5 1.5 Cyc Groug r LOS B C B C B C	3.5 1.5 cle Len Dela 20.4	ngth: proach ay LOS 4 C 4 C	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39 TR 65 Southbound L 53	3.5 1.5 	Intersect J Sat W Rate (s) 	Rat v/c 0.14 0.38 0.08 0.37 0.25 0.34 0.45	0. 0. 0. 0. 0. 0.	C 38 38 38 38 38 51 38 51	Lane Delay 18.5 20.7 18.0 20.6 13.2 20.3 15.2	3.5 1.5 Cyc Groug F LOS B C B C B C B C B C B C B C	3.5 1.5 cle Len Dela 20.4 20.4	ngth: oroacl ay LOS 4 C 4 C 1 B	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39 TR 65 Southbound L 53 T 70	3.5 1.5 	Intersect J Sat W Rate (s) 7 03 4 4 4 5 7 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3	Rat v/c 0.14 0.38 0.08 0.37 0.25 0.34 0.45 0.55	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C 38 38 38 38 38 51 38 51 38 51 38	Lane Delay 18.5 20.7 18.0 20.6 13.2 20.3 15.2 23.0	3.5 1.5 Cyc Group T LOS B C B C B C B C B C	3.5 1.5 cle Len Dela 20.4 20.4	ngth: proach ay LOS 4 C 4 C	h	sec
Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39 TR 65 Southbound L 53 T 70 R 59	3.5 1.5 	Intersect J Sat W Rate (s) 7 03 4 4 4 5 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 7 0 2 3 1 7 1 0 3 1 7 1 0 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1	Rat v/c 0.14 0.38 0.08 0.37 0.25 0.34 0.45 0.55 0.32	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C 38 38 38 38 38 51 38 51	Lane Delay 18.5 20.7 18.0 20.6 13.2 20.3 15.2 23.0 20.1	3.5 1.5 Cyc Group Group r LOS B C B C B C B C B C C	3.5 1.5 cle Len Dela 20.4 20.4	ngth: proach ay LOS 4 C 4 C 1 B	n 5	sec

Analyst: sta Agency: TranSystems Date: 7/18/2011 Period: PM Peak Project ID: Segment IVa E/W St: Clepper Inter.: Glen Este @ Clepper Area Type: All other areas Jurisd: Year : 2030 Alt 3

N/S St: Glen Este

		SI	GNALIZED) INTERSE	ECTION	SUMMA	.RY			
	E	astbound	Westb	ound	Noi	rthbou	nd	Soi	uthbou	und
	L 	T R	L T	R	L	Т	R	L 	Т	R
No. Lar	nes	1 1 0		1 0	1	1	0	1	1	1
LGConfi	ig L	TR	і L	TR	L	TR		L L	Т	R
Volume	250		10 50		165		80	200	350	240
Lane Wi	1	0 12.0	12.0 12		12.0			1	12.0	
RTOR Vo	1	0		0			0			0
	·		I 		ı 			ı 		
Duratio	on 0.2	5 Area	Type: Al Signa	l other l Operat						
Phase C	Combinati	on 1 2	3	4		5	6	7		3
EB Lef	Et	A		NB	Left	A	А			
Thr	ru	A		i	Thru		А			
Ric	aht	A		İ	Right	2	А			
Pec	-	Х		ĺ	Peds					
WB Lef		A		SB	Left	А	А			
Thr		A			Thru		A			
Rig		A		1	Right		A			
Ped	-	X			Peds	-	11			
NB Rig		Λ		 EB	Right	_				
SB Rig	-			WB	-					
Green	JIC	33.0			Rigin	7.5	34.5	-		
Yellow		3.5				3.5	3.5	J		
						5.5	5.5			
						1 5	1 5			
All Red	L	1.5				1.5 Cvc	1.5	hath.	90 0	5905
All Rec	L		ection Pe	erformanc	ce Summ	Cyc	le Ler	ngth:	90.0	secs
Appr/	Lane	Interse Adj Sat	ection Pe Rati			Cyc	le Ler	ngth: proacl		secs
		Interse Adj Sat Flow Rate	Rati		Lane	Cyc mary	le Ler Apr		h	secs
Appr/ Lane Grp	Lane Group Capacit	Interse Adj Sat Flow Rate	Rati	.os	Lane	Cyc mary Group	le Ler Apr	proacl	h	secs
Appr/ Lane Grp Eastbou	Lane Group Capacit und	Interse Adj Sat Flow Rate y (s) 	Rati v/c	g/C	Lane Delay	Cyc mary Group y LOS	le Ler Apr	proacl	h	secs
Appr/ Lane Grp Eastbou L	Lane Group Capacit und 384	Interse Adj Sat Flow Rate y (s) 1046	Rati	.os g/C 0.37	Lane Delay 31.2	Cyc mary Group Y LOS C	le Ler App Dela	proacl	h	secs
Appr/ Lane Grp Eastbou	Lane Group Capacit und	Interse Adj Sat Flow Rate y (s) 	Rati v/c	g/C	Lane Delay	Cyc mary Group y LOS	le Ler Apr	proacl	h	secs
Appr/ Lane Grp Eastbou L TR Westbou	Lane Group Capacit und 384 649 und	Interse Adj Sat Flow Rate y (s) 1046 1770	Rati v/c 0.72 0.51	0.37 0.37	Lane Delay 31.2 22.9	Cyc nary Group / LOS C C	le Ler App Dela	proacl	h	secs
Appr/ Lane Grp Eastbou L TR Westbou L	Lane Group Capacit und 384 649 und 290	Interse Adj Sat Flow Rate y (s) 1046 1770 792	Rati v/c 0.72 0.51 0.04	0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4	Cyc mary Group y LOS C C B	le Ler Apr Dela 26.	proach ay LOS 7 C	h	secs
Appr/ Lane Grp Eastbou L TR Westbou	Lane Group Capacit und 384 649 und	Interse Adj Sat Flow Rate y (s) 1046 1770	Rati v/c 0.72 0.51	0.37 0.37	Lane Delay 31.2 22.9	Cyc nary Group / LOS C C	le Ler App Dela	proach ay LOS 7 C	h	secs
Appr/ Lane Grp Eastbou L TR Westbou L	Lane Group Capacit and 384 649 and 290 606	Interse Adj Sat Flow Rate y (s) 1046 1770 792 1653	Rati	0.37 0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4 21.2	Cyc mary Group y LOS C C B	le Ler Apr Dela 26.	proach ay LOS 7 C	h	secs
Appr/ Lane Grp Eastbou L TR Westbou L TR	Lane Group Capacit and 384 649 and 290 606	Interse Adj Sat Flow Rate y (s) 1046 1770 792	Rati v/c 0.72 0.51 0.04	0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4	Cyc mary Group y LOS C C B	le Ler Apr Dela 26.	proach ay LOS 7 C	h	secs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo	Lane Group Capacit and 384 649 and 290 606	Interse Adj Sat Flow Rate y (s) 1046 1770 792 1653	Rati	0.37 0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4 21.2	Cyc mary Group y LOS C C B C	le Ler Apr Dela 26.	proach ay LOS 7 C 1 C	h	secs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR	Lane Group Capacit und 384 649 und 290 606 bund 414 697	Interse Adj Sat Flow Rate y (s) 1046 1770 792 1653 1770	Rati	.os g/C 0.37 0.37 0.37 0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4 21.2 13.8	Cyc mary Group y LOS C C B C B	le Ler Apr Dela 26.7	proach ay LOS 7 C 1 C	h	secs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo	Lane Group Capacit und 384 649 und 290 606 ound 414 697 ound	Interse Adj Sat Flow Rate y (s) 1046 1770 792 1653 1770 1818	Rati	0.37 0.37 0.37 0.37 0.37 0.37 0.52 0.38	Lane Delay 31.2 22.9 18.4 21.2 13.8 31.6	Cyc mary Group y LOS C C B C B C B C	le Ler Apr Dela 26.7	proach ay LOS 7 C 1 C	h	secs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo L	Lane Group Capacit und 384 649 und 290 606 ound 414 697 ound 283	Interse Adj Sat Flow Rate y (s) 1046 1770 792 1653 1770 1818 1770	Rati v/c 0.72 0.51 0.04 0.37 0.44 0.80 0.78	0.37 0.37 0.37 0.37 0.37 0.52 0.38 0.52	Lane Delay 31.2 22.9 18.4 21.2 13.8 31.6 30.0	Cyc mary Group y LOS C C B C B C C	le Ler Apr Dela 26. 21. 27.2	proach ay LOS 7 C 1 C 2 C	h	secs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo L T	Lane Group Capacit and 384 649 and 290 606 ound 414 697 ound 283 714	Interse Adj Sat Flow Rate y (s) 1046 1770 792 1653 1770 1818 1770 1818	Rati v/c 0.72 0.51 0.04 0.37 0.44 0.80 0.78 0.54	0.37 0.37 0.37 0.37 0.37 0.52 0.38 0.52 0.38	Lane Delay 31.2 22.9 18.4 21.2 13.8 31.6 30.0 22.5	Cyc mary Group y LOS C C B C B C C C C C C	le Ler Apr Dela 26.7	proach ay LOS 7 C 1 C 2 C	h	SECS
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo L	Lane Group Capacit and 384 649 and 290 606 bund 414 697 bund 283 714 607	Interse Adj Sat Flow Rate y (s) 1046 1770 792 1653 1770 1818 1770 1863 1583	Rati v/c 0.72 0.51 0.04 0.37 0.44 0.80 0.78 0.54 0.44	0.37 0.37 0.37 0.37 0.37 0.52 0.38 0.52 0.38 0.52 0.38 0.38	Lane Delay 31.2 22.9 18.4 21.2 13.8 31.6 30.0 22.5 21.1	Cyc mary Group y LOS C C B C B C C C C C C C C C C	le Ler Apr Dela 26. 21. 27. 27. 24.0	proach ay LOS 7 C 1 C 2 C	n 5	secs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo L T	Lane Group Capacit and 384 649 and 290 606 bund 414 697 bund 283 714 607	Interse Adj Sat Flow Rate y (s) 1046 1770 792 1653 1770 1818 1770 1818	Rati v/c 0.72 0.51 0.04 0.37 0.44 0.80 0.78 0.54 0.44	0.37 0.37 0.37 0.37 0.37 0.52 0.38 0.52 0.38 0.52 0.38 0.38	Lane Delay 31.2 22.9 18.4 21.2 13.8 31.6 30.0 22.5 21.1	Cyc mary Group y LOS C C B C B C C C C C C C C C C	le Ler Apr Dela 26. 21. 27.2	proach ay LOS 7 C 1 C 2 C	n 5	secs

Analyst: sta Agency: TranSystems Date: 07/01/2011 Period: AM Project ID: Segment IVa; P403 10 0004 E/W St: Eastgate North Drive Inter.: Eastgate North & Glen Este
Area Type: All other areas
Jurisd:
Year : Alt 3

N/S St: Glen Este-Withamsville Road

) INTERSE				2	. 1 1	
	East	tbound T R	West L	ound R	Nor L	thbour T	nd R	Sou L	thbou T	nd R
No. Lanes LGConfig Volume Lane Width RTOR Vol	 L 100 12.0	0 1 R 220 12.0 0	0	0 0	- 1 L	1 T 80 12.0	0	0	2 TR 760 12.0	0 225 0
Duration	0.25	Area I		l other al Operat						
Phase Combi EB Left Thru Right Peds WB Left Thru Right Peds NB Right SB Right Green		A A X	3	4 NB SB EB WB	Left Thru Right Peds Left Thru Right Right	X A	6 A X A A X	7	5	3
Yellow		16.0 3.5 1.5		-	6	_	41.0 3.5 1.5 Le Leng	jth:	90.0	secs
Yellow All Red Appr/ Lan	ne	3.5 1.5 Intersec Adj Sat	tion Pe Rat:	erformanc .os		3.5 1.5 Cyc]	3.5 1.5 le Leng	th: 		secs
Yellow All Red Appr/ Lan Lane Gro	ne	3.5 1.5 Intersec				3.5 1.5 Cyc] ary Group	3.5 1.5 le Leng	roach		sec:
Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 61 R 68	ne Dup Dacity	3.5 1.5 Intersec Adj Sat Flow Rate	Rat:	.os	Lane	3.5 1.5 Cyc] ary Group	3.5 1.5 Le Leng Appr	roach		sec:
Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 61 R 68 Westbound Northbound L 47	ne Dup Dacity	3.5 1.5 Adj Sat Flow Rate (s) 3437	Rat: v/c 0.18	0.18 0.43	Lane Delay 31.6	3.5 1.5 Cyc] ary Group LOS C	3.5 1.5 Le Leng Appr Delay	coach LOS		secs
Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 61 R 68 Westbound Northbound L 47 T 13	ne pup pacity .1 36	3.5 1.5 Intersec Adj Sat Flow Rate (s) 3437 1583	Rat: v/c 0.18 0.36	0.18 0.43	Lane Delay 31.6 17.4 7.3	3.5 Cycl ary Group LOS C B	3.5 1.5 Le Leng Appr Delay 21.8	C C		Sec:
Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 61 R 68 Westbound Northbound L 47 T 13 Southbound	ne pup pacity .1 36	3.5 1.5 Intersec Adj Sat Flow Rate (s) 3437 1583	Rat: v/c 0.18 0.36	0.18 0.43	Lane Delay 31.6 17.4 7.3	3.5 Cycl ary Group LOS C B	3.5 1.5 Le Leng Appr Delay 21.8	C C		Sec:

Analyst: lpk Agency: TranSystems Date: 07/01/2011 Period: PM Project ID: Segment IVa; P403 10 0004 E/W St: Eastgate North Drive Inter.: Eastgate North & Glen Este
Area Type: All other areas
Jurisd:
Year : Alt 3

N/S St: Glen Este-Withamsville Road

			SIC	GNALIZ	ED IN	ITERSE	CTION	SUMMA	RY			
	Eas	tbour	nd	Wes	tbour	nd	Noi	rthbou	nd	Sou	uthbo	und
	L 	Т	R	L 	Т	R	L 	Т	R	L	Т	R
No. Lanes LGConfig Volume Lane Width RTOR Vol	2 L 490 12.0	0	1 R 395 12.0 0	0	0	0	1 L 470 12.0	1 T 405 12.0	0	0	2 TR 565 12.0	0 180 0
Duration	0.25		Area 1				areas ions_					
Phase Comb	ination	n 1	2	SIG 3	nar (4	 	.10115	5	6	 7		8
EB Left Thru Right Peds		A A X				NB 	Left Thru Right Peds		P A X			
WB Left Thru Right Peds						SB 	Left Thru Right Peds		A A X			
NB Right SB Right Green		20.5				EB WB	Right Right	22.5	32.0	I		
Yellow All Red		3.5 1.5 Tr	itersed	ction	Perfo	ormanc	e Sumr	-	3.5 1.5 le Len	gth:	90.0	secs
Appr/ Lan Lane Gro		Adj	j Sat v Rate	Ra	tios			Group		roacl	n	
	oup pacity			v/c	g,	/C	Delay	/ LOS	 Dela	y LOS	5	
Eastbound L 78	83	343	37	0.69	0	. 23	34.6	C	25.4	c C		
R 84 Westbound	44	158	33	0.52	0	.53	14.1	В				
Northbound												
ь 5	73 232	177 186		0.91 0.37		.66 .66	38.9 7.0		24.1	C		
Southbound												
TR 1:	215	341	. 8	0.68	0	.36	26.2	С	26.2	C		
II	ntersec	tion	Delay	= 25.	2 (s	sec/ve	h) I	Inters	ection	LOS	= C	

	TW	O-WAY STOP	CONTR	OL SU	MN	IARY				
General Informatio	n		Site II	nforma	atic	on				
Analyst			Interse	ection			Marian/ S	Sr 32 E	B Ra	mps
Agency/Co.			Jurisdi	ction						
Date Performed	12/1/201	1	Analys	is Year			2030 Alt 3	3		
Analysis Time Period	AM									
Project Description Se	egment IV A									
East/West Street: Maria			North/S	South St	treet	t: SR 32 I	Ramps			
ntersection Orientation:	North-South		Study F	Period (ł	hrs)	: 0.25				
/ehicle Volumes a	nd Adjustme	ents								
Major Street		Northbound					Southbou	Ind		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
/olume (veh/h)	10	180	15			10	290			40
Peak-Hour Factor, PHF	0.90	0.90	0.90			0.90	0.90		C	.90
lourly Flow Rate, HFR veh/h)	11	200	16			11	322			44
Percent Heavy Vehicles	2					2				
ledian Type				Undivi	ided					
RT Channelized			0							0
anes	0	1	0			0	1			0
Configuration	LTR		1			LTR	ĺ			
Jpstream Signal		0					0			
Ainor Street		Eastbound					Westbou	estbound		
Novement	7	8	9			10	11			12
	L	Т	R			L	Т			R
/olume (veh/h)	10	15	10			30	20			20
Peak-Hour Factor, PHF	0.90	0.90	0.90			0.90	0.90		C	.90
Hourly Flow Rate, HFR veh/h)	11	16	11			33	22			22
Percent Heavy Vehicles	2	2	2			2	2			2
Percent Grade (%)		0					0			
Flared Approach		N	Î				N			
Storage		0					0			
RT Channelized			0							0
anes	0	1	0			0	1			0
Configuration		LTR	Ť			-	LTR			-
Delay, Queue Length, a	and Level of Se		8					I		
Approach	Northbound	Southbound	١	Vestbou	und		F	Eastbo	und	
Novement	1	4	7	8		9	10	11		12
ane Configuration	LTR	LTR	· ·	LTR		-	ļ	LTF		
v (veh/h)	11	11		77				38		
C (m) (veh/h)	1193	1354		458				446		
//C	0.01	0.01		0.17			ļ	0.0		
95% queue length	0.03	0.02		0.60			ļ	0.28		
Control Delay (s/veh)	8.0	7.7		14.4				13.8	8	
.OS	A	A		В				В		
Approach Delay (s/veh)				14.4				13.8	}	
Approach LOS				В				В		
Copyright © 2010 University of F	Iarida All Diabta Daa	anuad	,				Generated: 12/5/2			14 4.04

Copyright $\ensuremath{\textcircled{O}}$ 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.5 Generated: 12/5/2011 1:21 PM

					SUMMARY				
General Informatio	n		Site I	nform	atio	on			
Analyst			Interse	ection			Marian/ S	Sr 32 EB I	Ramps
Agency/Co.			Jurisdi	ction					
Date Performed	12/1/201	1	Analys	is Yea	r		2030 Alt 3	3	
Analysis Time Period									
Project Description Se									
East/West Street: Maria						t: SR 32	Ramps		
Intersection Orientation:	North-South		Study I	Period	(hrs)	: 0.25			
Vehicle Volumes a	nd Adjustme	ents							
Major Street		Northbound					Southbou	ind	
Movement	1	2	3			4	5		6
	L	Т	R			L	Т		R
/olume (veh/h)	10	280	20			30	540		50
Peak-Hour Factor, PHF	0.90	0.90	0.90			0.90	0.90		0.90
Hourly Flow Rate, HFR veh/h)	11	311	22			33	600		55
Percent Heavy Vehicles	2					2			
Vedian Type				Undiv	videa				
RT Channelized			0						0
anes	0	1	0			0	1		0
Configuration	LTR					LTR			
Jpstream Signal		0					0		
Minor Street		Eastbound					Westbou	Vestbound	
Novement	7	8	9			10	11		12
	L	Т	R			L	Т		R
/olume (veh/h)	10	15	10			20	10		20
Peak-Hour Factor, PHF	0.90	0.90	0.90			0.90	0.90		0.90
Hourly Flow Rate, HFR veh/h)	11	16	11			22	11		22
Percent Heavy Vehicles	2	2	2			2	2		2
Percent Grade (%)		0		Ĩ			0		
-lared Approach		N					N		
Storage	1	0	1				0		
RT Channelized	1		0				İ		0
_anes	0	1	0			0	1		0
Configuration		LTR				-	LTR		-
Delay, Queue Length, a	and Level of Se	R							
Approach	Northbound	Southbound	\ \	Vestbo	ound		F	Eastboun	d
Vovement	1	4	7	8		9	10	11	12
ane Configuration	LTR	LTR	· · ·	LTF	2			LTR	
/ (veh/h)	11	33	L	55		L		38	
C (m) (veh/h)	932	1226		269		l		241	
							<u> </u>		
//C	0.01	0.03		0.20			ļ	0.16	
95% queue length	0.04	0.08		0.75			ļ	0.55	
Control Delay (s/veh)	8.9	8.0		21.8	3		ļ	22.7	<u> </u>
_OS	A	A		С			ļ	С	
Approach Delay (s/veh)				21.8	3			22.7	
, , ,									

Copyright $\ensuremath{\textcircled{O}}$ 2010 University of Florida, All Rights Reserved

HCS+TM Version 5.5 Generated: 12/5/2011 1:22 PM

Analyst: Agency: TranSystems Date: 7/20/2011 Period: AM Peak Hour Project ID: Segment IVa Alt 8 L1 E/W St: Old SR 74 Inter.: Old SR 74 @ SR 32 WB Off Ramp Area Type: All other areas Jurisd: Year : 2030 Alt 3

N/S St: SR 32 WB Ramps

		SI	GNALIZEI) INTERSE	CTION S	UMMAR	Y			
	Eastbou	und	Westk	oound	Nort	hbound	£	Sout	hbound	1 E
	L T	R	L]	E R	L '	T I	R	L	T I	2
No. Lanes LGConfig Volume Lane Width	0 1 T 135 12.0	1 R 400 0 12.0	1 L 200 32 12.0 12		1 L 545 12.0 1	LR 5	- 0 	0	0 ()
RTOR Vol		0				0				
Duration	0.25	Area '		l other al Operat						
Phase Combi	nation 1	2	3	4		5	6	7	8	
EB Left				NB	Left	А				
Thru		А		İ	Thru					
Right		А		İ	Right	A				
Peds				İ	Peds					
WB Left	A	А		SB	Left					
Thru	A	А		İ	Thru					
Right				İ	Right					
Peds				ĺ	Peds					
NB Right				EB	Right	А				
SB Right				WB	Right					
Green	7.0	9.5				28.5				
Yellow	3.5	3.5				3.5				
All Red	1.5	1.5				1.5				
						-	e Leng	fth: 6	0.0	secs
				erformanc						
Appr/ Lar		lj Sat	Rati	os	Lane G	roup	Appr	oach		
Lane Gro	-	ow Rate							_	
Grp Car	pacity	(s)	v/c	g/C	Delay :	LOS	Delay	r LOS		
Eastbound										
т 29	5 18	363	0.51	0.16	24.6	С	8.9	A		
R 11	.34 1!	583	0.39	0.72	3.6	A				
Westbound										
ь 41	.0 1'	770	0.54	0.36	15.8	В				
т 66	58 18	863	0.54	0.36	16.2	В	16.1	В		
Northbound										
L 84	1 1	770	0.72	0.47	15.6	В				
LR 75		583	0.01	0.47	8.3	A	15.5	В		
Southbound										

Intersection Delay = 13.5 (sec/veh) Intersection LOS = B

Analyst: Agency: TranSystems Date: 7/20/2011 Period: PM Peak Hour Project ID: Segment IVa Alt 8 L1 E/W St: Old SR 74 Inter.: Old SR 74 @ SR 32 WB Off Ramp Area Type: All other areas Jurisd: Year : 2030 Alt 3

N/S St: SR 32 WB Ramps

		SIG	NALIZ	CED IN	ITERSE	CTION	SUMMA	RY			
	Eastbour	nd	Wes	stbour	ıd	Nor	thbou	nd	Sou	thbour	nd
	L T	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes LGConfig Volume Lane Width RTOR Vol	0 1 T 520 12.0		1 L 245 12.0	1 T 140 12.0	0	1 L 355 12.0	12.0	0 5 0	0	0	0
Duration	0.25	Area T				areas ions					
Phase Combi	nation 1	2	3	4	 	10115	5	6	7	8	
EB Left		2	5	Т	 NB	Left	A	0	1	0	
Thru		A				Thru					
Right		A				Right	A				
Peds					Ì	Peds					
WB Left	А	А			SB	Left					
Thru	A	A			İ	Thru					
Right					İ	Right					
Peds						Peds					
NB Right					EB	Right					
SB Right					WB	Right					
Green	9.5	35.0					30.5				
Yellow	3.5	3.5					3.5				
All Red	1.5	1.5					1.5	7. т		000	
	т	. +	+ +	Donfo			_	le Len	-	90.0	secs
Appr/ Lan		ntersec [.] j Sat		tios	ormand	Lane	-		roach		
Lane Gro		y Sat w Rate		ILIUS		Lane	Group	Abb	JUach		
	-	(s)	v/c	g/	Ċ	Delay	LOS	 Dela	y LOS		
02F											
Eastbound											
т 72	5 180	63	0.80	0.	39	30.6	С	23.1	. C		
R 12			0.17		78	2.5	A		-		
Westbound											
L 31	6 17'	70	0.86	50.	55	37.1	D				
т 10	25 180	63	0.15		55	10.0+	В	27.2	C C		
Northbound											
ь 60	0 17	70	0.66	50.	34	27.9	С				
LR 53			0.01		34	19.8	В	27.8	C		
Southbound											

Intersection Delay = 25.3 (sec/veh) Intersection LOS = C

Concrol 1-1-		MPS AND				. 🛏 i			
General Infor				Site Infor					
Analyst	scf	. .		eeway/Dir of Tr		SR 32 Eastbour			
Agency or Company		Systems		nction	E	Bach Buxton Er	ntrance		
Date Performed	2/7/2			risdiction	-				
Analysis Time Perio			An	alysis Year	2	2030 Alt 3			
Project Description	Segment IVa -	- P403100004							
Inputs		H= · · ·							
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	am Adj
Yes Or	n							T Yes	□ On
🗹 No 🔲 Of	4								
	1							🗹 No	C Off
- _{up} = ft								L _{down} =	ft
up		S	₌₌ = 60.0 mph		S _{FR} = 4	5.0 mph			
√ _u = veh/ł	ו			show lanes, L _A ,	110			V _D =	veh/h
Conversion t	o pc/h Un	der Base C					u a		
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	$F \ge f_{HV} \ge f_p$
Freeway	2240	0.90	Level	3	0	0.985	1.00		2526
Ramp	210	0.90	Level	3	0	0.985	1.00		237
UpStream									
DownStream	ĺ				İ – – – – – – – – – – – – – – – – – – –		1		
		Merge Areas					Diverge Are	as	
Estimation o	f v ₁₂				Estimati	on of v ₁₂			
	$V_{12} = V_F$	(P)			1	.=			
_	12 1		05.0)			V ₁₂ :	= V _R + (V _F ·		
-EQ =		ation 25-2 or	-		L _{EQ} =		(Equation	25-8 or 25-9	9)
P _{FM} =	0.591	using Equation	on (Exhibit 25-5)		P _{FD} =		using Equ	ation (Exhibit	25-12)
/ ₁₂ =	1494	pc/h			V ₁₂ =		pc/h		
V_3 or V_{av34}	1032	pc/h (Equatio	n 25-4 or 25-		V_3^{12} or V_{av34}^{12}			ion 25-15 or 25	5-16)
	5)					₄ > 2,700 pc/h?			, 10)
Is V_3 or $V_{av34} > 2,70$					0 0.00	•			
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2 🔲 Ye	s 🗹 No				₄ > 1.5 * V ₁₂ /2			
f Yes,V _{12a} =	pc/h	(Equation 25-	·8)		If Yes,V _{12a} =		pc/h (Equ	ation 25-18)	
Capacity Che	ecks				Capacity	/ Checks			
	Actual	Ca	ipacity	LOS F?		Actua	al	Capacity	LOS F
					V _F		Exhibit	25-14	
V _{FO}	2763	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	· V _P	Exhibit	25-14	
FU					V _R	Π.	Exhibit		
	<u> </u> a. Manata 1				<u> </u>				
Flow Entering	Actual		r ea Desirable	Violation?	FIOW EN	tering Div Actual		lence Are	violation
1/	1	î r		1	1/		1	1	violation
V _{R12}	1731	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1		
Level of Serv						Service D			ot F)
D _R = 5.475 +	• 0.00734 v _R + (0.0078 V ₁₂ - 0.0	0627 L _A			O _R = 4.252 +	0.0086 V ₁₂	- 0.009 L _D	
	ni/ln)				D _R = (pr	c/mi/ln)			
D _R = 15.7 (pc/n	25-4)					xhibit 25-4)			
	,				<u> </u>	eterminat	tion		
_OS = B (Exhibit	mination								
OS = B (Exhibit					D = (F)	(ninit 25-14)			
_OS = B (Exhibit Speed Detern M _S = 0.298 (Exi	ibit 25-19)				0	(hibit 25-19)	0)		
OS = B (Exhibit Speed Detern $M_S = 0.298$ (Exi $S_R = 54.6$ mph	ibit 25-19) (Exhibit 25-19)				S _R = mp	h (Exhibit 25-1			
LOS = B (Exhibit Speed Detern $M_S = 0.298$ (Exi $S_R = 54.6$ mph $S_0 = 58.1$ mph	ibit 25-19)				S _R = mp	,			

Page 1 of 1

General Infor		MPS AND		Site Infor	mation				
Analyst	scf			eeway/Dir of Tr		SR 32 Eastbour	nd		
Agency or Company		Systems		nction		Bach Buxton Er			
Date Performed	2/7/2	-		risdiction	-				
Analysis Time Period			An	alysis Year	2	2030 Alt 3			
Project Description		P403100004		,					
Inputs									
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj
Yes Or	I							T Yes	🗌 On
🗹 No 📃 Of	f							🗹 No	C Off
L _{up} = ft								L _{down} =	ft
		S	_{=F} = 60.0 mph		S _{FR} = 48	5.0 mph			
/ _u = veh/h		· ·	Sketch (s	show lanes, L _A ,	L_{D}, V_{R}, V_{f}			V _D =	veh/h
Conversion t	o pc/h Un	der Base C			D IN I				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	3745	0.90	Level	3	0	0.985	1.00		4224
Ramp	300	0.90	Level	3	0	0.985	1.00		338
UpStream									
DownStream									
		Merge Areas					Diverge Are	as	
Estimation of	^r v ₁₂				Estimati	on of v ₁₂			
	V ₁₂ = V _F	(P _{FM})				V	= V _R + (V _F -	V_)P	
- _{EQ} =	(Equ	ation 25-2 or	25-3)			* 12 *			0)
P _{FM} =			on (Exhibit 25-5)		L _{EQ} =			25-8 or 25-	
/ ₁₂ =	2498				P _{FD} =			ation (Exhibit	(25-12)
		pc/h pc/h (Equatio	n 25-1 or 25-		V ₁₂ =		pc/h		
V_3 or V_{av34}	5)		11 23-4 01 23-		V ₃ or V _{av34}			ion 25-15 or 2	5-16)
Is V ₃ or V _{av34} > 2,70	,	s 🔽 No			Is V ₃ or V _{av3}	₄ > 2,700 pc/h?	🗆 Yes 🗖	No	
Is V_3 or $V_{av34} > 1.5$					Is V_3 or V_{av34}	₄ > 1.5 * V ₁₂ /2	🗆 Yes 🗖	No	
f Yes,V _{12a} =		(Equation 25-	.8)		If Yes,V _{12a} =		pc/h (Equa	ation 25-18)	
Capacity Che			0)		Canacity	Checks			
capacity one			nacity			1	J Í	Capacity	
	Actual		ipacity	LOS F?	V	Actua	Exhibit	Capacity	LOS F
					V _F	<u>, </u>			
V _{FO}	4562	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	· V _R	Exhibit		
					V _R		Exhibit	25-3	
Flow Entering	g Merge In	nfluence A	rea		Flow En	tering Div	erge Influ	ience Are	ea
	Actual	1	Desirable	Violation?		Actual		esirable	Violation
V _{R12}	2836	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4	
Level of Serv	ice Deterr	nination (ii	f not F)		1	Service D	etermina	tion (if no	ot F)
		0.0078 V ₁₂ - 0.00			1	D _R = 4.252 +		· · · · · ·	,
D _R = 24.3 (pc/m		١Z	A			c/mi/ln)	12	U	
$_{\rm LOS} = C (Exhibit)$					1	-			
					· · ·	xhibit 25-4)			
-	nination					eterminat	ion		
Speed Deterr					D _s = (Ex	(hibit 25-19)			
Speed Deterr	oit 25-19)								
Speed Detern M _S = 0.342 (Exi	oit 25-19) (Exhibit 25-19)					h (Exhibit 25-1	9)		
Speed Detern $M_s =$ 0.342 (Exi $S_R =$ 53.8 mph					S _R = mp	h (Exhibit 25-1 h (Exhibit 25-1	-		

RAMPS AND RAMP JUNCTIONS WORKSHEET			
General Information Site Information			
Analyst sta Freeway/Dir of Travel SR 32 Eastbound			
Agency or Company TranSystems Junction Bach Buxton Exit F	Ramp		
Date Performed 2/7/2011 Jurisdiction			
Analysis Time Period AM Peak Analysis Year 2030 Alt 3			
Project Description Segment IVa - P403100004			
Inputs Lestream Adi Pamp Terrain: Level			
		Downstrean Ramp	n Adj
Yes On			On
No Off			C Off
$L_{up} = ft$		L _{down} =	ft
$V_{u} = veh/h$ $S_{FF} = 60.0 mph$ $S_{FR} = 45.0 mph$ $Sketch (show lanes, L_A, L_D, V_B, V_f)$		V _D =	veh/h
Conversion to pc/h Under Base Conditions		1	
(pc/h) V PHF Terrain %Truck %Rv f _{HV}	f _p	v = V/PHF x	: f _{HV} x f _p
Freeway 2580 0.90 Level 3 0 0.985	1.00	2910	0
Ramp 340 0.90 Level 3 0 0.985	1.00	383	5
UpStream			
DownStream			
	iverge Areas		
Estimation of v ₁₂ Estimation of v ₁₂			
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V _R + (V _F - V		
L_{EQ} = (Equation 25-2 or 25-3) L_{EQ} = (E	Equation 25-8	3 or 25-9)	
P_{FM} = using Equation (Exhibit 25-5) P_{FD} = 0.6	570 using Ec	quation (Exhib	oit 25-12)
$V_{12} = pc/h$ $V_{12} = 207$	75 pc/h		
$V_3 \text{ or } V_{av34}$ pc/h (Equation 25-4 or 25-5) $V_3 \text{ or } V_{av34}$ 838	5 pc/h (Equa	ation 25-15 o	or 25-16)
Is V_3 or $V_{av34} > 2,700$ pc/h? \Box Yes \Box No Is V_3 or $V_{av34} > 2,700$ pc/h? \Box	Yes 🗹 No		
Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$	Yes 🗹 No		
If Yes,V _{12a} = pc/h (Equation 25-8) If Yes,V _{12a} = pc	c/h (Equation	n 25-18)	
Capacity Checks Capacity Checks			
Actual Capacity LOS F? Actual		pacity	LOS F?
V _F 2910	Exhibit 25-1	4 6900	No
V_{FO} Exhibit 25-7 $V_{FO} = V_F - V_R$ 2527	Exhibit 25-1	4 6900	No
V _R 383	Exhibit 25-3	3 2100	No
Flow Entering Merge Influence Area Flow Entering Diver	ae Influen		
Actual Max Desirable Violation? Actual	Max Desiral	ſ	Violation?
	Exhibit 25-14	4400:All	No
Level of Service Determination (if not F) Level of Service Det	terminatio	n (if not F	7)
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$ $D_{R} = 4.252 + 0.0078 V_{12} - 0.00627 L_{A}$			/
$D_{\rm R} = (\rm pc/mi/ln)$ $D_{\rm R} = 17.6 (\rm pc/mi/ln)$	12	D	
LOS = (Exhibit 25-4) $LOS = B (Exhibit 25-4)$			
Speed Determination Speed Determination	n		
$M_{s} = (Exibit 25-19)$ $D_{s} = 0.332 (Exhibit 25-1)$			
$S_R^{=}$ mph (Exhibit 25-19) $S_R^{=}$ 54.0 mph (Exhibit 2	25-19)		
$S_0 = mph (Exhibit 25-19)$ $S_0 = 65.8 mph (Exhibit 25-19)$	25-19)		
S = mph (Exhibit 25-14) S = 56.9 mph (Exhibit 2	25-15)		

HCS+TM Version 5.5

		RAMP	S AND RAM	P JUNCTI	ONS WOR	RKS	HEET			
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 E	Eastbound			
Agency or Company		Systems	Jur	nction	E	Bach B	uxton Exit R	amp		
Date Performed	2/7/20			risdiction						
Analysis Time Period			An	alysis Year	2	2030 AI	t 3			
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve								• "
Upstream Adj Ramp			51						Downstrea Ramp	am Adj
Yes Or									T Yes	l On
🗹 No 🕅 Off	T									C Off
L _{up} = ft			00.0t		0 4/	- 0	L.		L _{down} =	ft
V _u = veh/h	1		S _{FF} = 60.0 mph Sketch(s	show lanes, L _A	S _{FR} = 45 , L _D ,V _R ,V _f)	5.0 mp	n		V _D =	veh/h
Conversion t	o pc/h Und	der Base	Conditions		5					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{H∨}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4365	0.90	Level	3	0	0.9	985	1.00	49	23
Ramp	620	0.90	Level	3	0	0.9	985	1.00	6	99
UpStream										
DownStream					<u> </u>					
Estimation of		Merge Areas			Ectimoti	<u></u>		verge Areas		
Estimation of					Estimati					
	$V_{12} = V_{F}$	(P _{FM})					12	V _R + (V _F - V		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-	8 or 25-9)	
P _{FM} =	using	Equation (I	Exhibit 25-5)		P _{FD} =		0.6	05 using Eq	quation (Ex	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		325	4 pc/h		
V ₃ or V _{av34}	pc/h (Equation 28	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		166	9 pc/h (Equ	uation 25-1	5 or 25-16)
Is V_3 or $V_{av34} > 2,70$	0 pc/h? 🕅 Yes	s 🔲 No			Is V_3 or V_{av34}	₄ > 2,7	00 pc/h? 🥅	Yes 🗹 No		
Is V_3 or $V_{av34} > 1.5$ '	* V ₁₂ /2 🔲 Yes	s 🗌 No			Is V_3 or V_{av34}	₄ > 1.5	* V ₁₂ /2	Yes 🗹 No		
lf Yes,V _{12a} =	pc/h (Equation 28	5-8)		If Yes,V _{12a} =		рс	h (Equatior	า 25-18)	
Capacity Che	ecks				Capacity	Che	ecks			
	Actual	C	Capacity	LOS F?			Actual		apacity	LOS F?
					V _F		4923	Exhibit 25-1	6900	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_F$	- V _R	4224	Exhibit 25-1	4 6900	No
					V _R		699	Exhibit 25-	3 2100	No
Flow Entering	n Merge In	fluence A	Irea			terin	a Diver	ge Influer		
	Actual	1	Desirable	Violation?			Actual	Max Desira		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	3	254	Exhibit 25-14	4400:All	No
Level of Serv	ice Detern	nination (if not F)			Serv	vice Det	erminatio	n (if not	F)
D _R = 5.475 + 0.			/		1			0086 V ₁₂ - 0		/
D _R = (pc/mi/ln		12	~				mi/ln)	12	D	
LOS = (Exhibit 2							oit 25-4)			
Speed Detern	nination				Speed D	eter	minatio	า		
M _s = (Exibit 2							khibit 25-1			
-	nibit 25-19)					5 mph	(Exhibit 2	5-19)		
	nibit 25-19)						(Exhibit 2	-		
-	nbit 25-14)						(Exhibit 2			
· `	,					F	,	,		

Generated: 12/5/2011 12:48 PM

General Infor		MPS AND		Site Infor	mation				
Analyst	scf			eeway/Dir of Tra		SR 32 Eastbour	nd		
Agency or Company		Systems		nction		Glen Este Entra			
Date Performed	2/7/2	-		risdiction					
Analysis Time Period			An	alysis Year	2	2030 Alt 3			
Project Description				,					
Inputs									
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj
Yes Or	1							T Yes	🗌 On
🗹 No 📃 Of	f							🗹 No	C Off
- _{up} = ft								L _{down} =	ft
up		S	₌₌ = 60.0 mph		S _{FR} = 4	5.0 mph			
/ _u = veh/h		· ·		show lanes, L _A ,				V _D =	veh/h
Conversion t	o pc/h Un	der Base C		n	DIVI				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	2380	0.90	Level	3	0	0.985	1.00		2684
Ramp	200	0.90	Level	3	0	0.985	1.00		226
UpStream									
DownStream									
		Merge Areas					Diverge Are	as	
Estimation of	^f v ₁₂				Estimati	on of v ₁₂			
	V ₁₂ = V _F	(P _{FM})				V -	= V _R + (V _F -	· V_)P	
- _{EQ} =	12 1	ation 25-2 or	25-3)		_	v 12			0)
P = FM =			on (Exhibit 25-5)		L _{EQ} =			25-8 or 25-9	
					P _{FD} =			ation (Exhibit	25-12)
V ₁₂ =	1588	•	n 25 A or 25		V ₁₂ =		pc/h		
V_3 or V_{av34}	1096 5)	pc/h (Equatio	11 20-4 01 20-		$V_3^{}$ or $V_{av34}^{}$			ion 25-15 or 2	5-16)
Is V ₃ or V _{av34} > 2,70	,	s 🔽 No			Is V_3 or V_{av3}	₄ > 2,700 pc/h?	🗆 Yes 🗖	No	
Is V_3 or $V_{av34} > 1.5$					Is V ₃ or V _{av3}	₄ > 1.5 * V ₁₂ /2	🗆 Yes 🗖	No	
If Yes,V _{12a} =		(Equation 25-	8)		If Yes,V _{12a} =		pc/h (Equ	ation 25-18)	
		(Equation 25-	0)		.20			,	
Capacity Che	1		pooit.	1.00 52		/ Checks	J	Canacity	
	Actual		pacity	LOS F?	1/	Actua		Capacity	LOS F
					V _F		Exhibit		
V _{FO}	2910	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	· V _R	Exhibit	25-14	
					V _R		Exhibit	25-3	
Flow Entering	g Merge In	fluence A	rea		Flow En	tering Div	erge Influ	lence Are	ea
	Actual	Max D	esirable	Violation?		Actual	Max D	esirable	Violation
V _{R12}	1814	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4	
Level of Serv	ice Deterr	nination (in	f not F)			Service D	etermina	tion (if no	ot F)
		0.0078 V ₁₂ - 0.0	/			D _R = 4.252 +			
D _R = 16.4 (pc/m		12			1	c/mi/ln)	12	D	
LOS = B (Exhibit					1	xhibit 25-4)			
Speed Deterr					· ·	eterminat	ion		
speeu Deterr					- <u> </u>				
	bit 25-19)					khibit 25-19)	0)		
-							un l		
0	(Exhibit 25-19)					h (Exhibit 25-1	-		
S _R = 54.6 mph						on (Exhibit 25-1) oh (Exhibit 25-1)	-		

Page 1 of 1

General Infor		MPS AND		Site Infor	mation				
Analyst	scf			eeway/Dir of Tra		SR 32 Eastbour	nd		
Agency or Company		Systems		nction		Glen Este Entra			
Date Performed	2/7/2	-		risdiction	· · · ·				
Analysis Time Period			An	alysis Year	2	2030 Alt 3			
Project Description		P403100004		,					
Inputs	•								
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	eam Adj
Yes Or	1							T Yes	🗌 On
🗹 No 📃 Of	f							🗹 No	□ Off
L _{up} = ft							L _{down} =	ft	
S _{FF} = 60.0 mph					S _{FR} = 4	5.0 mph			
$V_u = veh/h$ Sketch (show lanes, L_A, L_D, V_R, V_f)							V _D =	veh/h	
Conversion t	o pc/h Un	der Base C		<u>n</u>	DICE				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	4025	0.90	Level	3	0	0.985	1.00		4539
Ramp	340	0.90	Level	3	0	0.985	1.00		383
UpStream		<u> </u>							
DownStream									
		Merge Areas					Diverge Are	as	
Estimation of	• v ₁₂				Estimati	on of v ₁₂			
	V ₁₂ = V _F	(P _{FM})				V	= V _R + (V _F -	· V_)P	
L _{EQ} = (Equation 25-2 or 25-3)						* 12 -			0)
P _{FM} =			on (Exhibit 25-5)		L _{EQ} =			25-8 or 25-9	
™ √ ₁₂ =	2685				P _{FD} =			ation (Exhibit	25-12)
		pc/n pc/h (Equatio	n 25 1 or 25		V ₁₂ =		pc/h		
V_3 or V_{av34}	5)	pc/ii (Equalio	11 25-4 01 25-		V ₃ or V _{av34}			ion 25-15 or 2	5-16)
Is V ₃ or V _{av34} > 2,70	,	s 🔽 No			Is V_3 or V_{av3}	₄ > 2,700 pc/h?	🗆 Yes 🗖	No	
Is V_3 or $V_{av34} > 1.5$					Is V_3 or V_{av3}	₄ > 1.5 * V ₁₂ /2	🗆 Yes 🗖	No	
If Yes,V _{12a} =		(Equation 25-	.8)		If Yes,V _{12a} =		pc/h (Equ	ation 25-18)	
Capacity Che			-0)		.20	/ Checks		,	
capacity che	1		inacity			Actua	1	Capacity	
	Actual		ipacity	LOS F?	V	Aciua	Exhibit	<u> </u>	LOS F
					V _F				
V _{FO}	4922	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	· V _R	Exhibit	25-14	
					V _R		Exhibit	25-3	
Flow Entering	g Merge In	fluence A	rea		Flow En	tering Div	erge Influ	ience Are	ea
	Actual	Max D	Desirable	Violation?		Actual	Max D	esirable	Violation
V _{R12}	3068	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4	
Level of Serv	ice Deterr	nination (in	f not F)		Level of	Service D	etermina	tion (if no	ot F)
D _R = 5.475 +	0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A			D _R = 4.252 +	0.0086 V ₁₂	- 0.009 L _D	
D _R = 26.1 (pc/m			· -		1	c/mi/ln)	12	5	
_OS = C (Exhibit					1	xhibit 25-4)			
Speed Deterr	-				· ·	eterminat	ion		
						(hibit 25-19)			
M _S = 0.360 (Exi							n)		
-	(Evhibit 25 10)				S _R = mph (Exhibit 25-19)				
S _R = 53.5 mph							•		
$S_R^{=} 53.5 \text{ mph}$ $S_0^{=} 55.1 \text{ mph}$	(Exhibit 25-19) (Exhibit 25-19) (Exhibit 25-14)				S ₀ = mp S= mp	h (Exhibit 25-1	9)		

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32	Westbound			
Agency or Company		Systems	Jur	nction	E	Bach E	Buxton Entrar	ice Ramp		
Date Performed	2/7/20			isdiction	_					
Analysis Time Period			An	alysis Year	2	2030 /	Alt 3			
Project Description Inputs	Segment Iva -	P403100004								
Upstream Adj Ramp		Terrain: Leve							Downstre	am Adi
☐ Yes ☐ On									Ramp	
⊠ No □ Off						I Yes I No	☐ On □ Off			
L _{up} = ft							L _{down} =	ft		
		S	_{FF} = 60.0 mph		S _{FR} = 48	5.0 m	ph			e le /le
V _u = veh/h			Sketch (s	how lanes, L _A ,	L_{D}, V_{R}, V_{f}				V _D =	veh/h
Conversion to	o pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	^F x f _{HV} x f _p
Freeway	3605	0.90	Level	3	0	0.	.985	1.00	4	1066
Ramp	600	0.90	Level	3	0	0.	.985	1.00		677
UpStream		├ ───┤				<u> </u>				
DownStream		Merge Areas						verge Areas	<u> </u>	
Estimation of		vierge Areas			Estimati	on		Verge Areas	•	
		(D)			Lotinati		12			
	$V_{12} = V_{F}$		05.0				$V_{12} = V$	_R + (V _F - V	/ _R)P _{FD}	
L _{EQ} =		ation 25-2 or	-		L _{EQ} =		(E	quation 2	5-8 or 25-9))
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		us	sing Equat	tion (Exhibit	25-12)
V ₁₂ =	2405 p				V ₁₂ =		ро	c/h		
V_3 or V_{av34}	1661 p 5)	oc/h (Equatio	on 25-4 or 25-		$V_3^{}$ or $V_{av34}^{}$		р	c/h (Equation	n 25-15 or 25	-16)
Is V ₃ or V _{av34} > 2,700		s 🔽 No			Is V_3 or V_{av3}	₄ > 2,	700 pc/h? 🥅	Yes 🗆 N	0	
Is V_3 or $V_{av34} > 1.5 *$					Is V_3 or V_{av3}	₄ > 1.9	5 * V ₁₂ /2 🔲	Yes 🗆 N	0	
If Yes,V _{12a} =	12	Equation 25	-8)		If Yes,V _{12a} =		ро	c/h (Equati	ion 25-18)	
Capacity Che					Capacity	/ Ch	ecks			
	Actual	C	apacity	LOS F?			Actual	C	apacity	LOS F?
		Í			V _F			Exhibit 25	<u> </u>	
V _{FO}	4743	Exhibit 25-7		No	$V_{FO} = V_F$ -	. V_		Exhibit 25		
- FO					V _R	· R		Exhibit 25	_	
Elow Entoring	Marga In	fluonoo A	*^^			<u> </u>				
Flow Entering	Actual	î.	Desirable	Violation?		ii .	n g Diver g Actual	Max Des		Violation?
V _{R12}	3082	Exhibit 25-7	4600:All	No	V ₁₂	<u> </u>		xhibit 25-14		violation:
				110		Sor	vice Det		ion (if no	t F)
	Level of Service Determination (if not F) D _R = 5.475 + 0.00734 v _R + 0.0078 V ₁₂ - 0.00627 L _A						4.252 + 0.0			,
						c/mi/		12	0.000 <u>-</u> D	
LOS = C (Exhibit 2)	-						,			
							t 25-4)			
Speed Detern					Speed D			1		
M _S = 0.361 (Exit	-						25-19) hibit 25-10)			
	Exhibit 25-19)				S _R = mph (Exhibit 25-19) S = mph (Exhibit 25-19)					
					$S_0 = mph (Exhibit 25-19)$					
= 54.3 mph (Exhibit 25-14)					S = mp	n (Ex	hibit 25-15)			

HCS+TM Version 5.5

		RAN	<u>MPS AND</u>	RAMP JUNC	<u>CTIONS W</u>	<u>ORKSHE</u>	ET				
Genera	l Inforn	nation			Site Infor	mation					
Analyst		sta		Fre	eway/Dir of Tr	avel S	SR 32 West	oound			
Agency or C	Company	TranS	Systems	Ju	nction	E	Bach Buxton	Entrance Ramp			
ate Perfor	med	2/7/20	011	Ju	risdiction						
Analysis Tin		PM P		An	alysis Year	2	2030 Alt 3				
	cription S	Segment IVa -	P403100004								
nputs			L								
Jpstream A —			Terrain: Level						Downstre Ramp	am Adj	
Yes	🗆 On								🗖 Yes	🗌 On	
🗹 No	C Off								🗹 No	C Off	
=	ft								L _{down} =	ft	
S _{FF} = 60.0 mph						S _{FR} = 4	5.0 mph				
/ _u =	veh/h				show lanes, L _A ,	110			V _D =	veh/h	
Conver	sion to	pc/h Und	ler Base (Conditions	X	BINT					
(pc/	h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	= x f _{HV} x f _p	
Freeway	ĺ	2765	0.90	Level	3	0	0.985	1.00		3118	
Ramp		435	0.90	Level	3	0	0.985	1.00		491	
UpStream					-						
DownStrea	m					1					
			Merge Areas					Diverge Area	IS		
Estimat	tion of	v ₁₂				Estimati	on of v ₁	2			
		V ₁₂ = V _F ((P_u)								
=		12 1	ation 25-2 or	25-3)			V.	$_{12} = V_R + (V_F - V_F)$			
-EQ =				-		L _{EQ} =		(Equation 2		•	
P _{FM} =				on (Exhibit 25-5)		P _{FD} =		using Equa	ation (Exhibit	25-12)	
/ ₁₂ =		1844 p				V ₁₂ =		pc/h			
V_3 or V_{av34}		-	oc/h (Equatio	on 25-4 or 25-		V_3 or V_{av34}		pc/h (Equatio	on 25-15 or 25	i-16)	
	> 2 700	5)				Is V ₃ or V _{av34} > 2,700 pc/h? TYes No					
		pc/h? 🔲 Yes				$ s V_3 or V_{av34} > 1.5 * V_{12}/2$ [Yes No					
	•	V ₁₂ /2 TYes									
FYes,V _{12a} =	=	pc/h (Equation 25	-8)		If Yes,V _{12a} =		pc/n (Equa	1011 25-16)		
Capacit	ty Cheo	cks				Capacity	/ Check	s			
		Actual	Ca	apacity	LOS F?		Ac	tual (Capacity	LOS F?	
						V _F		Exhibit 2	5-14		
V _F		3609	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	· V _D	Exhibit 2	5-14		
FV						V _R	ĸ	Exhibit 2			
-low Er	ntering		fluence A		Violetian	FIOW En	1	verge Influ			
V		Actual 2335	Exhibit 25-7	Desirable 4600:All	Violation? No	V ₁₂	Actual	Max De Exhibit 25-14	Ĭ	Violation?	
V _{R1}					NU					<u> </u>	
			nination (i	,				Determinat		м г)	
			.0078 V ₁₂ - 0.0	0627 L _A				2 + 0.0086 V ₁₂ ·	- 0.009 L _D		
0 _R = 20	0.3 (pc/mi/	'ln)				D _R = (pe	c/mi/ln)				
.OS = C	(Exhibit 2	5-4)				LOS = (E	xhibit 25-4	1)			
Speed I	Determ	ination				Speed Determination					
Λ _S = 0.	.316 (Exibi	it 25-19)				D _s = (Exhibit 25-19)					
		Exhibit 25-19)				S _R = mph (Exhibit 25-19)					
i_= 5.											
							h (Exhibit 2	5-19)			
S ₀ = 5 ⁻	7.2 mph (E	Exhibit 25-19) Exhibit 25-14)				S ₀ = mp	oh (Exhibit 2 oh (Exhibit 2	-			

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 \	Nestbound			
Agency or Company	Trans	Systems	Jur	nction	E	Bach B	uxton Exit R	lamp		
Date Performed	2/7/20			risdiction						
Analysis Time Period			An	alysis Year	2030 Alt 3					
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve								• "
Upstream Adj Ramp			1						Downstrea Ramp	am Adj
I Yes □ On									Tes	C On
	Ī									C Off
L _{up} = ft			6 _{FF} = 60.0 mph		S _{FR} = 45	5.0 mn	h		L _{down} =	ft
V _u = veh/h			how lanes, L _A		5.0 mp	11		V _D =	veh/h	
Conversion to	o pc/h Und	ler Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	fp	v = V/PHF	${\rm x}~{\rm f}_{\rm HV}~{\rm x}~{\rm f}_{\rm p}$
Freeway	4155	0.90	Level	3	0	0.	985	1.00	46	86
Ramp	550	0.90	Level	3	0	0.	985	1.00	6	20
UpStream										
DownStream										
Estimation of		Merge Areas			Estimati	<u></u>		verge Areas		
Estimation of					LSumau					
	$V_{12} = V_{F}$	(P _{FM})						V _R + (V _F - V		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-	8 or 25-9)	
P _{FM} =	using	Equation (I	Exhibit 25-5)		P _{FD} =		0.6	14 using Ed	quation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		311	8 pc/h		
$V_3^{}$ or $V_{av34}^{}$	pc/h (Equation 28	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		156	68 pc/h (Equ	uation 25-1	5 or 25-16)
Is V ₃ or V _{av34} > 2,70	0 pc/h? 🥅 Yes	s 🗌 No			Is V ₃ or V _{av34} > 2,700 pc/h?					
Is V ₃ or V _{av34} > 1.5 *	V ₁₂ /2 Tes	s 🗆 No			Is V ₃ or V _{av34} > 1.5 * V ₁₂ /2 \Box Yes \Box No					
lf Yes,V _{12a} =	pc/h (Equation 28	5-8)		If Yes,V _{12a} =		рс	h (Equatior	า 25-18)	
Capacity Che	cks				Capacity	Che	ecks			
	Actual	[C	apacity	LOS F?			Actual		apacity	LOS F?
					V _F		4686	Exhibit 25-1	6900	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_F \cdot$	- V _R	4066	Exhibit 25-1	4 6900	No
					V _R		620	Exhibit 25-	3 2100	No
Flow Entering	n Merce In	fluence (roa			torin		ge Influer		
	Actual	1	Desirable	Violation?		_	Actual	Max Desira		Violation?
V _{R12}		Exhibit 25-7			V ₁₂			Exhibit 25-14	4400:All	No
	Level of Service Determination (if not F)							erminatio		
	$D_{\rm R} = 5.475 + 0.00734 v_{\rm R} + 0.0078 V_{12} - 0.00627 L_{\rm A}$				1					- /
	D _R = (pc/mi/ln)				$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = 26.6 (pc/mi/ln)$					
					LOS = C (Exhibit 25-4)					
Speed Determ	Speed Determination				Speed Determination					
	M _s = (Exibit 25-19)				D _s = 0.354 (Exhibit 25-19)					
					S _R = 53.6 mph (Exhibit 25-19)					
					S ₀ = 63.6 mph (Exhibit 25-19)					
	ibit 25-14)				S = 56.6 mph (Exhibit 25-15)					
· · ·							•	,		

Generated: 12/5/2011 1:06 PM

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 \	Vestbound			
Agency or Company	Trans	Systems	Jur	nction	E	Bach B	uxton Exit R	amp		
Date Performed	2/7/20			risdiction						
Analysis Time Period			An	alysis Year	2	2030 AI	t 3			
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Lev							L	
Upstream Adj Ramp		Terrain. Levi							Downstrea Ramp	am Adj
I Yes I Or I No I Of									Tes	C On
	ſ									C Off
L _{up} = ft		S _{FF} = 60.0 mph				5.0 mp			L _{down} =	ft
V _u = veh/h			show lanes, L _A		- F			V _D =	veh/h	
Conversion te	o pc/h Und	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	$\mathbf{x} \mathbf{f}_{HV} \mathbf{x} \mathbf{f}_{p}$
Freeway	3125	0.90	Level	3	0	0.9	985	1.00	35	524
Ramp	360	0.90	Level	3	0	0.9	985	1.00	4	06
UpStream										
DownStream										
Estimation of		Merge Areas			Estimati	ono		verge Areas		
Estimation of					LSumau	011 0				
	$V_{12} = V_{F}$	(P _{FM})					•=	V _R + (V _F - V		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-	8 or 25-9)	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		0.6	53 using Ed	quation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		244	3 pc/h		
V_3 or V_{av34}	pc/h (Equation 2	5-4 or 25-5)		V_3 or V_{av34}		108	1 pc/h (Equ	uation 25-1	5 or 25-16)
Is V_3 or $V_{av34} > 2,70$	0 pc/h? 🔲 Yes	s 🗆 No			Is V ₃ or V _{av34} > 2,700 pc/h?					
Is V_3 or $V_{av34} > 1.5$ '					Is V ₃ or V _{av34} > 1.5 * V ₁₂ /2					
		Equation 2	5-8)		If Yes,V _{12a} =		.=	/h (Equation	า 25-18)	
Capacity Che			,				-			
	Actual	(Capacity	LOS F?			Actual	Ca	apacity	LOS F?
	71010001	<u>`</u>	suputity	20011	V _F		3524			No
V _{FO}		Exhibit 25-7			V _{FO} = V _F	- V_	3118	Exhibit 25-1		No
. FO					V _R	- R	406	Exhibit 25-	_	No
Flow Entering	<u>i</u> n Morao In	l fluence /	l Aroa			torin		ge Influer		
	Actual	1	Desirable	Violation?		_	Actual	Max Desira		Violation?
V _{R12}		Exhibit 25-7			V ₁₂			Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)						Serv	vice Det	erminatio	n (if not	F)
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$					1					/
	D _R = (pc/mi/ln)				$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = 20.8 (pc/mi/ln)$					
					LOS = C (Exhibit 25-4)					
	Speed Determination				Speed Determination					
	M _s = (Exibit 25-19)				D _s = 0.335 (Exhibit 25-19)					
					S _R = 54.0 mph (Exhibit 25-19)					
					S ₀ = 65.5 mph (Exhibit 25-19)					
					S = 57.1 mph (Exhibit 25-15)					
	= mph (Exhibit 25-14)				$\Gamma = -57$			515)		

HCS+TM Version 5.5

Generated: 12/5/2011 1:06 PM

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel	SR 32	Westbound			
Agency or Company	Trans	Systems	Jur	nction	(Glen E	ste Exit Ran	np		
Date Performed	2/7/20			isdiction						
Analysis Time Period			An	alysis Year		2030 A	lt 3			
Project Description	Segment IVa -	P403100004								
Inputs		Torreine Law								
Upstream Adj Ramp		Terrain: Lev	el						Downstrea Ramp	am Adj
Yes Or									T Yes	☐ On
No Of	T									☐ Off ft
L _{up} = ft	= ftS _{FF} = 60.0 mph				S _{FR} = 4	5.0 mn			L _{down} =	п
V _u = veh/h	I			how lanes, L _A		.o.o mp	"		V _D =	veh/h
Conversion to	o pc/h Und	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	${\rm x}~{\rm f}_{\rm HV}~{\rm x}~{\rm f}_{\rm p}$
Freeway	4205	0.90	Level	3	0	0.	985	1.00	47	42
Ramp	265	0.90	Level	3	0	0.	985	1.00	2	99
UpStream										
DownStream	<u> </u>				 					
Estimation of		Merge Areas			Estimati	ion o		iverge Areas		
LSUMATION					LSumau					
	V ₁₂ = V _F						12	V _R + (V _F - V		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	Equation 25-	3 or 25-9)	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		0.6	28 using E	quation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		308	88 pc/h		
V ₃ or V _{av34}	pc/h (Equation 2	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		16	54 pc/h (Equ	ation 25-1	5 or 25-16)
Is V ₃ or V _{av34} > 2,70	0 pc/h? 🔲 Yes	s 🗌 No			Is V_3 or V_{av3}	₃₄ > 2,7	00 pc/h? 🥅	Yes 🗹 No		
Is V ₃ or V _{av34} > 1.5 *	* V ₁₂ /2 🔲 Yes	s 🗆 No			Is V ₃ or V _{av34} > 1.5 * V ₁₂ /2					
lf Yes,V _{12a} =	pc/h (Equation 2	5-8)		If Yes,V _{12a} =		р	c/h (Equatior	n 25-18)	
Capacity Che	ecks				Capacity		ecks			
	Actual	(Capacity	LOS F?	1		Actual	Ca	apacity	LOS F?
					V _F	Ĩ	4742			No
V _{FO}		Exhibit 25-7			$V_{FO} = V_F$		4443	Exhibit 25-1		No
10					V _R		299	Exhibit 25-	_	No
Flow Entering	<u>I</u> n Morgo In	l fluonco /	l			torin		ge Influer		
	Actual	1	Desirable	Violation?			Actual	Max Desira		Violation?
V _{R12}	7 (01001	Exhibit 25-7		violation:	V ₁₂	_	8088	Exhibit 25-14	4400:All	No
	Level of Service Determination (if not F)							terminatio	I	1
	$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$				1			0086 V ₁₂ - 0		• /
$D_{R} = (pc/mi/ln)$								12 0	<u>-</u> D	
LOS = (Exhibit 2					$D_{R} = 26.3 \text{ (pc/mi/ln)}$					
Speed Determination			LOS = C (Exhibit 25-4) Speed Determination							
-			$D_{s} = 0.325 \text{ (Exhibit 25-19)}$							
U					$S_{R}^{=}$ 54.2 mph (Exhibit 25-19)					
					$S_0 = 63.3 \text{ mph} (Exhibit 25-19)$					
s = mph (Exhibit 25-14)					S = 57	.0 mph	(Exhibit 2	25-15)		

HCS+TM Version 5.5

Generated: 12/5/2011 12:51 PM

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 \	Vestbound			
Agency or Company	Trans	Systems	Jur	nction	(Glen Es	ste Exit Ram	р		
Date Performed	2/7/20			risdiction						
Analysis Time Period			An	alysis Year	2	2030 AI	t 3			
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve							L	
Upstream Adj Ramp		renam. Leve							Downstrea Ramp	am Adj
I Yes □ Or									T Yes	☐ On
	ſ									Off
L _{up} = ft	S _{FF} = 60.0 mph				S _{FR} = 4	5 () mn			L _{down} =	ft
V _u = veh/h	I		11	how lanes, L _A		5.0 mp			V _D =	veh/h
Conversion to	o pc/h Und	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3200	0.90	Level	3	0	0.9	985	1.00	36	609
Ramp	405	0.90	Level	3	0	0.9	985	1.00	4	57
UpStream										
DownStream					<u> </u>					
Estimation of		Merge Areas			Estimati	ion o		verge Areas		
LStimation of					LSumau	011 0				
	$V_{12} = V_{F}$	(P _{FM})					•=	V _R + (V _F - V		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-	8 or 25-9)	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		0.64	49 using Ed	quation (Exl	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		250)2 pc/h		
V ₃ or V _{av34}	pc/h (Equation 2	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		110)7 pc/h (Equ	uation 25-1	5 or 25-16)
Is V ₃ or V _{av34} > 2,70	0 pc/h? 🕅 Yes	s 🔲 No			Is V ₃ or V _{av34} > 2,700 pc/h?					
Is V ₃ or V _{av34} > 1.5 '	* V ₁₂ /2 🔲 Yes	s 🗆 No			Is V ₃ or V _{av34} > 1.5 * V ₁₂ /2					
lf Yes,V _{12a} =	pc/h (Equation 2	5-8)		If Yes,V _{12a} =		pc	h (Equatior	า 25-18)	
Capacity Che			-		Capacity		ecks			
	Actual	(Capacity	LOS F?	<u> </u>	<u> </u>	Actual	Ca	apacity	LOS F?
					V _F		3609			No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _D	3152	Exhibit 25-1	14 6900	No
10					V _R		457	Exhibit 25-	_	No
Flow Entering	<u> </u> n Morgo In	l fluonco /	lroa			torin	-	ge Influer		
FIOW Entering	Actual	1	Desirable	Violation?	FIOW EI		Actual	Max Desira		Violation?
V _{R12}	7101000	Exhibit 25-7		violation:	V ₁₂			Exhibit 25-14	4400:All	No
	Level of Service Determination (if not F)							erminatio		
	$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$				1			0086 V ₁₂ - 0		•)
					1			12 0	.000 LD	
					$D_{R} = 21.3 \text{ (pc/mi/ln)}$					
-					LOS = C (Exhibit 25-4)					
	Speed Determination				Speed Determination					
M _S = (Exibit 25-19)				$D_{s} = 0.339$ (Exhibit 25-19)						
S _R = mph (Exh					S _R = 53.9 mph (Exhibit 25-19)					
	= mph (Exhibit 25-19)				S ₀ = 65.4 mph (Exhibit 25-19)					
S = mph (Exh					S = 57.0 mph (Exhibit 25-15)					

HCS+TM Version 5.5

Generated: 12/5/2011 1:05 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
S0 Froe-Flow Speed FFS = 75 min 70 60 60 min 60 60 min 60 min 50 55 min 55 min 40 55 min 50 min 30 60 min 60 min 60 60 min 60 min 50 10 min 55 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min 60 60 min 60 min	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	sta		Site Inform	nation ection of Travel	SR 32 Ea	asthound
Agency or Company Date Performed	TranSystems 2/7/2011		From/To Jurisdiction			Ent to Glen Este En
Analysis Time Period Project Description Segmer	AM Peak nt IVa- P40310000)4	Analysis Yea	I	2030 All	4
✓ Oper.(LOS)			Des.(N)		Plar	nning Data
Flow Inputs						
Volume, V AADT Peak-Hr Prop. of AADT, K	2380	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	-			d Adj and FFS		
_ane Width	12.0	ft			•	• //
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
nterchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
OS and Performance	Measures	,	Design (N))		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : _p)		pc/h/ln	<u>Design (N)</u> Design LOS))HV) / (PHF x N x	f _{HV} x	pc/h
p [,] S	60.0	mi/h	f _p)			·
$D = v_p / S$	14.9	pc/mi/ln	S			mi/h
LOS	В	1	$D = v_p / S$			pc/mi/ln
				mber of Lanes, N		
Glossary	6 60004		Factor Loo	Lation		
N - Number of lanes / - Hourly volume /p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho						
Copyright © 2010 University of Florida	All Pights Posonyod			M Version 5.5	0.0	enerated: 12/5/2011

HCS+TM Version 5.5 Generated: 12/5/2011 1:23 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 From-Flow: Spzeed FFS = 75 mith 70 70 mith 70 mith 70 60 65 mith 60 55 mith 60 55 0 0 10 0 60 60 55 mith 10 60 55 mith 10 60 105 A 10 60 100 A 10 60 100 A 10 60 100 A 10			2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information			Site Inform		00.00 5	
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 PM Peak		From/To Jurisdiction Analysis Year	ction of Travel r	SR 32 Ea Eastgate 2030 Alt	Ent to Glen Este Ent
Project Description Segmer	nt IVa- P40310000				_	
Oper.(LOS)			Des.(N)		Plar	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	4030	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn					10	
f _p E _T	1.00 1.5		E _R		1.2 0.985	
Speed Inputs	1.0			_T - 1) + P _R (E _R - 1)] d Adj and FFS		
Lane Width	12.0	ft		u Auj anu FFS	<u> </u>	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N x f _p)		pc/h/ln	<u>Design (N)</u> Design LOS	HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S	60.0 25.3	mi/h pc/mi/ln	ι _p) S D = v _p / S			mi/h pc/mi/ln
LOS	С		F	mber of Lanes, N		
Glossary			Factor Loo	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-′	23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design ho				r 1 Version 5 5		nerated: 12/5/2011 1:24

HCS+TM Version 5.5

Generated: 12/5/2011 1:24 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed Frs = 75 mith 70 65 mith 70 mith 60 55 mith 55 mith 50 L0S A 52 40 55 mith 60 90 40 200			2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, FFS, LOS, FFS, N, Ai FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
Concrol Information	Flow Rate (pc/h/ln)		Site Inform	nation		
General Information	sta		Site Inform	ection of Travel	SR 32 Eas	thound
Agency or Company Date Performed	TranSystems 2/7/2011		From/To Jurisdiction			on Ent to Olive Exit
Analysis Time Period Project Description Segmer	AM Peak nt IVa - P4031000	04	Analysis Yea	I	2030 AL I	4
✓ Oper.(LOS)			Des.(N)		Planr	ing Data
Flow Inputs			- \ /			0
Volume, V AADT	2400	veh/h veh/day	Peak-Hour Fa %Trucks and		0.90 3	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	%RVs, P _R General Terra Grade %	ain: Length Up/Down %	0 Level mi	
Calculate Flow Adjustn						
f _p	1.00		E _R		1.2	
E _T	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs				d Adj and FFS		
_ane Width	12.0	ft				
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
nterchange Density	0.50	l/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	0010	mi/h	FFS		60.0	mi/h
OS and Performance	Measures	,	Design (N))		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N)		pc/h/ln	<u>Design (N)</u> Design LOS	, HV) / (PHF x N x	f _{HV} x	20 <i>1</i> /2
(p)	60.0	m:/h	f _p)			pc/h
S D-V /S	60.0 15.0	mi/h pc/mi/ln	S			mi/h
D = v _p / S _OS	15.0 B	PO/111/111	$D = v_p / S$			pc/mi/ln
	<i>B</i>		Required Nur	mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-′	23-8, 23-10, 23-1	1 f	_{LW} - Exhibit 23-4 _{LC} - Exhibit 23-5 _N - Exhibit 23-6 _D - Exhibit 23-7
DDHV - Directional design ho	ur volume			1		

HCS+TM Version 5.5

Generated: 12/5/2011 1:26 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1) 100 From Flow: Speed FFS = 75 mith 70 From Speed FFS = 75 mith 70 mith 70 mith 70 mith 60 55 mith 55 mith 50 LOS A 100 FFS 10 mith 55 mith 50 LOS A 100 FFS 10 mith 50	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	S, V _P N, S, D S, NV _P , S, D AADTLOS, S, D S, AADTN, S, D
- 400 800	Flow Rate (pc/h/ln)	1000 2000	2400			
General Information			Site Inform		_	
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 PM Peak		Highway/Dire From/To Jurisdiction Analysis Yea	ction of Travel r	SR 32 Ea Bach Bu: 2030 Alt	kton Ent to Olive Exit
	nt IVa - P4031000		- (11)			
✓ Oper.(LOS) Flow Inputs			Des.(N)		Plar	nning Data
Volume, V AADT Peak-Hr Prop. of AADT, K	4145	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs Lane Width	12.0	ft		d Adj and FFS		
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
LOS and Performance	Measures	1110/11	Design (N)			
$\frac{\text{Operational (LOS)}}{\text{V}_{p} = (\text{V or DDHV}) / (\text{PHF x N})}$		pc/h/ln	Design (N) Design LOS v _p = (V or DD	, HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S	60.0 26.0	mi/h pc/mi/ln	r _p) S			mi/h
LOS	С		D = v _p / S Required Nur	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre our volume		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
Copyright © 2010 University of Florida				Version 5.5		nerated: 12/5/2011 1:27 F

HCS+TM Version 5.5

Generated: 12/5/2011 1:27 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed FIS = 75 min 70 60 60 min 60 60 min 60 min 50 0 55 min 40 80 90	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	S, V _P N, S, D S, NV _P , S, D AADTLOS, S, D S, AADTN, S, D
	Flow Rate (pc/h/ln)					
General Information			Site Inform		<u> </u>	estbound
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 AM Peak		From/To Jurisdiction Analysis Yea	ction of Travel		ENT to BACH Exit
Project Description Segmer		04		•	2000741	•
Oper.(LOS)			Des.(N)		Plar	ning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	2580	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr					1.0	
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs ₋ane Width	12.0	ft		d Adj and FFS	•	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
nterchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3	.,	f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
OS and Performance	Measures		Design (N)			
$\frac{\text{Operational (LOS)}}{v_p} = (V \text{ or DDHV}) / (PHF x N x_p)$		pc/h/ln	<u>Design (N)</u> Design LOS	, HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			
$D = v_p / S$	16.2	pc/mi/ln	S D = v _p / S			mi/h pc/mi/ln
OS	В		F	mber of Lanes, N		porminin
Glossary			Factor Loc			
N - Number of lanes √ - Hourly volume √ _p - Flow rate _OS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
copyright © 2010 University of Florida				Version 5.5	0.	nerated: 12/5/2011 1:25

HCS+TM Version 5.5

Generated: 12/5/2011 1:25 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1)(iii) pad 70 Free-Flow Speed FFS = 75 mith 70 mith 70 mith 60 60 mith 60 60 mith 60 105 A 55 mith 10 105 M 55 mith 10 105 M 55		50 1750 1750 1750 1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	S, v _p N, S, D S, N v _p , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	-1-		Site Inform	nation ection of Travel	CD 22 M	estbound
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 PM Peak		From/To Jurisdiction Analysis Year			ENT to BACH Exit
Project Description Segmer		04				
Voper.(LOS)			Des.(N)		🗌 Plai	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	4370	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn						
fp	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	(0.0		Calc Spee	d Adj and FFS	5	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
nterchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3	. 4	f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS	M	mi/h				
LOS and Performance Operational (LOS) v _p = (V or DDHV) / (PHF x N x		pc/h/ln	Design (N) Design (N) Design LOS) HV) / (PHF x N x	f _{LIV} x	
f _p)		•	f _p)	, (пv	pc/h
S	60.0	mi/h	р́ S			mi/h
$D = v_p / S$	27.4	pc/mi/ln	$D = v_p / S$			pc/mi/ln
_OS	D			mber of Lanes, N		
Glossary			Factor Loc	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-′	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	All Rights Reserved			/ Version 5.5		nerated: 12/5/2011 1:26

HCS+TM Version 5.5 Generated: 12/5/2011 1:26 PM

			FREEWA	YWEAV	ING WOR	KSHEE	Т		
Genera	I Informat				Site Info				
Analyst Agency/Co Date Perfor Analysis Tii	rmed	STA TRAN 8/3/20 AM P			Freeway/Dir o Weaving Seg Jurisdiction Analysis Yea	Location		EASTBOUN ESTE ON TO	
Inputs									
Freeway fre Weaving nu Weaving se Terrain	ee-flow speed, s umber of lanes, eg length, L (ft)	N	60 4 220 Lev	el	Weaving type Volume ratio, Weaving ratio	VR		A 0.2 0.2	
	sions to p	1	1	l I	1		1		
(pc/h)	V	PHF	Truck %	RV %	Ε _Τ	E _R	f _{HV}	fp	v
V _{o1}	1965	0.90	3	0	1.5	1.2	0.985	1.00	2216
V _{o2}	35	0.90	3	0	1.5	1.2	0.985	1.00	39
V _{w1}	415	0.90	3	0	1.5	1.2	0.985	1.00	468
V _{w2}	165	0.90	3	0	1.5	1.2	0.985	1.00	186
V	-	1	1	654	V _{nw}		1		2255
v _w V	-				nw				2909
Weavin	g and No	n-Weavin	a Sneeds	5					2000
Trea Th	ig and no		Unconstr				Cons	trained	
		Weaving			/ing (i = nw)	Weavi	ng (i = w)	Non-Wea	ving (= nw)
a (Exhibit 2	4-6)	0.1	5	0.0	035				
b (Exhibit 2		2.2	-		00				
c (Exhibit 2		0.9		·	30			ļ	
d (Exhibit 2 Weaving intens	,	0.8		1	75 13			ļ	
Weaving and n	ion-weaving	53.5		ł	.30				
Maximum n	h) lanes required number of lanes If Nw < Nw	for unconstrai s, Nw (max)	ned operation,	, Nw	1.34 1.40	if Nw > N	v (max) constr	I ained operati	on
	g Segmer	, ,					. ,		
	egment speed,		, <u> </u>	57.91			,		
	egment density,	,		12.56					
Level of sei				В					
Capacity of	base condition	ı, c _h (pc/h)		8082					
	s a 15-minute fl	v	h/h)	7963					
	s a full-hour vol		,	7167					
Notes			,						
Junctions". b. Capacity of c. Capacity of d. Three-lan such cases. e. Four-lane such cases. f. Capacity of g. Five-lane cases.	segments longer constrained by b occurs under cor e Type A segmen Type A segmen constrained by m Type A segments eaving segments	asic freeway c: nstrained opera ints do not opera ts do not opera aximum allowa ts do not opera	apacity. ting conditions. rate well at volu ate well at volum ble weaving flow te well at volum	me ratios grea ne ratios greate w rate: 2,800 p le ratios greate	tter than 0.45. Po er than 0.35. Poo pc/h (Type A), 4, er than 0.20. Poo	oor operation or operations 000 (Type B) or operations	s and some loca and some local , 3,500 (Type C and some local	al queuing are queuing are e). queuing are e	expected in expected in xpected in suc
cases.	eaving segments University of Flor			ratios greater		operations an	-		Dected in such

 $Copyright @ 2010 \ University \ of \ Florida, \ All \ Rights \ Reserved \\$

			FREEWA	YWEAV	ING WOF	KSHEE	г		
General	I Informat	ion			Site Info	rmation			
Analyst Agency/Con Date Perforr Analysis Tin	med	TRAN 8/3/20 AM P			Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	g Location		2 EASTBOUN I ESTE ON Te alt 4	
Inputs									
Freeway fre Weaving nu Weaving se Terrain	e-flow speed, s mber of lanes, g length, L (ft)	N	60 4 220 Lev	rel	Weaving type Volume ratio Weaving ratio	, VR		A 0.2 0.2	
Conver	sions to p	<u>oc/h Unde</u>	<u>er Base C</u>	ondition	<u>IS</u>	2			
(pc/h)	V	PHF	Truck %	RV %	Ε _T	E _R	f _{HV}	fp	v
V _{o1}	1965	0.90	3	0	1.5	1.2	0.985	1.00	2216
V _{o2}	35	0.90	3	0	1.5	1.2	0.985	1.00	39
V _{w1}	415	0.90	3	0	1.5	1.2	0.985	1.00	468
V _{w2}	165	0.90	3	0	1.5	1.2	0.985	1.00	186
V _w	-	1	1	654	V _{nw}		1	1	2255
V	-				IIW	J			2909
Weavin	g and No	n-Weavir	a Sneed	\$					2000
Weaving	g and no		Unconstr			1	Cons	trained	
		Weaving			ving (i = nw)	Weavi	ng (i = w)		ving (= nw)
a (Exhibit 24	4-6)	0.1			035		.3 ()		
b (Exhibit 24	(2.2	0	4.	00				
c (Exhibit 24	1-6)	0.9	7	1.	30				
d (Exhibit 24	/	0.8			75				
Weaving intensi		0.3	0	0.	13	ļ			
Weaving and no speeds, Si (mi/h		53.5	57	59	.30				
Maximum n	anes required t umber of lanes If Nw < Nw	, Nw (max)			1.34 1.40	if Nw > N	v (max) constr	ained operati	on
		, ,	-		f Service,		· /		
	gment speed,		, <u> </u>	57.91					
-	gment density,	, ,		12.56					
Level of ser	v , , ,	(1 /		В					
	base condition	, c _h (pc/h)		8082					
	a 15-minute fl	~	h/h)	7963					
	a full-hour volu		,	7167					
Notes				1					
Junctions". b. Capacity c c. Capacity o d. Three-lane such cases. f. Capacity cc g. Five-lane cases.	constrained by b iccurs under cor e Type A segme Type A segmen onstrained by m Type A segment	asic freeway c Instrained opera Ints do not opera ts do not opera aximum allowa is do not opera	apacity. ting conditions. rate well at volu ate well at volun ble weaving flo te well at volun	me ratios great ne ratios great w rate: 2,800 p ne ratios great	and diverge area ater than 0.45. P er than 0.35. Po pc/h (Type A), 4, er than 0.20. Po	oor operations or operations ,000 (Type B), or operations	s and some loca and some local 3,500 (Type C and some local	al queuing are l queuing are e). queuing are e	expected in xpected in xpected in suc
cases. i. Type C wea cases.	aving segments	do not operate	e well at volume	0	r than 0.80. Poo than 0.50. Poor	operations ar	nd some local q	ueuing are exp	bected in such
ght © 2010 U	Iniversity of Flor	ida, All Rights	Reserved		HCS+	TM Version 5	5	Generated:	12/5/2011

Copyright $\textcircled{\sc 0}$ 2010 University of Florida, All Rights Reserved

	BASIC F	REEWAY S	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 milh 70 70 milh 70 milh 60 65 milh 60 milh 50 105 Å 55 milh 10 60 55 milh 30 400 800	B. C	50 (600 1/50 0 1/50 0 1/50 1/50 0 1/50 0 1/50 0 1/50 0 0 1/50 0 0 1/50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, vp FFS, LOS, vp FFS, LOS, N FFS, N, AAD FFS, LOS, A/ FFS, LOS, N	v _p , S, D T LOS, S, D
	Flow Rate (pc/h/ln)	1000 20	2100			
General Information			Site Inforr			
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 AM Peak		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel r	SR 32 Westl Bach Buxton Ext 2030 Alt 4	oound ent to GlenEst
Project Description Segme		04	, ,			
🗹 Oper.(LOS)			Des.(N)		🗌 Plannin	g Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	4200	veh/h veh/day	Peak-Hour F %Trucks and %RVs, P _R General Terr	l Buses, P _T ain:	0.90 3 0 Level	
Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustı ،					10	
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	10.0	<i>c.</i>	Calc Spee	d Adj and FFS	5	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0 0.50	ft I/mi	f _{LC}			mi/h
Interchange Density		1/111	f _{ID}			mi/h
Number of Lanes, N	3		f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS		mi/h		\		
LOS and Performance	ivied Sul es		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N	x f _{HV} x 1579	pc/h/ln	<u>Design (N)</u> Design LOS v. = (V or DD)HV) / (PHF x N x	funz X	
f _p)		-	f _p)	, , ,	11V	pc/h
S (2	60.0	mi/h	S			mi/h
$D = v_p / S$	26.3	pc/mi/ln	$D = v_p / S$			pc/mi/ln
LOS	D		F	mber of Lanes, N		
Glossary			Factor Lo	cation		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-	23-8, 23-10, 23-1	1 f _{LC} f _N	, - Exhibit 23-4 - Exhibit 23-5 - Exhibit 23-6 - Exhibit 23-7
DDHV - Directional design ho				M. Version 5.5		ed: 12/5/2011 1:20

Generated: 12/5/2011 1:29 PM

	BASIC F	REEWAY S	EGMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 milh 70 65 milh 70 milh 60 65 milh 60 milh 50 L0S A 52 40 50 10 milh 90 400 800	B. C	1600 20	00 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	<u>Input</u> FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AAI FFS, LOS, N	<u>Output</u> LOS, S, D V _p , S, D LOS, S, D DT N, S, D V _p , S, D
Concret Information	Flow Rate (pc/h/ln)		Cito Inform	motion		
General Information	sta		Site Infori	ection of Travel	SR 32 Westb	ound
-			0			ent to GlenEst
Agency or Company	TranSystems		From/To		Ext	
Date Performed	2/7/2011		Jurisdiction	-	2020 44 4	
Analysis Time Period Project Description Segmer	<i>PM Peak</i> nt IVa - P4031000	04	Analysis Yea	ll .	2030 Alt 4	
Project Description Segmen ✓ Oper.(LOS)			Des.(N)		Planning	Data
Flow Inputs		1	200.(11)			Dulu
Volume, V	3200	veh/h	Peak-Hour F	actor, PHF	0.90	
AADT		veh/day	%Trucks and		3	
Peak-Hr Prop. of AADT, K			%RVs, P _R		0	
Peak-Hr Direction Prop, D			General Terr		Level	
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi	
Calculate Flow Adjustr						
	1.00		E _R		1.2	
f _ρ Ε _τ	1.5			1) , D (E 1)]	0.985	
· · · · · · · · · · · · · · · · · · ·	1.5			E _T - 1) + P _R (E _R - 1)]		
Speed Inputs	10.0			d Adj and FFS	>	
ane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
nterchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3		f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS		mi/h			00.0	1111/11
LOS and Performance	Measures		Design (N)		
Operational (LOS)			<u>Design (N)</u>			
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x funz x		Design LOS			
	1203	pc/h/ln	v _p = (V or DE	DHV) / (PHF x N x	f _{HV} x	pc/h
p) S	60.0	mi/h	f _p)			P 0/11
$D = v_p / S$	20.0	pc/mi/ln	S			mi/h
LOS	C	P 9/111/11	$D = v_p / S$			pc/mi/ln
			Required Nu	mber of Lanes, N		
Glossary			Factor Lo	cation		
N - Number of lanes	S - Speed			22-8 22 10	4	- Evhibit 22 /
V - Hourly volume	D - Density		E _R - Exhibits			- Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	speed		23-8, 23-10, 23-1	=0	- Exhibit 23-5
LOS - Level of service	BFFS - Base fre	e-flow speed	f _p - Page 23-			Exhibit 23-6
DDHV - Directional design ho		-	LUS, S, FFS	, v _p - Exhibits 23-2	2, 23-3 t _{ID} -	Exhibit 23-7
Convright @ 2010 Iniversity of Florida						d. 12/5/2011 1.20

Generated: 12/5/2011 1:29 PM

	BASIC F	REEWAY SE		ORKSHEET		
S0 Froe-Flow Speed FFS = 75 min 70 60 65 min 60 65 min 50 55 min 50 100 min 50 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 50 min 60 50 min	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	sta			nation ection of Travel	SR 32 W	'estbound
Agency or Company Date Performed	TranSystems 2/7/2011		From/To Jurisdiction			Ext to Eastgate Exit
Analysis Time Period Project Description Segmer	AM Peak nt IVa - P4031000	04	Analysis Yea	r	2030 Alt	4
✓ Oper.(LOS)			Des.(N)		🗆 Plai	nning Data
Flow Inputs	0005		<u> </u>		0.00	
Volume, V AADT Deale Liz Dran, of AADT, K	3935	veh/h veh/day	Peak-Hour Fa %Trucks and		0.90 3	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terra Grade %	Length	0 Level mi	
Driver type adjustment Calculate Flow Adjustn	1.00 nents			Up/Down %		
f _p	1.00		E _R		1.2	
ε _τ	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			-	d Adj and FFS	6	
ane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
nterchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3					
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
OS and Performance	Measures		Design (N			
<u>Operational (LOS)</u> / _p = (V or DDHV) / (PHF x N x [;] _p)	x f _{HV} x 1479	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	9HV) / (PHF x N x	f _{HV} x	pc/h
p, S	60.0	mi/h	f _p)			·
$D = v_p / S$	24.6	pc/mi/ln	S			mi/h
OS	С		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes	S - Speed					
 Hourly volume V_p - Flow rate OS - Level of service 	D - Density FFS - Free-flow BFFS - Base fre		f _p - Page 23-	23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume			, 'p =	_, 200	
Copyright © 2010 University of Florida	All Pights Reserved			Version 5.5		nerated: 12/5/2011 1:31

HCS+TM Version 5.5

Generated: 12/5/2011 1:31 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed FIS = 75 min 70 60 60 min 60 60 min 55 min 50 0 55 min 40 55 min 50 0 0 50 0 0 50	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	<u>Input</u> FFS, N, v FFS, LOS FFS, LOS FFS, LOS FFS, LOS	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	sta		Site Inform	nation ection of Travel	SR 32 W	asthound
Agency or Company Date Performed Analysis Time Period	TranSystems 2/7/2011 PM Peak		From/To Jurisdiction Analysis Yea			Ext to Eastgate Exit
-	nt IVa - P4031000	04	Analysis Tea	1	2030 All -	†
Oper.(LOS)			Des.(N)		🗌 Plan	ning Data
Flow Inputs						
/olume, V AADT Peak-Hr Prop. of AADT, K	2790	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
Ε _Τ	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs				d Adj and FFS	5	
ane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
nterchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3					
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
OS and Performance	Measures		Design (N			
<u>Dperational (LOS)</u> / _p = (V or DDHV) / (PHF x N : _p)	x f _{HV} x <i>104</i> 9	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	9HV) / (PHF x N x	f _{HV} x	pc/h
5	60.0	mi/h	(p)			
$D = v_p / S$	17.5	pc/mi/ln	S D-v/S			mi/h
OS	В		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
 N - Number of lanes / - Hourly volume /p - Flow rate _OS - Level of service >DHV - Directional design ho 	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2010 University of Florida				Version 5.5	0	nerated: 12/5/2011 1:31

HCS+TM Version 5.5

Generated: 12/5/2011 1:31 PM

	BASIC F	REEWAY SE	GMENTS W	ORKSHEET		
Wardlife Hassendier Cat Speed (mith) 00 70 milith 70 milith 70 milith 00	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N FFS, L4 FFS, L4 FFS, L4 FFS, L4	OS, V _p N, S, D OS, N V _P , S, D , AADT LOS, S, D OS, AADT N, S, D
0 400 200	Flow Rate (pc/h/ln)		2400			
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 AM Peak		Highway/Dire From/To Jurisdiction Analysis Yea	ection of Travel	Olive Br	Vestbound anch Ent to Bach Exi cenario 8 Alt A1(ALT 4
	nt IVa - P4031000	04	7 thatyolo 1 ou	1	2000 00	
Oper.(LOS)			Des.(N)		🗌 Pla	anning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	3905	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R	•	0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn						
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	12.0	ft	1	d Adj and FFS	>	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
nterchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3	1/111	f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
LOS and Performance	Measures	,	Design (N))		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N ; f _p)		pc/h/ln	<u>Design (N)</u> Design LOS) (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p) S			mi/h
$D = v_p / S$	24.5	pc/mi/ln	S D = v _p / S			pc/mi/ln
LOS	С			mber of Lanes, N		pormini
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
Copyright © 2010 University of Florida				M Version 5.5		enerated: 12/5/2011 1:28

HCS+TM Version 5.5 Generated: 12/5/2011 1:28 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 First 75 mith 70 0 <td< th=""><th>B</th><th></th><th>2400</th><th>Application Operational (LOS) Design (N) Design (v_p) Planning (LOS) Planning (N) Planning (v_p)</th><th>Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO</th><th>IS, V_P N, S, D IS, N V_P, S, D AADT LOS, S, D IS, AADT N, S, D</th></td<>	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	IS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information			Site Inform			
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 PM Peak		Fighway/Dire From/To Jurisdiction Analysis Yea	ction of Travel r		/estbound anch Exit to Bach Ent T 4
Project Description Segmer	nt IVa - P4031000		Des.(N)			nning Data
Flow Inputs		I	Des.(N)			nining Data
Volume, V AADT Peak-Hr Prop. of AADT, K	3100	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
· · · · · · · · · · · · · · · · · · ·	1.00		E _R		1.2	
f _p Ε _τ	1.5			_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs	1.0		1	d Adj and FFS		
Lane Width	12.0	ft			•	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N ; f _p)		pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	t _p)			
D = v _p / S	19.4	pc/mi/ln	S D-v /S			mi/h
LOS	С		D = v _p / S Required Nur	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre ur volume		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2010 University of Florida				Version 5.5	0.	enerated: 12/5/2011 1:28 F

HCS+TM Version 5.5 Generated: 12/5/2011 1:28 PM

			FREEWA	Y WEAV	ING WOR	KSHEE	Т		
Genera	al Informat	ion			Site Info	rmation			
Analyst Agency/Co Date Perfo Analysis T		TRAN 8/3/20 AM Pl			Freeway/Dir Weaving Seg Jurisdiction Analysis Yea	Location			ND EN ESTE OFF
Inputs									
Freeway fi Weaving r Weaving s Terrain	ree-flow speed, s number of lanes, leg length, L (ft)	N	60 4 230 Lev	el	Weaving type Volume ratio, Weaving ratio	VR		A 0.2 0.7	
i	rsions to p	1	1	1	1				1
(pc/h)	V	PHF	Truck %	RV %	Ε _Τ	E _R	f _{HV}	fp	v
V _{o1}	3050	0.90	3	0	1.5	1.2	0.985	1.00	3439
V _{o2}	60	0.90	3	0	1.5	1.2	0.985	1.00	67
V _{w1}	885	0.90	3	0	1.5	1.2	0.985	1.00	998
V _{w2}	205	0.90	3	0	1.5	1.2	0.985	1.00	231
V _w		1	1	1229	V _{nw}				3506
V	-			L	1100				4735
Weavii	ng and Nor	n-Weavin	a Speeds	S					<u> </u>
	<u> </u>		Unconstr				Const	trained	
		Weaving	(i = w)	Non-Wea	ving (i = nw)	Weavi	ing (i = w)	Non-Wea	ving (= nw)
a (Exhibit :							.35	0.0	020
b (Exhibit :							.20	<u>.</u>	00
c (Exhibit 2	<i>,</i>	ļ		ļ			.97		30
d (Exhibit :	1	ļ		<u> </u>			.80		75
Weaving Inter	nsity factor, Wi non-weaving						.14	1	15
speeds, Si (m	i/h)				4.50		3.38	58	.48
	f lanes required t number of lanes		ned operation.	, NW	1.53 1.40				
Maximum	If Nw < Nw	,	trained onerat	ion		if Nw > N	w (max) constr	ained onerati	on
Weavir	ng Segmer	. ,					· /	anieu operati	
	egment speed,		Density,	51.48			Jacity		
	egment density,	, ,		22.99					
⊢`	ervice, LOS			C					
	of base condition	c (nc/h)		7895					
		0	-/h)						
<u> </u>	is a 15-minute fl		,	7778					
<u> </u>	is a full-hour volu	ume, c _h (ven/r	1)	7000					
Notes	segments longer	then 0500 ft -							
Junctions". b. Capacity c. Capacity d. Three-la such cases e. Four-lan such cases f. Capacity g. Five-lane cases.	constrained by b occurs under cor ne Type A segme e Type A segmen	asic freeway ca nstrained opera nts do not opera ts do not opera aximum allowa ts do not opera	apacity. ting conditions. ate well at volu te well at volum ble weaving flo te well at volum	me ratios great ne ratios great w rate: 2,800 le ratios great	ater than 0.45. P er than 0.35. Po pc/h (Type A), 4, er than 0.20. Poo	oor operation or operations 000 (Type B) or operations	as and some loca and some local , 3,500 (Type C and some local	al queuing are queuing are e). queuing are e	expected in xpected in xpected in such
cases.	eaving segments			0					
i. Type C w cases.	eaving segments	uo not operate	wen at volume	ratios greater		•		ueung are exp	Jected in Such
ight © 2010	University of Flor	ida, All Rights	Reserved		HCS+ ¹	M Version 8	5.5	Generated:	12/5/2011 1

 $Copyright @ 2010 \ University \ of \ Florida, \ All \ Rights \ Reserved \\$

			FREEWA	Y WEAV	ING WOR	KSHEE	Т		
Genera	I Informat	ion			Site Info	rmation			
Analyst Agency/Co Date Perfor Analysis Tir	rmed	TRAN 8/3/20 PM P			Freeway/Dir o Weaving Seg Jurisdiction Analysis Yeal	Location			ND EN ESTE OFF
Inputs					1				
Freeway fre Weaving nu Weaving se Terrain	ee-flow speed, s umber of lanes, eg length, L (ft)	N	60 4 230 Leve	el	Weaving type Volume ratio, Weaving ratic	VR		A 0.2 0.3	27
	sions to p	1	1	1	1		1	1	1
(pc/h)	V	PHF	Truck %	RV %	Ε _Τ	E _R	f _{HV}	fp	v
V _{o1}	2265	0.90	3	0	1.5	1.2	0.985	1.00	2554
V _{o2}	75	0.90	3	0	1.5	1.2	0.985	1.00	84
V _{w1}	525	0.90	3	0	1.5	1.2	0.985	1.00	592
V _{w2}	335	0.90	3	0	1.5	1.2	0.985	1.00	377
V _w		1		969	V _{nw}				2638
V	-								3607
Weavin	g and No	n-Weavir	g Speeds	6					<u> </u>
	<u> </u>		Unconstra					trained	
		Weaving	g (i = w)	Non-Wea	ving (i = nw)		ing (i = w)	Non-Wea	č (
a (Exhibit 2							.35		020
b (Exhibit 2 c (Exhibit 2	/						.20		00 30
d (Exhibit 2	/						.80	2	75
Weaving intens	1						.89		11
Weaving and n speeds, Si (mi/		ĺ				4	1.48	60	.11
Maximum r	lanes required number of lanes	s, Nw (max) (max) uncons	trained operati	ion			w (max) constr	ained operati	on
	ng Segmer		, Density,	ï	Service,	and Ca	pacity		
	egment speed,	· /		53.64					
	egment density,	, D (pc/mi/ln)		16.81					
Level of se		. (В					
	f base condition	v	1. // \	7832					
<u> </u>	s a 15-minute fl	, ,	,	7716					
	s a full-hour vol	ume, c _h (veh/	1)	6944					
Notes	segments longer	than 2500 ft a	re treated on in	alatad marga	and diverge eres	o uning the s	readures of Ch	ontor 25 "Do	maa and Dama
Junctions". b. Capacity of c. Capacity of d. Three-lan such cases. e. Four-lane such cases. f. Capacity of g. Five-lane cases.	constrained by b occurs under cor le Type A segmen constrained by m Type A segment eaving segments	asic freeway c nstrained opera ints do not ope ts do not opera aximum allowa ts do not opera	apacity. tting conditions. rate well at volum ate well at volum ble weaving flow te well at volum	me ratios grea le ratios great v rate: 2,800 p e ratios greate	ater than 0.45. Po er than 0.35. Poo oc/h (Type A), 4, er than 0.20. Poo	por operation or operations 000 (Type B) or operations	as and some loca and some local , 3,500 (Type C and some local	al queuing are queuing are e). queuing are e	expected in expected in expected in such
cases.	eaving segments	•		ratios greater		operations a			bected in such 12/5/2011 1

 $Copyright @ 2010 \ University \ of \ Florida, \ All \ Rights \ Reserved \\$

Analyst: sta Agency: TranSystems Date: 7/18/2011 Period: Am Peak Hour Project ID: Segment IVa E/W St: EB Off Ramp Inter.: EB Ramps @ New Bach Buxton
Area Type: All other areas
Jurisd:
Year : Alt 8 A1

N/S St:

		tbound	31G. 		tbour		CTION	thbou			uthbo	und
	L		R	wes L	T	R	L	T	R	L	T	R
No. Lanes LGConfig Volume Lane Widt RTOR Vol	L 250	20	. 1 R 00 2.0	0	0	0	0	3 TR 530 12.0	0 70 0	2 L 200 12.0	1 T 325 12.0	0
Duration	0.25	A	rea T			other Operat	areas ions					
Phase Com	mbination	ı 1	2	3	4	1		5	6	7		8
EB Left		A				NB	Left					
Thru		-					Thru		A			
Right	E	A					Right		A			
Peds WB Left						 SB	Peds Left	А				
WB Leit Thru						20 	Thru		A			
Right							Right		A			
Peds							Peds					
NB Right	t					EB	Right					
SB Right						WB	Right					
-												
Green		31.5				I		12.0) 31.	5		
		31.5 3.5				I		12.(3.5) 31. 3.5			
Yellow						I		3.5 1.5	3.5 1.5			
Yellow		3.5 1.5				I		3.5 1.5 Cyc	3.5 1.5 cle Le:		90.0	se
Yellow All Red		3.5 1.5 Inte				ormanc	e Summ	3.5 1.5 Cyc nary	3.5 1.5 cle Le:	ngth:		se
Yellow All Red Appr/ I	Lane	3.5 1.5 Inte Inte	Sat		Perfo	ormanc	e Summ Lane	3.5 1.5 Cyc nary	3.5 1.5 cle Le:			se
Yellow All Red Appr/ I Lane G	Lane Group	3.5 1.5 Inte Adj 2 Flow H	Sat Rate	Ra ⁻	tios		Lane	3.5 1.5 Cyc ary Groug	3.5 1.5 cle Le: p Ap	ngth: proacl	h	se
Yellow All Red Appr/ I Lane G Grp C	Lane Group Capacity	3.5 1.5 Inte Inte	Sat Rate		tios			3.5 1.5 Cyc ary Groug	3.5 1.5 cle Le: p Ap	ngth:	h	se
Yellow All Red Appr/ I Lane G Grp G Eastbound	Lane Group Capacity	3.5 1.5 Inte Adj S Flow H (s	Sat Rate	Ra v/c	tios g/	́С	Lane Delay	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Le: p Ap	ngth: proacl	h	se
Yellow All Red Appr/ I Lane G Grp G Eastbound	Lane Group Capacity	3.5 1.5 Inte Adj 2 Flow H	Sat Rate	Ra ⁻	tios g/		Lane	3.5 1.5 Cyc ary Groug	3.5 1.5 cle Le: Deli	ngth: proacl ay LO:	h	se
Yellow All Red Appr/ I Lane G Grp C Eastbound L	Lane Group Capacity d 619	3.5 1.5 Inte Adj S Flow H (s 1770	Sat Rate	Ra ⁴ v/c	tios 0.	2 2 35	Lane Delay 23.1	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Le: p Ap	ngth: proacl ay LO:	h	se
Yellow All Red Appr/ I Lane G Grp C Eastbound L R	Lane Group Capacity d 619 554	3.5 1.5 Inte Adj S Flow H (s	Sat Rate	Ra v/c	tios 0.	́С	Lane Delay	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Le: Deli	ngth: proacl ay LO:	h	se
Yellow All Red Appr/ I Lane G Grp C Eastbound L R	Lane Group Capacity d 619 554	3.5 1.5 Inte Adj S Flow H (s 1770	Sat Rate	Ra ⁴ v/c	tios 0.	2 2 35	Lane Delay 23.1	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Le: Deli	ngth: proacl ay LO:	h	se
Yellow All Red Appr/ I Lane G Grp C Eastbound L R Westbound	Lane Group Capacity d 619 554 d	3.5 1.5 Inte Adj S Flow H (s 1770	Sat Rate	Ra v/c 0.45	tios 0.	2 2 35	Lane Delay 23.1	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Le: Deli	ngth: proacl ay LO:	h	se
Yellow All Red Appr/ I Lane G Grp C Eastbound L R Westbound	Lane Group Capacity d 619 554 d	3.5 1.5 Inte Adj S Flow H (s 1770	Sat Rate	Ra v/c 0.45	tios 0.	2 2 35	Lane Delay 23.1	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Le: Deli	ngth: proacl ay LO:	h	se
Yellow All Red Appr/ I Lane G Grp C Eastbound L R Westbound	Lane Group Capacity d 619 554 d	3.5 1.5 Inte Adj S Flow H (s 1770	Sat Rate)	Ra v/c 0.45	g/ 0.	2 2 35	Lane Delay 23.1 22.6	3.5 1.5 Cyc ary Group LOS C	3.5 1.5 cle Le: Del: 22.	ngth: proacl ay LO: 9 C	h	se
Yellow All Red Appr/ I Lane G Grp C Eastbound R Westbound Northbour TR	Lane Group Capacity 619 554 d nd 1749	3.5 1.5 Inte Adj 2 Flow H (s 1770 1583	Sat Rate)	Ra ⁻ v/c 0.45 0.40	g/ 0.	2 35 35	Lane Delay 23.1 22.6	3.5 1.5 Cyc ary Group LOS C	3.5 1.5 cle Le: Del: 22.	ngth: proacl ay LO: 9 C	h	se
Lane G	Lane Group Capacity 619 554 d nd 1749	3.5 1.5 Inte Adj 2 Flow H (s 1770 1583 4996	Sat Rate)	Ra v/c 0.45 0.40	0. 0.	2 35 35	Lane Delay 23.1 22.6 22.1	3.5 1.5 Cyc ary Group r LOS C C	3.5 1.5 cle Le: Del: 22.	ngth: proacl ay LO: 9 C	h	se
Yellow All Red Appr/ I Lane G Grp G Eastbound L R Westbound Northbour TR Southbour	Lane Group Capacity 619 554 d 1749 nd	3.5 1.5 Inte Adj 2 Flow H (s 1770 1583 4996	Sat Rate)	Ra v/c 0.45 0.40	0. 0.	2 35 35 35	Lane Delay 23.1 22.6 22.1 36.9	3.5 1.5 Cyc Groug Groug C C C D	3.5 1.5 cle Le: Del: 22.	ngth: proac ay LO: 9 C 1 C	h	se
Yellow All Red Appr/ I Lane G Grp C Eastbound L R Westbound Northbour TR Southbour L	Lane Group Capacity d 619 554 d 1749 nd 458	3.5 1.5 Inte Adj 2 Flow H (s) 1770 1583 4996 3437 1863	Sat Rate)	Ra v/c 0.45 0.40 0.38 0.38 0.48 0.36	0. 0. 0. 0.	C 35 35 35 35 13 54	Lane Delay 23.1 22.6 22.1 36.9 12.1	3.5 1.5 Cyc Group F LOS C C C D B	3.5 1.5 cle Le: 22.	ngth: proacl ay LO: 9 C 1 C	h S	se

Analyst: sta Agency: TranSystems Date: 7/18/2011 Period: PM Peak Hour Project ID: Segment IVa E/W St: EB Off Ramp Inter.: EB Ramps @ New Bach Buxton Area Type: All other areas Jurisd: Year : 2030 Alt 4

N/S St:

						CTION					
	Eastbou			boun			thbou			uthbou	
	L T	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes	1 0	1	0	0	0	0	3	0	2	1	0
LGConfig	L	R				İ	TR		L	Т	İ
/olume	290	410					510	155	320	410	İ
Lane Width	12.0	12.0				İ	12.0		12.0	12.0	
RTOR Vol		0						0			ļ
Duration	0.25	Area Ty									
Phase Combi		2	Sigr 3	nal O 4	perat	ions	5	б	7	8	
EB Left	A	2	2	7	 NB	Left	5	0	1	C)
Thru	h					Thru		A			
Right	А					Right		A			
Peds	A					Peds	•	А			
					 ניס	Left	7				
					SB		A 7	7			
Thru						Thru		A			
Right						Right					
Peds						Peds					
IB Right					EB	Right					
SB Right					WB	Right					
Green	33.0						15.5		5		
Yellow	3.5						3.5	3.5			
All Red	1.5						1 -	1 -			
	T .J						1.5	1.5			
						~	Cyc	cle Ler	ngth:	91.0	sec
Appr/ Lan	I	ntersect			rmanc		Cyc ary	le Ler			sec
	I e Ad	lj Sat		Perfo	rmanc	e Summ Lane	Cyc ary	le Ler	ngth: proach		sec:
Lane Gro	I e Ad up Flo	lj Sat w Rate	Rat	ios		Lane	Cyc Group	ele Ler D App	proach	h	sec:
Lane Gro	I e Ad up Flo	lj Sat		ios			Cyc Group	ele Ler D App		h	sec
Lane Gro Grp Cap Lastbound	e Ad up Flo acity	j Sat w Rate (s)	Rat v/c	zios g/	C	Lane Delay	Cyc Mary Groug LOS	ele Ler D App	proach	h	sec:
Lane Gro Grp Cap Lastbound	e Ad up Flo acity	lj Sat w Rate	Rat	ios	C	Lane	Cyc Group	b Ler App Dela	oroach ay LOS	h	sec
Lane Gro Grp Cap Lastbound L 64	I e Ad up Flo acity 2 17	j Sat ww Rate (s) 70	Rat	g/ 0.	 36	Lane Delay 23.2	Cyc Mary Group LOS C	ele Ler D App	oroach ay LOS	h	sec:
Lane Gro Grp Cap Eastbound L 64 R 57	I e Ad up Flo acity 2 17	j Sat w Rate (s)	Rat v/c	zios g/	 36	Lane Delay	Cyc Mary Groug LOS	b Ler App Dela	oroach ay LOS	h	sec:
Lane Gro Grp Cap Lastbound L 64	I e Ad up Flo acity 2 17	j Sat ww Rate (s) 70	Rat	g/ 0.	 36	Lane Delay 23.2	Cyc Mary Group LOS C	b Ler App Dela	oroach ay LOS	h	sec:
Lane Gro Grp Cap Eastbound L 64	I e Ad up Flo acity 2 17	j Sat ww Rate (s) 70	Rat	g/ 0.	 36	Lane Delay 23.2	Cyc Mary Group LOS C	b Ler App Dela	oroach ay LOS	h	sec
Lane Gro Grp Cap Eastbound L 64 R 57 Westbound	I e Ad up Flo acity 2 17	j Sat ww Rate (s) 70	Rat	g/ 0.	 36	Lane Delay 23.2	Cyc Mary Group LOS C	b Ler App Dela	oroach ay LOS	h	sec:
Lane Gro Grp Cap Eastbound L 64 R 57 Westbound	I e Ad up Flo acity 2 17	j Sat ww Rate (s) 70	Rat	g/ 0.	 36	Lane Delay 23.2	Cyc Mary Group LOS C	b Ler App Dela	oroach ay LOS	h	sec:
Lane Gro Grp Cap Lastbound L 64 R 57 Vestbound	I e Ad up Flo acity 2 17 4 15	j Sat ww Rate (s) 70	Rat	g/ 0.	 36	Lane Delay 23.2 33.6	Cyc Group LOS C	29.3	oroach ay LOS 3 C	h	sec:
Lane Gro Grp Cap Eastbound L 64 R 57 Westbound Northbound	I e Ad up Flo acity 2 17 4 15	lj Sat ww Rate (s) 70 83	Rat	g/ 0.	2 36 36	Lane Delay 23.2 33.6	Cyc Group LOS C	29.3	oroach ay LOS 3 C	h	sec:
Lane Gro Grp Cap Eastbound L 64 R 57 Westbound Northbound TR 11 Southbound	I e Ad up Flo acity 2 17 4 15 2 37	21 21	Rat v/c 0.50 0.79	0.	C 36 36 36 30	Lane Delay 23.2 33.6 29.1	Cyc Group LOS C C	29.3	oroach ay LOS 3 C	h	sec
Lane Gro Grp Cap Eastbound L 64 R 57 Westbound Northbound IR 11 Southbound L 58	I e Ad up Flo acity 2 17 4 15 24 37 5 34	21 37	Rat v/c 0.50 0.79 0.66 0.61	0. 0.	C 36 36 30 17	Lane Delay 23.2 33.6 29.1 36.8	Cyc Group LOS C C C	29.1	proach ay LOS 3 C	h	sec
Lane Gro Grp Cap Eastbound L 64 R 57 Westbound Northbound IR 11 Southbound	I e Ad up Flo acity 2 17 4 15 24 37 5 34	21 21	Rat v/c 0.50 0.79 0.66 0.61	0. 0.	C 36 36 36 30	Lane Delay 23.2 33.6 29.1 36.8	Cyc Group LOS C C C	29.3	proach ay LOS 3 C	h	sec

Analyst	: sta
Agency:	TranSystems
Date:	7/18/2011
Period:	AM peak Hour
Project	ID: Segment IVa Alt 8A1
E/W St:	WB Ramps

Inter.: WB Ramp @ New Bach Buxton Area Type: All other areas Jurisd: Year : 2030 Alt 4

N/S St: New Bach Buxton

		SI	GNALIZED	INTERSE	CTION	SUMMAR	RY		
		stbound	Westb		1	thbour	!	South	
	L	T R	L T	R	L	Т	R	L T	R
No. Lan LGConfi Volume Lane Wi	.g .dth	0 0	1 L 225 12.0	0 2 R 425 12.0	2 L 485 12.0	1 T 295 12.0	0		.0
RTOR Vo) 1			0	I		I		0
Duratic	on 0.25	Area		l other l Operat					
Phase C EB Lef Thr Rig Ped WB Lef Thr Rig Ped NB Rig SB Rig Green Yellow All Red	ru ht ls t u ht ls ht ht	A A 22.0 3.5 1.5	3 ction Pe Rati	4 NB SB EB WB		16.5 3.5 1.5 Cycl		7 gth: 90 roach	8 .0 secs
Lane	Group	Flow Rate							
Grp	Capacity	(s)	v/c	g/C	Delay	LOS	Delay	y LOS	
Eastbou									
Westbou L	und 433	1770	0.58	0.24	31.8	С	22 1	a	
R Northbo	685	2803	0.69	0.24	33.8	С	33.1	С	
L T	630 1201	3437 1863	0.86 0.27	0.18 0.64	46.8 7.0	D A	31.7	С	
Southbo	ound								
TR	968	2388	0.87	0.41	33.4	С	33.4	С	
	Intersec	ction Delay	= 32.7	(sec/ve	h) I	nterse	ection	LOS =	С

Analyst: sta Agency: TranSystems Date: 7/18/2011 Period: AM peak Hour Project ID: Segment IVa Alt 8A1 E/W St: WB Ramps Inter.: WB Ramp @ New Bach Buxton Area Type: All other areas Jurisd: Year : Alt 4

N/S St: New Bach Buxton

		S	IGNALIZED							
		stbound	Westb		1	thbour			nbound	
	L	T R	L I	'R	L	Т	R	L '	Г R	
No. Lan LGConfi		0 0		0 2 R	 2 L	1 T	0	0	30 TR	—
Volume	g 		130	370	400	400		6	00 200	
Lane Wi	dth		12.0	12.0	12.0				2.0	
RTOR Vo			12.0	0	12.0	12.0		-	0	Ì
	·				·					I
Duratio	n 0.25	Area	Type: Al Signa	l other l Operat						
	ombinatior	n 1 2	3	4	_	5	б	7	8	
EB Lef				NB	Left	A	_			
Thr					Thru	A	A			
Rig					Right	: A				
Ped		7			Peds					
WB Lef		A		SB	Left		-			
Thr		-			Thru		A			
Rig		A			Right		A			
Ped					Peds					
NB Rig				EB	Right					
SB Rig Green	ΠC	26.0		WB	Right	15.0	34.0			
		26.0 3.5				15.0 3.5	34.0 3.5			
Yellow All Red		3.5 1.5				3.5 1.5	3.5 1.5			
AII Keu		1.5					Le Leng	gth: 9	0.0 s	ecs
			ection Pe			-				
Appr/	Lane	Adj Sat		OS	Lane	Group	Аррі	roach		
Lane	Group	Flow Rat							_	
Grp	Capacity	(s)	v/c	g/C	Delay	/ LOS	Delay	/ LOS		
Eastbou	nd									
Westbou	nd									
L	511	1770	0.28	0.29	25.1	С				
_	0		0.20	0.22	2012	Ū.	26.6	С		
R	810	2803	0.51	0.29	27.2	С		-		
Northbo				-						
L	573	3437	0.77	0.17	42.5	D				
Т	1118	1863	0.40	0.60	9.7	A	26.1	С		
Southbo	und									
TR	1239	3281	0.72	0.38	25.9	С	25.9	С		
				(sec/ve		Interse				

Analyst: sta Agency: TranSystems Date: 7/18/2011 Period: AM Peak Project ID: Segment IVa Alt 8A1 E/W St: Clepper Inter.: Glen Este @ Clepper
Area Type: All other areas
Jurisd:
Year : Alt 8 Al (Alt 4)

N/S St: Glen Este

No. Lanes LGConfig Volume	Eas L				ECTION	DOMINA					
LGConfig	Ιт	tbound	Westb	ound	rthbou	nd	So	uthbo	und		
LGConfig		T R	L I	R	L	Т	R	L	Т	R	
-	1	1 0	1	1 0	1	1	0	1	1	1	İ
Volume	L	TR	Ι L	TR	L	TR		L	Т	R	İ
	45	185 50	25 22	20 15	90	200	100	220	350	170	İ
Lane Width	12.0	12.0	12.0 12	2.0	12.0	12.0		12.0	12.0	12.0	İ
RTOR Vol	İ	0	İ	0	İ		0			0	İ
Duration	0.25	Area	Type: Al								
Phase Comb:	ination	1 2	SIGNA	al Operat 4		5	6	7		8	
EB Left		A		NB	Left	А	А				
Thru		A		İ	Thru		А				
Right		А		İ	Right	2	А				
Peds		Х			Peds						
WB Left		A		SB	Left	А	А				
Thru		A			Thru		A				
Right		A		l	Right		A				
Peds		X		l	Peds						
NB Right				EB	Right	-					
SB Right				WB	Right						
Green		34.0		1	5	7.0	34.0)			
Yellow		3.5				3.5	3.5				
TETTOM											
						1.5	1.5				
		1.5				1.5		ngth:	90.0	se	CS
All Red		1.5 Interse	ection Pe Rati			1.5 Cyc mary	1.5 le Ler			se	cs
All Red		1.5	Rati			1.5 Cyc	1.5 le Ler	-		se	CS
All Red Appr/ Lar Lane Gro		1.5 Interse Adj Sat	Rati		Lane	1.5 Cyc mary	1.5 le Ler App		n	se	cs
All Red Appr/ Lar Lane Gro Grp Cap	ne oup	1.5 Interse Adj Sat Flow Rate	Rati e	.os	Lane	1.5 Cyc nary Group	1.5 le Ler App	proacl	n	se	CS
All Red Appr/ Lan Lane Gro Grp Cap ——————— Eastbound L 30	ne pup pacity 65	1.5 Interse Adj Sat Flow Rate	Rati v/c 0.14	.os g/C 0.38	Lane	1.5 Cyc nary Group	1.5 le Ler App	proacl	n	se	cs
All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 30	ne Dup Dacity	1.5 Interse Adj Sat Flow Rate (s)	Rati v/c	.os g/C	Lane Delay	1.5 Cyc ary Group Z LOS	1.5 le Ler App	proacl	n	se	CS
All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound	ne oup pacity 65 81	1.5 Interse Adj Sat Flow Rate (s) 967 1803	Rati v/c 0.14 0.38	0.38 0.38	Lane Delay 18.5 20.7	1.5 Cyc ary Group / LOS B	1.5 le Ler Apr Dela	proacl	n	se	CS
All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound	ne pup pacity 65	1.5 Interse Adj Sat Flow Rate (s) 967	Rati v/c 0.14 0.38	.os g/C 0.38	Lane Delay 18.5	1.5 Cyc ary Group / LOS B	1.5 le Ler Apr Dela	proacl	n	se	CS
All Red Appr/ Lan Lane Gro Grp Can Eastbound L 36 TR 68 Westbound L 36	ne oup pacity 65 81	1.5 Interse Adj Sat Flow Rate (s) 967 1803	Rati v/c 0.14 0.38	0.38 0.38	Lane Delay 18.5 20.7	1.5 Cyc Group / LOS B C	1.5 le Ler Apr Dela	ay LO:	n	se	CS
All Red Appr/ Lan Lane Gro Grp Can Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound	ne pup pacity 55 31 54 97	1.5 Adj Sat Flow Rate (s) 967 1803 964 1845	Rati	0.38 0.38 0.38 0.38 0.38	Lane Delay 18.5 20.7 18.0 20.6	1.5 Cyc Group Z LOS B C B C	1.5 le Ler Apr Dela 20.4	ay LO:	n	se	cs
All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39	ne pup pacity 55 31 54 97	1.5 Adj Sat Flow Rate (s) 967 1803 964	Rati	.os g/C 0.38 0.38 0.38 0.38 0.38 0.38	Lane Delay 18.5 20.7 18.0 20.6 13.2	1.5 Cyc Group Z LOS B C B C B	1.5 le Ler Dela 20.4	ay LO: 4 C	n	se	cs
All Red Appr/ Lan Lane Gro Grp Can Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39	ne pup pacity 55 31 54 97	1.5 Adj Sat Flow Rate (s) 967 1803 964 1845	Rati	0.38 0.38 0.38 0.38 0.38	Lane Delay 18.5 20.7 18.0 20.6	1.5 Cyc Group Z LOS B C B C	1.5 le Ler Apr Dela 20.4	ay LO: 4 C	n	se	cs
All Red Appr/ Lar Lane Gro Grp Car Eastbound L 36 TR 68 Westbound L 36 TR 68 Northbound L 39 TR 66	ne pup pacity 55 31 54 97	1.5 Adj Sat Flow Rate (s) 967 1803 964 1845 1770	Rati	.os g/C 0.38 0.38 0.38 0.38 0.38 0.38	Lane Delay 18.5 20.7 18.0 20.6 13.2	1.5 Cyc Group Z LOS B C B C B	1.5 le Ler Dela 20.4	ay LO: 4 C	n	se	cs
All Red Appr/ Lan Lane Gro Grp Can Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39 TR 66 Southbound	ne pup pacity 55 31 54 97	1.5 Adj Sat Flow Rate (s) 967 1803 964 1845 1770	Rati	.os g/C 0.38 0.38 0.38 0.38 0.38 0.38	Lane Delay 18.5 20.7 18.0 20.6 13.2	1.5 Cyc Group 7 LOS B C B C B C	1.5 le Ler Dela 20.4	ay LO: 4 C	n	se	cs
All Red Appr/ Lan Lane Gro Grp Can Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39 TR 66 Southbound L 44	ne pup pacity 55 31 54 97 97 59	1.5 Interse Adj Sat Flow Rate (s) 967 1803 964 1845 1770 1770	Rati	0.38 0.38 0.38 0.38 0.38 0.38 0.51 0.38	Lane Delay 18.5 20.7 18.0 20.6 13.2 22.0 18.3	1.5 Cyc Group CLOS B C B C B C B C B C	1.5 le Ler Dela 20.4	ay LOS A C A C	n	se	cs
All Red Appr/ Lan Lane Gro Grp Can Eastbound L 36 TR 68 Westbound L 36 TR 69 Northbound L 39 TR 66 Southbound L 44 T 70	ne pup pacity 55 31 54 97 97 59	1.5 Interse Adj Sat Flow Rate (s) 967 1803 964 1845 1770 1770 1770	Rati	0.38 0.38 0.38 0.38 0.38 0.51 0.38 0.51	Lane Delay 18.5 20.7 18.0 20.6 13.2 22.0	1.5 Cyc Group CLOS B C B C B C B C B C	1.5 le Ler Apr Dela 20.4 20.4	ay LOS A C A C	n	se	cs
All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 30	ne pup pacity 65	1.5 Interse Adj Sat Flow Rate (s) 967	Rati v/c 0.14	.os g/C 0.38	Lane Delay 18.5	1.5 Cyc ary Group / LOS B	1.5 le Ler Apr Dela	proacl	n	se	C i

Analyst: sta Agency: TranSystems Date: 7/18/2011 Period: PM Peak Project ID: Segment IVa Alt 8A1 E/W St: Clepper Inter.: Glen Este @ Clepper
Area Type: All other areas
Jurisd:
Year : Alt 8 A1 (Alt 4)

N/S St: Glen Este

		SIC	GNALIZED	INTERSE	CTION	SUMMA:	RY				
	Ea	stbound	Westb	ound				1			
	L	T R	L T 	' R	L	Т	R	L	Т	R	
No. Lan	nes 1	1 0	1	1 0	1	1	0	1	1	1	İ
LGConfi	.g L	TR	L	TR	L	TR		\mathbf{L}	Т	R	
Volume	250	200 100	10 50	150	165	425	75	225	340	260	
Lane Wi	dth 12.0	12.0	12.0 12	.0	12.0	12.0		12.0	12.0	12.0	
RTOR Vo	ol	0		0			0			0	
Duratio	on 0.25	Area 1		l other l Operat							
Phase C	Combinatio	n 1 2	Signa	4 4	10115	5	б	7		 8	
EB Lef	t	А		NB	Left	A	А				
Thr	u	А		ĺ	Thru		А				
Rig	nt	A		İ	Right	_	A				
Ped	ls	Х		İ	Peds						
WB Lef	t	А		SB	Left	A	А				
Thr	u	А		ĺ	Thru		A				
Rig	ŋht	A		ĺ	Right	2	A				
Ped	ls	Х		ĺ	Peds						
NB Rig	nt			EB	Right	-					
SB Rig	nt			WB	Right	-					
Green		33.0				7.5	34.5	5			
Yellow		3.5				3.5	3.5				
7 7 7 7 7	1	1 -									
All Red	L	1.5				1.5	1.5				
All Red	L		ntion De	rformanc	10 Qum	Cyc	le Ler	ngth:	90.0	se	cs
Appr/	Lane	Intersec Adj Sat	Rati	rformanc os		Cyc	le Ler	ngth: proacl		se	cs
		Intersed Adj Sat Flow Rate	Rati		Lane	Cyc mary	le Ler Apr		h	se:	cs
Appr/ Lane Grp	Lane Group Capacity	Intersed Adj Sat Flow Rate	Rati	.0S	Lane	Cyc mary Group	le Ler Apr	proacl	h	se:	cs
Appr/ Lane	Lane Group Capacity and	Intersed Adj Sat Flow Rate (s)	Rati v/c	os 	Lane Delay	Cyc mary Group / LOS	le Ler Apr	proacl	h	se	C S
Appr/ Lane Grp Eastbou	Lane Group Capacity	Intersed Adj Sat Flow Rate	Rati	.0S	Lane	Cyc mary Group	le Ler Apr	oroacl	h	se	cs
Appr/ Lane Grp Eastbou L TR	Lane Group Capacity Ind 384 649	Intersed Adj Sat Flow Rate (s) 1046	Rati v/c 0.72	os g/C 0.37	Lane Delay 31.2	Cyc mary Group y LOS C	le Ler Apr Dela	oroacl	h	se	CS
Appr/ Lane Grp Eastbou L TR Westbou	Lane Group Capacity and 384 649 and	Intersed Adj Sat Flow Rate (s) 1046 1770	Rati v/c 0.72 0.51	os g/C 0.37 0.37	Lane Delay 31.2 22.9	Cyc mary Group / LOS C C	le Ler Apr Dela	oroacl	h	se	cs
Appr/ Lane Grp Eastbou L TR	Lane Group Capacity Ind 384 649	Intersed Adj Sat Flow Rate (s) 1046	Rati v/c 0.72 0.51	os g/C 0.37	Lane Delay 31.2	Cyc mary Group y LOS C	le Ler Apr Dela	proach ay LOS 7 C	h	se	cs
Appr/ Lane Grp Eastbou L TR Westbou L TR	Lane Group Capacity and 384 649 and 290 606	Intersed Adj Sat Flow Rate (s) 1046 1770 792	Rati 0.72 0.51 0.04	os g/C 0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4	Cyc mary Group / LOS C C B	le Ler Apr Dela 26.7	proach ay LOS 7 C	h	se	cs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo	Lane Group Capacity and 384 649 and 290 606	Intersed Adj Sat Flow Rate (s) 1046 1770 792 1653	Rati	os g/C 0.37 0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4 21.2	Cyc mary Group 7 LOS C C B C	le Ler Apr Dela 26.7	proach ay LOS 7 C	h	se	C S
Appr/ Lane Grp Eastbou L TR Westbou L TR	Lane Group Capacity and 384 649 and 290 606	Intersed Adj Sat Flow Rate (s) 1046 1770 792	Rati 0.72 0.51 0.04	os g/C 0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4	Cyc mary Group 7 LOS C C B C	le Ler Apr Dela 26.7	proach ay LOS 7 C L C	h	se	cs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR	Lane Group Capacity and 384 649 and 290 606 bund 423 698	Intersed Adj Sat Flow Rate (s) 1046 1770 792 1653 1770	Rati v/c 0.72 0.51 0.04 0.37 0.43	os g/C 0.37 0.37 0.37 0.37 0.37 0.37	Lane Delay 31.2 22.9 18.4 21.2 13.6	Cyc mary Group y LOS C C B C B	le Ler App Dela 26.7	proach ay LOS 7 C L C	h	se.	C S
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo	Lane Group Capacity and 384 649 and 290 606 ound 423 698 ound	Intersed Adj Sat Flow Rate (s) 1046 1770 792 1653 1770 1821	Rati	os g/C 0.37 0.37 0.37 0.37 0.52 0.38	Lane Delay 31.2 22.9 18.4 21.2 13.6 31.0	Cyc mary Group / LOS C C B C B C	le Ler App Dela 26.7	proach ay LOS 7 C L C	h	se	cs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo L	Lane Group Capacity and 384 649 and 290 606 ound 423 698 ound 288	Intersed Adj Sat Flow Rate (s) 1046 1770 792 1653 1770 1821 1770	Rati	os g/C 0.37 0.37 0.37 0.37 0.52 0.38 0.52	Lane Delay 31.2 22.9 18.4 21.2 13.6 31.0 40.2	Cyc mary Group / LOS C C B C B C B C D	le Ler App Dela 26.7 21.1 26.7	proach ay LOS 7 C L C	h	se	cs
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo L T	Lane Group Capacity and 384 649 and 290 606 and 423 698 and 288 714	Intersed Adj Sat Flow Rate (s) 1046 1770 792 1653 1770 1821 1770 1821	Rati v/c 0.72 0.51 0.04 0.37 0.43 0.80 0.87 0.53	os g/C 0.37 0.37 0.37 0.37 0.52 0.38 0.52 0.38	Lane Delay 31.2 22.9 18.4 21.2 13.6 31.0 40.2 22.2	Cyc mary Group 7 LOS C C B C B C D C	le Ler App Dela 26.7	proach ay LOS 7 C L C	h	se.	C S
Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo L	Lane Group Capacity and 384 649 and 290 606 and 423 698 and 288 714 607	Intersed Adj Sat Flow Rate (s) 1046 1770 792 1653 1770 1821 1770	Rati v/c 0.72 0.51 0.04 0.37 0.43 0.80 0.87 0.53 0.48	os g/C 0.37 0.37 0.37 0.37 0.52 0.38 0.52 0.38 0.38	Lane Delay 31.2 22.9 18.4 21.2 13.6 31.0 40.2 22.2 21.5	Cyc mary Group 7 LOS C C B C B C D C	le Ler App Dela 26.7 21.1 26.5	proach ay LOS 7 C 2 C 7 C	n S	se.	C S

Analyst: sta Agency: TranSystems Date: 07/01/2011 Period: AM Project ID: Segment IVa; P403 10 0004 E/W St: Eastgate North Drive Inter.: Eastgate North & Glen Este Area Type: All other areas Jurisd: Year : Alt 4

N/S St: Glen Este-Withamsville Road

				INTERSE					
	Eas L	tbound T R	Westb L T		Nor L	thbour T	nd R		hbound F R
No. Lanes LGConfig Volume Lane Width RTOR Vol	 L 100 12.0	0 1 R 220 12.0 0	0	0 0	 1 L	1 T 100	0	0	2 0 TR 80 225 2.0 0
Duration	0.25	Area 1		l other l Operat					
Phase Combi EB Left Thru Right Peds WB Left Thru Right Peds NB Right SB Right Green Yellow All Red		A A X 16.0 3.5 1.5	3	4 NB SB EB WB	Left Thru Right Peds Left Thru Right Right	X A 18.0 3.5 1.5 Cycl		7 gth: 9	8 0.0 sec
Appr/ Lar		Adj Sat	tion Pe Rati	rformanc os		ary Group		roach	
Lane Gro Grp Cap	pacity	Flow Rate (s)	v/c	g/C	Delay	LOS	Dela	y LOS	_
Eastbound L 61 R 68 Westbound		3437 1583	0.18 0.36	0.18 0.43	31.6 17.4	C B	21.8	С	
L 47	72 325	1770 1863	0.38 0.08	0.71 0.71		A A	7.5	А	
L 47 T 13							7.5	A	
T 13 Southbound					4.0				

Analyst: lpk Agency: TranSystems Date: 07/01/2011 Period: PM Project ID: Segment IVa; P403 10 0004 E/W St: Eastgate North Drive Inter.: Eastgate North & Glen Este Area Type: All other areas Jurisd: Year : Alt 4

N/S St: Glen Este-Withamsville Road

) INTERSI						
	Eas L	tbound T R	West L 1	oound F R	Nor L	thbour T	nd R	Sou L	thbound T R	
No. Lanes LGConfig Volume Lane Width RTOR Vol	2 L 495	0 1 R 440 12.0 0	0 0 	0 0	- 1 L	1 T 400 12.0	0	0	2 0 TR 565 18 12.0 0	
Duration	0.25	Area '		ll other al Operat						
Phase Combi EB Left Thru Right Peds WB Left Thru Right Peds NB Right SB Right Green Yellow All Red		A A X 20.5 3.5 1.5	3	4 4 NB SB EB WB	Left Thru Right Peds Left Thru Right Right	X A 22.5 3.5 1.5 Cyc]	3.5 1.5 le Leng	7	890.0	secs
Appr/ Lar Lane Gro	ne Dup	Adj Sat Flow Rate	Rati			Group		roach		
	pacity	(s)	v/c	g/C	Delay	LOS	Delay	r LOS		
R 84	83 44	3437 1583	0.70	0.23	34.8 15.2	C B	25.6	С		
	73 232	1770 1863		0.66 0.66			24.2	С		
~ . 1 1 1										
Southbound										
Southbound TR 12	215	3418	0.68	0.36	26.2	С	26.2	С		

Analyst: sta Inter.: Marian Dr @ Bach-Buxton Agency: TranSystems Area Type: All other areas 7/18/2011 Date: Jurisd: Period: AM Peak Year : Alt 8 Al (Alt 4) Project ID: Segment IVa Alt 8A1 E/W St: Old 74 WB N/S St: Bach Buxton NB and Old 74 SB SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T Т T. Т R R L Т R L R 0 1 1 1 0 No. Lanes 0 1 0 0 1 0 1 LGConfig LTR LTR L ΤR L ΤR 30 Volume 20 15 10 30 20 225 10 355 15 455 40 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Area Type: All other areas Duration 0.25 ___Signal Operations__ Phase Combination 1 2 5 7 3 4 6 8 EB Left А NB Left А Thru А Thru А Right А Right Α Peds Peds WB Left SB Left A А А Thru Thru Α Α Α Right А Right A А Peds Peds NB Right EΒ Right SB Right Right WΒ 7.0 Green 33.0 34.0 Yellow 3.5 3.5 3.5 All Red 1.5 1.5 1.5 secs Cycle Length: 89.0 __Intersection Performance Summary___ Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate v/c q/C Delay LOS Delay LOS Grp Capacity (s) Eastbound 558 1504 0.09 0.37 18.3 LTR В 18.3 В Westbound LTR 595 1604 0.51 0.37 22.5 С 22.5 С Northbound 308 806 0.04 0.38 17.3 L В 707 1851 0.58 0.38 23.1 22.9 С ΤR С Southbound 387 1770 0.09 0.52 12.2 L В ΤR 951 1840 0.58 0.52 15.7 В 15.5 В Intersection Delay = 19.5 (sec/veh) Intersection LOS = B

Analyst: sta Inter.: Marian Dr @ Bach-Buxton Agency: TranSystems Area Type: All other areas 7/18/2011 Date: Jurisd: Period: PM Peak Year : Alt 8 Al (Alt 4) Project ID: Segment IVa Alt 8A1 E/W St: Old 74 WB N/S St: Bach Buxton NB and Old 74 SB SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T Т T. Т R R L Т R L R 0 1 | 1 1 1 No. Lanes 0 1 0 0 0 0 1 LGConfig LTR LTR L ΤR L ΤR 225 515 Volume 55 10 10 15 30 225 10 510 20 80 12.0 12.0 Lane Width 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Area Type: All other areas Duration 0.25 ____Signal Operations___ Phase Combination 1 2 5 7 3 4 | 6 8 EB Left Α NB Left А Thru Α Thru А Right А Right Α Peds Peds SB Left A WB Left А А Thru Thru Α Α Α Right А Right A А Peds Peds NB Right EΒ Right SB Right Right WΒ 7.0 Green 30.0 38.0 Yellow 3.5 3.5 3.5 All Red 1.5 1.5 1.5 Cycle Length: 90.0 secs __Intersection Performance Summary___ Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate v/c q/C Delay LOS Delay LOS Grp Capacity (s) Eastbound 395 1185 0.21 0.33 21.8 LTR С 21.8 С Westbound LTR 542 1627 0.55 0.33 25.8 С 25.8 С Northbound 272 645 0.04 0.42 15.3 L В 782 1852 0.75 0.42 26.2 26.0 ΤR С С Southbound 1770 0.83 0.56 33.4 С L 300 ΤR 1014 1825 0.65 0.56 15.4 В 20.4 С Intersection Delay = 23.1 (sec/veh) Intersection LOS = C

Analyst	: sta
Agency:	TranSystems
Date:	7/18/2011
Period:	AM Peak
Project	ID: Segment IVa Alt 8A1
E/W St:	Old 74 WB

Inter.: Old 74 @ New Bach Buxton Area Type: All other areas Jurisd: old 74 east leg T's in Year : 2030 Alt 4

 $\rm N/S$ St: Bach Buxton NB and Old 74 SB

		SI	IGNALIZED	INTERSE	CTION	SUMMAI	RY			
	Eas	stbound	Westb	ound	Nor	thbour	nd	Soı	ıthbou	nd
	L 	T R	L T	R	L 	Т	R	L	Т	R
No. Lane LGConfig Volume Lane Wid RTOR Vol	1 th	0 0	1 L 245 12.0	0 1 R 325 12.0 0		12.0	1 R 170 12.0 0	1 L 45 12.0	1 T 515 12.0	0
Duration	0.25	Area	Type: Al	l other l Operat						
EB Left Thru Righ Peds WB Left	ι ιt :	A 1 2	3	4 4 NB SB	Left Thru Right Peds Left	5 A	6 A A P	7	8	
Thru Righ Peds NB Righ SB Righ Green	it ; it	A 31.0		 EB WB	Thru Right Peds Right Right		A 37.0)		
Yellow All Red		3.5 1.5				3.5 1.5	3.5 1.5		0.0 0	
		Interse	ection Pe	rformanc	e Summa	_		<u></u>	90.0	secs
	Lane Group	Adj Sat Flow Rate	Rati	os	Lane	Group	App	proach	1	
	Capacity		v/c	g/C	Delay	LOS	Dela	ay LOS	5	
Eastbour	ıd									
Westboun	ıd									
L	610	1770	0.45	0.34	23.4	С	26.0) C		
R Northbou	545 Ind	1583	0.66	0.34	28.1	С	20.0	,		
T R Southbou	766 651 Ind	1863 1583	0.80 0.29	0.41 0.41	29.2 18.0	C B	26.5	5 C		
L T	271 1014	1770 1863	0.18 0.56	0.54 0.54	14.3 14.2		14.2	2 В		
	Intersec	tion Delay	y = 22.7	(sec/ve	h) I	nterse	ectior	1 LOS	= C	

			HCS+: Sig	nalized	l Inte	ersec	tions H	Relea	ase 5.5	5			
Agen Date Per: Pro:	iod: PM ject ID	18/2011 Peak : Segme	ent IVa Alt	8A1		Are Jur Yea	er.: 01 a Type isd: 01 r : 20	: All Ld 74)30 A	othen east Alt 4	r area leg '	as T's in	ı	
E / W	St: Old	d 74 WE	3			N/S	St: Ba	ach E	Buxton	NB ai	nd Olc	1 74	E SB
							CTION S						
			tbound	1	bound			hbou		!	uthbou		
		L	T R	L	Т	R		Т	R	L	Т	R	
	Lanes	0	0 0	 1 L	0	1 R	0	1 T	1 R	 1 L	1 T	0	
Volu	-			185	-	125		525	245	240	615		ļ
	e Width			12.0		L2.0	1		12.0	1	12.0		İ
RTO	R Vol	İ		İ	()	İ		0	İ			İ
 Dura	ation	0.25	Area 1	Гуре: А									
				-		perat	ions						
	se Comb Left	ination	n 1 2	3	4	 NTD	Toft	5	6	7	8	\$	
EΒ	Thru					NB	Left Thru		7				
	Right						Right		A A				
	Peds						Peds		A				
WB	Left		А			 SB	Left	А	P				
WВ	Thru		A				Thru	A	A				
	Right		А				Right	A	A				
	Peds		A				Peds						
NB						EB	Right						
SB	Right					WB	Right						
Gree	-		29.5				Right	7.0	38.5	5			
Yell			3.5					3.5	3.5	5			
	Red		1.5					1.5	1.5				
	nea		1.5						le Ler	ngth:	90.0		secs
			Intersed			rmanc	e Summa	ary					
App: Lane		ne oup	Adj Sat Flow Rate	Rat	ios	_	Lane (Group	o Apr	proacl	h 		
Grp	Caj	pacity	(s)	v/c	g/(2	Delay	LOS	Dela	ay LOS	S		
East	tbound												
West	tbound												
L		80	1770	0.36	0.3	33	23.4	С					
P	-	1.0	1 5 0 0	0 0 7	~ ~	.	00 5	~	23.2	1 C			
R Nort	5. thbound	19	1583	0.27	0.3	33	22.6	С					
-	-	07	1000	0 50	~	1 0	04 0	~	0.0	n ~			
T D		97 77	1863	0.73	0.4		24.9	C	22.8	8 C			
R	6 thbound	77	1583	0.40	0.4	τJ	18.2	В					
L		12	1770	0.86	0.5	56	43.7	D					
ц Т		12 045	1863	0.80	0.5		43.7 15.2	B	23.2	2 C			
-	T	010	T 0 0 0	0.05	0.1		± J • Z	Ч	4.0.4				

Intersection Delay = 23.0 (sec/veh) Intersection LOS = C

General Information Site Information Analyst scf Freeway/Dir of Travel SR 32 Eastbound Agency or Company TranSystems Junction Bach Buxton Entrance Date Performed 2/7/2011 Jurisdiction Analysis Time Period AM Peak Analysis Year 2030 alt 4 Project Description Segment IVa - P403100004 Freeway/Dir of Travel Segment IVa - P403100004						
Agency or CompanyTranSystemsJunctionBach Buxton EntranceDate Performed2/7/2011JurisdictionAnalysis Time PeriodAM PeakAnalysis Year2030 alt 4						
Date Performed 2/7/2011 Jurisdiction Analysis Time Period AM Peak Analysis Year 2030 alt 4						
Analysis Time Period AM Peak Analysis Year 2030 alt 4						
Project Description Segment IVa - P403100004						
Inputs						
Upstream Adj Ramp Downstream A Yes On	Adj					
Yes I	On					
	Off					
$L_{up} = ft \qquad \qquad L_{down} = ft$						
$V_{u} = veh/h \qquad \qquad S_{FF} = 60.0 \text{ mph} \qquad S_{FR} = 45.0 \text{ mph} \qquad V_{D} = veh$	h/h					
Conversion to pc/h Under Base Conditions						
$(pc/h) \qquad \begin{array}{c c} V \\ (Veh/hr) \end{array} PHF \qquad Terrain \qquad \% Truck \qquad \% Rv \qquad f_{HV} \qquad f_p \qquad v = V/PHF \ x \ f_{H}$	_{HV} x f _p					
Freeway 2130 0.90 Level 3 0 0.985 1.00 2402						
Ramp 270 0.90 Level 3 0 0.985 1.00 305						
UpStream						
DownStream						
Merge AreasDiverge AreasEstimation of vEstimation of v						
$V_{12} = V_F (P_{FM})$ $V_{12} = V_R + (V_F - V_R)P_{FD}$						
$L_{EQ} =$ (Equation 25-2 or 25-3) $L_{EQ} =$ (Equation 25-8 or 25-9)						
P_{FM} = 0.591 using Equation (Exhibit 25-5) P_{FD} = using Equation (Exhibit 25-12	2)					
V ₁₂ = 1421 pc/h V ₁₂ = pc/h						
$V_3 \text{ or } V_{av34}$ 981 pc/h (Equation 25-4 or 25-5) $V_3 \text{ or } V_{av34}$ pc/h (Equation 25-15 or 25-16)						
Is V ₃ or V _{av34} > 2,700 pc/h? Yes No Is V ₃ or V _{av34} > 2,700 pc/h? Yes No						
Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Tyes V No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Tyes No						
If Yes, V_{12a} = pc/h (Equation 25-8) If Yes, V_{12a} = pc/h (Equation 25-18)						
Capacity Checks Capacity Checks						
Actual Capacity LOS F? Actual Capacity	LOS F?					
V _F Exhibit 25-14						
V_{FO} 2707 Exhibit 25-7 No $V_{FO} = V_F - V_R$ Exhibit 25-14						
V _R Exhibit 25-3						
Flow Entering Merge Influence Area Flow Entering Diverge Influence Area						
	iolation?					
V _{R12} 1726 Exhibit 25-7 4600:All No V ₁₂ Exhibit 25-14						
Level of Service Determination (if not F) Level of Service Determination (if not F))					
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$ $D_{R} = 4.252 + 0.0086 V_{12} - 0.009 L_{D}$						
$D_R = 15.7 \text{ (pc/mi/ln)}$ $D_R = (pc/mi/ln)$						
LOS = B (Exhibit 25-4) $LOS = (Exhibit 25-4)$						
Speed Determination Speed Determination						
$M_{\rm S} = 0.298 \text{ (Exibit 25-19)}$ $D_{\rm s} = (Exhibit 25-19)$						
$S_R^{=}$ 54.6 mph (Exhibit 25-19) $S_R^{=}$ mph (Exhibit 25-19)						
$S_0^{=}$ 58.3 mph (Exhibit 25-19) $S_0^{=}$ mph (Exhibit 25-19)						
S = 55.9 mph (Exhibit 25-14) S = mph (Exhibit 25-15)						

HCS+TM Version 5.5

Generated: 12/5/2011 1:35 PM

	RAN		RAMP JUN			ET						
General Infor				Site Infor								
Analyst Agency or Company Date Performed	scf	Systems 011	Ju	eeway/Dir of Tr nction risdiction	avel S	SR 32 Ea Bach Bux		ance				
Analysis Time Period	d PM P	eak	An	alysis Year		2030 Alt 4	ļ.					
Project Description	Segment IVa -	P403100004										
Inputs			1						.			
Upstream Adj Ramp		Terrain: Leve	I						Downstre Ramp	eam Adj		
									🔲 Yes	🗌 On		
🗹 No 📃 Of	f								🗹 No	C Off		
- _{up} = ft		S	_{FF} = 60.0 mph		S _{FR} = 4	5.0 mph			L _{down} =	ft		
V _u = veh/h	ו	_		show lanes, L _A ,		F			V _D =	veh/h		
Conversion t	o pc/h Und	ler Base (Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{H'}	V	f _p	v = V/PH	F x f _{HV} x f _p		
Freeway	3670	0.90	Level	3	0	0.98	5	1.00		4139		
Ramp	475	0.90	Level	3	0	0.98	5	1.00		536		
UpStream					ļ	 			<u> </u>			
DownStream	L,	Verge Areas						verge Areas	<u> </u>			
Estimation of		vierge Areas			Estimati	on of		iverge Areas	>			
					Louman		* 12					
	$V_{12} = V_{F}$	1 101	2- - - - - - - - - -				V ₁₂ = '	V _R + (V _F - \	/ _R)P _{FD}			
_{EQ} =		ation 25-2 or	-		L _{EQ} =		(Equation 2	5-8 or 25-9	9)		
P _{FM} =	0.591	using Equat	ion (Exhibit 25-5)		P _{FD} =		ι	using Equat	tion (Exhibit	25-12)		
/ ₁₂ =	2448 p	oc/h			V ₁₂ =			oc/h	uuuuu 10 (1)			
V_3 or V_{av34}		oc/h (Equatio	on 25-4 or 25-		V_3^{12} or V_{av34}^{12}	•						
s avs4 Is V ₃ or V _{av34} > 2,70	5) 0 pc/h? 🗖 Ves					₄ > 2,700		Yes 🗆 N		,		
Is V_3 or $V_{av34} > 1.5^{\circ}$					Is V ₃ or V _{av3}	4 > 1.5 *	V ₁₂ /2 ∏	Yes 🗆 N	lo			
f Yes,V _{12a} =		Equation 25			If Yes,V _{12a} =	•		oc/h (Equat				
Capacity Che			-0)				-		,			
capacity che	Actual		apacity	LOS F?			Actual		apacity	LOS F?		
	Actual	Ť	apacity	LUGT	V _F		Actual	Exhibit 25	<u> </u>	20011		
V	4675			Ne	· · · · ·	V		_				
V _{FO}	4675	Exhibit 25-7		No	$V_{FO} = V_F$	• v _R		Exhibit 25				
					V _R			Exhibit 2		ļ		
Flow Entering		ii .			Flow En	1	ii.	rge Influe				
	Actual	î r	Desirable	Violation?		Act		Max Des	sirable	Violation?		
V _{R12}	2984	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14				
Level of Serv			<i>i</i>					terminat		ot F)		
	0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A		1	O _R = 4.2	252 + 0.	.0086 V ₁₂ -	0.009 L _D			
D _R = 25.4 (pc/m	ni/ln)				D _R = (p	c/mi/ln)						
OS = C (Exhibit	25-4)				LOS = (E	xhibit 2	5-4)					
Speed Deterr	mination				Speed D	eterm	inatic	n				
M _S = 0.353 (Exi	bit 25-19)					khibit 25-						
	(Exhibit 25-19)					oh (Exhib						
•	(Exhibit 25-19)				S ₀ = mp	oh (Exhib	it 25-19)					
S = 54.4 mph	(Exhibit 25-14)				S = mp	oh (Exhib	it 25-15)					
opyright © 2010 Unive	ersity of Florida, A	I Rights Reserv	red		HCS+ [™]	Version 5	5		Generated: 1	2/5/2011 1:36		

		RAMP	S AND RAM	P JUNCTI	ONS WOR	RKS	HEET			
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 I	Eastbound			
Agency or Company		Systems	Jur	nction	E	Bach B	uxton Exit R	amp		
Date Performed	2/7/20			risdiction						
Analysis Time Period			An	alysis Year	2	2030 A	_T 4			
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve								• "
Upstream Adj Ramp			51						Downstrea Ramp	am Adj
☐ Yes ☐ Or ☑ No ☐ Of									Tes	☐ On
	I									C Off
L _{up} = ft									L _{down} =	ft
V _u = veh/h	I	5	s _{FF} = 60.0 mph Sketch (s	show lanes, L _A	S _{FR} = 45 , L _D ,V _P ,V _f)	5.0 mp	h		V _D =	veh/h
Conversion t	o pc/h Und	der Base								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2580	0.90	Level	3	0	0.9	985	1.00	29	10
Ramp	450	0.90	Level	3	0	0.	985	1.00	50	08
UpStream										
DownStream					<u> </u>					
Estimation of		Merge Areas			Ectimoti	<u></u>		verge Areas		
Estimation of					Estimati					
	$V_{12} = V_{F}$	(P _{FM})					12	V _R + (V _F - V		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-8	3 or 25-9)	
P _{FM} =	using	Equation (I	Exhibit 25-5)		P _{FD} =		0.66	64 using Ec	quation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		210	3 pc/h		
V ₃ or V _{av34}	pc/h (Equation 28	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		807	pc/h (Equa	ation 25-15	or 25-16)
Is V_3 or $V_{av34} > 2,70$	0 pc/h? 🕅 Yes	s 🔲 No			Is V ₃ or V _{av34} > 2,700 pc/h?					
Is V_3 or $V_{av34} > 1.5$ '	* V ₁₂ /2 🔲 Yes	s 🗌 No			Is V_3 or V_{av34}	₄ > 1.5	* V ₁₂ /2	Yes 🗹 No		
lf Yes,V _{12a} =	pc/h (Equation 28	5-8)		If Yes,V _{12a} =		рс	/h (Equatior	n 25-18)	
Capacity Che	ecks				Capacity	Che	ecks			
	Actual	C	apacity	LOS F?			Actual		pacity	LOS F?
					V _F		2910	Exhibit 25-1	4 6900	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2402	Exhibit 25-1	4 6900	No
					V _R		508	Exhibit 25-	3 2100	No
Flow Entering	n Merge In	fluence A	rea			terin	a Divera	ge Influen		
	Actual	1	Desirable	Violation?			Actual	Max Desiral		Violation?
V _{R12}		Exhibit 25-7			V ₁₂			Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)								erminatio	n (if not	F)
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$					1			086 V ₁₂ - 0		- /
D _R = (pc/mi/ln		12	A				′mi/ln)	12	D	
LOS = (Exhibit 2							oit 25-4)			
Speed Detern					Speed D	•	,	1		
$M_s = (Exibit 2)$							xhibit 25-1			
-	nibit 25-19)					-	(Exhibit 2	-		
	nbit 25-19)						(Exhibit 2	-		
	,									
S = mph (Exhibit 25-14) S = 56.7 mph (Exhibit 25-15)						5-10)				

Generated: 12/5/2011 1:34 PM

		RAMP	S AND RAM	P JUNCTI	ONS WOF	RKSI	HEET			
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 E	Eastbound			
Agency or Company		Systems	Jur	nction	B	Bach Bu	uxton Exit R	amp		
Date Performed	2/7/20			risdiction						
Analysis Time Period			An	alysis Year	2	2030 So	cenario 8a1			
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve							<u> </u>	• "
Upstream Adj Ramp			51						Downstrea Ramp	am Adj
Yes Or									T Yes	🗖 On
🗹 No 🔲 Off	t									C Off
L _{up} = ft									L _{down} =	ft
V _u = veh/h	I		s _{FF} = 60.0 mph Sketch(s	show lanes, L _A	S _{FR} = 45 , L _D ,V _R ,V _f)	5.0 mpi	n		V _D =	veh/h
Conversion t	o pc/h Und	der Base								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4370	0.90	Level	3	0	0.9	985	1.00	49	28
Ramp	700	0.90	Level	3	0	0.9	985	1.00	7	89
UpStream										
DownStream					ļ					
Estimation of	Merge Areas					<u></u>		verge Areas		
Estimation of					Estimatio					
	$V_{12} = V_{F}$	(P _{FM})					12	V _R + (V _F - V	IN TE	
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-	8 or 25-9)	
P _{FM} =	using	Equation (I	Exhibit 25-5)		P _{FD} =		0.6	01 using E	quation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		327	'4 pc/h		
V ₃ or V _{av34}	pc/h (Equation 28	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		165	54 pc/h (Equ	uation 25-1	5 or 25-16)
Is V_3 or $V_{av34} > 2,70$	0 pc/h? 🕅 Yes	s 🔲 No			Is V ₃ or V _{av34} > 2,700 pc/h? Yes No					
Is V_3 or $V_{av34} > 1.5$ '	* V ₁₂ /2 🔲 Yes	s 🗌 No			Is V_3 or V_{av34}	₄ > 1.5	* V ₁₂ /2	Yes 🗹 No		
lf Yes,V _{12a} =	pc/h (Equation 28	5-8)		If Yes,V _{12a} =		рс	h (Equatior	า 25-18)	
Capacity Che	ecks				Capacity	/ Che	ecks			
	Actual	C	apacity	LOS F?			Actual		apacity	LOS F?
					V _F		4928	Exhibit 25-2	14 6900	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	4139	Exhibit 25-	14 6900	No
					V _R		789	Exhibit 25-	3 2100	No
Flow Entering	n Merge In	fluence A	rea			terin	a Diver	ge Influer		
	Actual	1	Desirable	Violation?			Actual	Max Desira		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	1		Exhibit 25-14	4400:All	No
Level of Service Determination (if not F)								erminatio	n (if not	F)
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$								0086 V ₁₂ - 0		- /
D _R = (pc/mi/ln		12	A				mi/ln)	12	D	
LOS = (Exhibit 2							oit 25-4)			
Speed Detern	nination				Speed D	eter	minatio	n		
M _s = (Exibit 2							khibit 25-1			
-	nibit 25-19)					4 mph	(Exhibit 2	25-19)		
	nibit 25-19)					3 mph	(Exhibit 2	25-19)		
-	nibit 25-14)						(Exhibit 2			
	,									

HCS+TM Version 5.5

Conorel Info		MPS AND				. 🗠 1					
General Infor				Site Infor							
Analyst	scf	. .		eeway/Dir of Tr		SR 32 Eastbour					
Agency or Company		Systems		nction	(Glen Este Entra	ince				
Date Performed	2/7/2			risdiction							
Analysis Time Perio			An	alysis Year	2	2030 Alt 4					
Project Description	Segment IVa -	P403100004									
Inputs		<u>he · · · ·</u>									
Jpstream Adj Ramp		Terrain: Level						Downstre Ramp	am Adj		
🗆 Yes 🔲 Or	า							T Yes	□ On		
🗹 No 📃 Of	¥.										
	1							🗹 No	C Off		
_{-up} = ft								L _{down} =	ft		
		S	_{=F} = 60.0 mph		S _{FR} = 4	5.0 mph					
/ _u = veh/ł	ı			show lanes, L _A ,		·		V _D =	veh/h		
Conversion t	o pc/h Un	der Base C					2				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p		
Freeway	2380	0.90	Level	3	0	0.985	1.00		2684		
Ramp	200	0.90	Level	3	0	0.985	1.00		226		
UpStream			-		1		1	1			
DownStream	1				ĺ		1				
		Merge Areas		-			Diverge Are	as			
Estimation o	f v ₁₂				Estimati	on of v ₁₂					
	$V_{12} = V_{F}$	(P)									
_	12 1		25.2)			V ₁₂ :	= V _R + (V _F ·				
-EQ =		ation 25-2 or	-		L _{EQ} =		(Equation 25-8 or 25-9)				
P _{FM} =	0.591	using Equation	on (Exhibit 25-5)		P _{FD} =		using Equ	ation (Exhibit	25-12)		
/ ₁₂ =	1588	pc/h			$V_{12} =$		pc/h				
V_3 or V_{av34}		pc/h (Equatio	n 25-4 or 25-		V_3^{12} or V_{av34}			uation 25-15 or 25-16)			
	5)	_				₄ > 2,700 pc/h?			• • • • • •		
Is V_3 or $V_{av34} > 2,70$					0 u.o						
Is V_3 or $V_{av34} > 1.5$	*V ₁₂ /2 🔲 Ye	s 🗹 No				₄ > 1.5 * V ₁₂ /2					
f Yes,V _{12a} =	pc/h	(Equation 25-	·8)		If Yes,V _{12a} =		pc/h (Equ	ation 25-18)			
Capacity Che					Capacity	/ Checks					
	Actual	Ca	ipacity	LOS F?		Actua	al	Capacity	LOS F		
					V _F		Exhibit	25-14			
V _{FO}	2910	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	· V _P	Exhibit	25-14			
rU					V _R	N	Exhibit				
Low Enterin	 a Marcia In		~~~	l		toring Div					
Flow Entering	Actual		r ea Desirable	Violation?		tering Div Actual		Jence Are	violation		
\/	1	î r		i	1/		1	Ĩ			
V _{R12}	1814	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1				
Level of Serv		· · · ·	/			Service D			Dt F)		
		0.0078 V ₁₂ - 0.0	J627 L _A			O _R = 4.252 +	0.0086 V ₁₂	- 0.009 L _D			
0 _R = 16.4 (pc/n	ni/ln)				D _R = (pe	c/mi/ln)					
	25-4)				LOS = (E	xhibit 25-4)					
.OS = B (Exhibit	-				· ·	eterminat	tion				
-						(hibit 25-19)					
Speed Deteri	(hit 25 10)				IS (4/						
Speed Detern M _S = 0.300 (Exi	-					h (Exhihit 25 1	a)				
Speed Determ $M_{\rm S}$ = 0.300 (Existing S_{\rm R} = 54.6 mph	(Exhibit 25-19)				S _R = mp	h (Exhibit 25-1					
Speed Detern $M_{\rm S}$ = 0.300 (Exi $S_{\rm R}$ = 54.6 mph $S_{\rm O}$ = 57.9 mph	-				S _R = mp	oh (Exhibit 25-1 oh (Exhibit 25-1					

	RAI	MPS AND	RAMP JUNG	CTIONS W	<u>/OR</u> KSHE	ET					
General Info				Site Infor							
Analyst Agency or Company		Systems	Ju	eeway/Dir of Tr nction		R 32 Eastbou Glen Este Entra					
Date Performed Analysis Time Perio	2/7/2 d PM P			risdiction alysis Year	2	030 Alt 4					
Project Description			All	alysis real	Ζ	030 AIL 4					
nputs	oognonerva	1 100100001									
Jpstream Adj Ramp)	Terrain: Leve						Downstrea Ramp	am Adj		
Yes O								T Yes	🗌 On		
🗹 No 📃 Of	ff							🗹 No	C Off		
= ft								L _{down} =	ft		
_{up} = ft		S	_{FF} = 60.0 mph		S _{FR} = 45	5.0 mph		down			
/ _u = veh/ł	ו	_		show lanes, L _A ,		· · F		V _D =	veh/h		
Conversion t	to pc/h Und	l der Base (· A	D' K' I'						
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _n		
Freeway	(Veh/hr) 4030	0.90	Level	3	0	0.985	1.00	_	1545		
Ramp	340	0.90	Level	3	0	0.985	1.00	_	383		
UpStream	340	0.90	Level	5	0	0.905	1.00		303		
DownStream	1	<u>├</u> ──┼			1		1				
		Merge Areas					Diverge Are	as			
Estimation o	f v ₁₂				Estimation	on of v ₁₂					
	$V_{12} = V_F$	(P)									
=	12 1	ation 25-2 or	25-3)			V ₁₂	= V _R + (V _F -				
_{EQ} =			-		L _{EQ} =		· ·	25-8 or 25-9	,		
P = FM =			on (Exhibit 25-5)		P _{FD} =		using Equ	ation (Exhibit	25-12)		
/ ₁₂ =	2688		05 4 4 9 05		V ₁₂ =		pc/h				
V_3 or V_{av34}	5)	pc/n (Equatio	on 25-4 or 25-		V_3 or V_{av34} pc/h (Equation 25-15 or 25-16)						
Is V ₃ or V _{av34} > 2,70	,	s 🔽 No			Is V_3 or V_{av34}	1 > 2,700 pc/h	? 🗆 Yes 🗖	No			
$ _{\rm s} V_3 \text{ or } V_{\rm av34} > 1.5$					Is V ₃ or V _{av34}	1.5 * V ₁₂ /2	🗆 Yes 🗖	No			
f Yes,V _{12a} =		Equation 25	0)		If Yes,V _{12a} =	· ·-		ation 25-18)			
			-0)					,			
Capacity Che	1		an a city		Capacity	1		Conceity			
	Actual		apacity	LOS F?		Actu		Capacity	LOS F?		
					V _F		Exhibit				
V _{FO}	4928	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	V _R	Exhibit	25-14			
					V _R		Exhibit	25-3			
Flow Enterin	g Merge In	fluence A	rea		Flow Ent	tering Div	erge Influ	lence Are	а		
	Actual	Max	Desirable	Violation?		Actual	Max D	esirable	Violation?		
V _{R12}	3071	Exhibit 25-7	4600:All	No	V ₁₂		Exhibit 25-1	4			
Level of Serv	vice Detern	nination (i	f not F)		Level of	Service L	Determina	tion (if no	ot F)		
D _R = 5.475 +	- 0.00734 v _R + (0.0078 V ₁₂ - 0.0	0627 L _A) _R = 4.252 +	0.0086 V ₁₂	- 0.009 L _D			
0 _R = 26.1 (pc/n	ni/ln)				D _R = (po	c/mi/ln)					
$r_{\rm R}^{-}$ 20.1 (pc/1	-					xhibit 25-4)					
	20-4)				<u>`</u>	,	tian				
.OS = C (Exhibit	-				Speed D	etermina	tion				
.OS = C (Exhibit Speed Detern	mination				D _a = (Ex		lion				
$OS = C (Exhibit)$ Speed Detern $M_{s} = 0.360 (Exhibit)$	mination ibit 25-19)				D _s = (Ex	hibit 25-19)					
$OS = C (Exhibit)$ Speed Detern $A_{S} = 0.360 (Ex)$ $B_{R} = 53.5 mph$	ibit 25-19) (Exhibit 25-19)				D _s = (Ex S _R = mp	hibit 25-19) h (Exhibit 25-′	19)				
OS = C (Exhibit Speed Detern $M_S = 0.360$ (Ex $S_R = 53.5$ mph $S_0 = 55.1$ mph	mination ibit 25-19)				D _s = (Ex S _R = mp S ₀ = mp	hibit 25-19)	19) 19)				

		RAN		RAMP JUN		ORKSHE	ET				
General Ir	nform				Site Infor						
Analyst		sta			eeway/Dir of Tr		SR 32	Westbour	ıd		
Agency or Com	ipany	TranS	systems	Ju	nction	I	Bach E	Buxton Ent	rance Ramp		
Date Performed	b	2/7/20)11	Ju	risdiction						
Analysis Time F	Period	AM Pe	eak	An	alysis Year	:	2030 8	Scenario 8	a1(Alt 4)		
Project Descrip	tion S	Segment IVa - I	P403100004								
Inputs											
Jpstream Adj R			Terrain: Leve	1						Downstre Ramp	am Adj
Yes	On									TYes	□ On
I No □	Off									🗹 No	C Off
- _{up} = f	ft									L _{down} =	ft
			S	_{FF} = 60.0 mph		S _{FR} = 4	5.0 m	ph			
/ _u = v	/eh/h			Sketch (s	show lanes, L _A ,	L _D ,V _R ,V _f)				V _D =	veh/h
Conversio	on to	pc/h Und	ler Base	Conditions		0 11 1					
(pc/h)		V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{H∨}	f _p	v = V/PHI	F x f _{HV} x f _p
Freeway		3255	0.90	Level	3	0	0	.985	1.00		3671
Ramp		945	0.90	Level	3	0		985	1.00		1066
UpStream		010	0.00	20101		, v		.000	1.00	+	1000
DownStream										1	
Merge Areas									Diverge Areas	s <u> </u>	
Estimatio	n of	V ₁₂				Estimati	ion d	of v_{12}			
		$V_{12} = V_F ($	P)								
_				· 25 2)				V ₁₂ =	۰ V _R + (V _F - ۱		
- _{EQ} =			ition 25-2 oi	-		L _{EQ} =			(Equation 2	5-8 or 25-9	9)
P _{FM} =				ion (Exhibit 25-5)		P _{FD} =			using Equa	tion (Exhibit	25-12)
/ ₁₂ =		2171 p				V ₁₂ =	/ ₁₂ = pc/h				
$V_3^{}$ or $V_{av34}^{}$			oc/h (Equation	on 25-4 or 25-		V_3 or V_{av34}			pc/h (Equation	n 25-15 or 25	5-16)
	0 700	5)					> 2.	700 pc/h?	TYes 🗆 N		7
		pc/h? 🔲 Yes							Yes IN		
0 4001	> 1.5 *	V ₁₂ /2 TYes									
f Yes,V _{12a} =		pc/h (Equation 25	5-8)		If Yes,V _{12a} =			pc/h (Equat	1011 25-18)	
Capacity	Cheo	cks				Capacity	y Ch	lecks			
		Actual	C	apacity	LOS F?			Actual		Capacity	LOS F?
						V _F			Exhibit 25	5-14	
V _{FO}		4737	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D		Exhibit 25	5-14	
FU						V _R			Exhibit 2		
			<u> </u>					D			
-low Ente	ering	Merge In			Violation?	FIOW EN	i	Actual	e rge Influe Max Des		Violation?
V		Actual	i i	Desirable		V		Actual		Ĭ	violation?
V _{R12}	Ļ	3237	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
		ce Determ		/					eterminat		Dt F)
).00734 v _R + 0	.0078 V ₁₂ - 0.0	00627 L _A			D _R =	4.252 + (0.0086 V ₁₂ -	0.009 L _D	
0 _R = 27.1	(pc/mi/	′ln)				D _R = (p	c/mi/	ln)			
.OS = C (Ex	xhibit 2	5-4)				LOS = (E	xhibi	t 25-4)			
Speed De	term	ination				Speed D)etel	rminati	on		
		it 25-19)				+ '		25-19)			
-		-				1		hibit 25-19)		
		Exhibit 25-19)					-		-		
0	• •	Exhibit 25-19)				l ·		hibit 25-19			
5= 54.2	mph (E	Exhibit 25-14)				S= m;	oh (Ex	hibit 25-15)		
pyright © 2010) Univer	sity of Florida, A	II Rights Reser	ved		HCS+ [™]	Versio	n 5 5		Generated: 1	2/5/2011 1:37

		RAN		RAMP JUN		ORKSH	EET				
Genera	I Infor				Site Infor						
Analyst		sta		Fre	eway/Dir of Tr	avel	SR 32	Westbour	d		
Agency or (Company	TranS	Systems	Ju	nction		Bach I	Buxton Ent	rance Ramp		
Date Perfor	rmed	2/7/20)11	Ju	risdiction						
Analysis Tii	me Period	PM P	eak	An	alysis Year		2030 \$	Scenario 8	a1(Alt 4)		
Project Des	scription	Segment IVa -	P403100004								
Inputs											
Jpstream A			Terrain: Leve							Downstre Ramp	am Adj
🗌 Yes										🗆 Yes	🗆 On
🗹 No	C Off									🗹 No	C Off
=	ft									L _{down} =	ft
			S	6 _{FF} = 60.0 mph		S _{FR} = 4	5.0 m	ph			e le /le
/ _u =	veh/h			Sketch (s	show lanes, L _A ,	L_{D}, V_{R}, V_{f}				V _D =	veh/h
Conver	rsion to	pc/h Und	ler Base	Conditions						•	
(pc/	/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHI	F x f _{HV} x f _p
Freeway		2600	0.90	Level	3	0	0	.985	1.00		2932
Ramp		600	0.90	Level	3	0	0	.985	1.00		677
UpStream											
DownStrea	am										
			lerge Areas			Diverge Areas Estimation of v ₁₂					
estima	tion of	v ₁₂				Estimat	ion e	of v ₁₂			
		V ₁₂ = V _F ((P _{FM})					V -	V _R + (V _F - \	/)P	
- _{EQ} =		·= ·	ation 25-2 o	r 25-3)		_		• 12 [–]			2
P _{FM} =				tion (Exhibit 25-5)		L _{EQ} =			(Equation 2		
FM / ₁₂ =		1734 p				P _{FD} =			using Equa	tion (Exhibit	25-12)
				on 25-4 or 25-		V ₁₂ =					
I_3 or V_{av34}		5)	uc/ii (⊑quaii	01125-4 01 25-		$V_3^{}$ or $V_{av34}^{}$			pc/h (Equation		5-16)
ls V ₂ or V ₂	,,,, > 2,700) pc/h? 🔲 Yes	s 🔽 No			Is V_3 or V_{av3}	₃₄ > 2,	700 pc/h?	🗆 Yes 🗖 N	lo	
		V ₁₂ /2 ☐ Yes				Is V_3 or V_{av3}	₃₄ > 1.	5 * V ₁₂ /2	🗆 Yes 🗖 N	lo	
f Yes,V _{12a}	101	12	Equation 25	5-8)		If Yes,V _{12a} =			pc/h (Equat	ion 25-18)	
120	ty Che			5-07		Capacit		ocks			
Sapaci				`anaoitr	1.00 52	Capacit	y Ch			`anaoitu	100 52
		Actual		Capacity	LOS F?	V		Actual			LOS F?
						V _F			Exhibit 25		
V _F	o	3609	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25	5-14	
						V _R			Exhibit 2	5-3	
Flow E	ntering	Merge In	fluence A	lrea		Flow En	terii	ng Dive	erge Influe	ence Are	a
		Actual	Max	Desirable	Violation?			Actual	Max De	sirable	Violation?
V _R	12	2411	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
		ce Detern	nination (if not F)	-	Level of	Ser	vice D	eterminat	ion (if no	ot F)
D _R :	= 5.475 + ().00734 v _R + 0	.0078 V ₁₂ - 0.0	00627 L _A		<u> </u>	D _R =	4.252 + (0.0086 V ₁₂ -	0.009 L _D	
	20.8 (pc/mi		12	~			oc/mi/		12	U	
	C (Exhibit 2							t 25-4)			
		nination				Speed L		,	on		
-						<u> </u>			011		
0).319 (Exib	-						25-19) hihit 25-10	۱		
		Exhibit 25-19)						hibit 25-19	-		
0		Exhibit 25-19)				, v		hibit 25-19			
6 = 5	5.3 mph (I	Exhibit 25-14)				S =	ph (Ex	hibit 25-15)		
onvright @ (2010 Unive	rsity of Florida, A	II Rights Reser	ved		HCS+™	Voreid	n 5 5		Generated: 1	2/5/2011 1:38

		RAMP	S AND RAM	P JUNCTI	ONS WOP	RKSH	IEET			
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 V	/estbound			
Agency or Company		Systems	Jur	nction	E	Bach Bu	xton Exit Ra	amp		
Date Performed	2/7/20			risdiction						
Analysis Time Period			An	alysis Year	2	2030 Alt	4			
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Lev							L	
Upstream Adj Ramp		Terrain. Levi	31						Downstrea Ramp	am Adj
Yes On									🗆 Yes	🗖 On
No Off	ſ									C Off
L _{up} = ft			\sim = 60.0 mph		C 40	- 0			L _{down} =	ft
V _u = veh/h			S _{FF} = 60.0 mph Sketch (s	how lanes, L _A	S _{FR} = 45 , L _D ,V _R ,V _f)	5.0 mpn			V _D =	veh/h
Conversion to	o pc/h Und	ler Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3905	0.90	Level	3	0	0.9	85	1.00	44	-04
Ramp	650	0.90	Level	3	0	0.9	85	1.00	7	33
UpStream										
DownStream					ļ					
Ectimation of		Merge Areas			Ectimoti	00.01		verge Areas		
Estimation of					Estimati					
	V ₁₂ = V _F	(P _{FM})					12	/ _R + (V _F - V		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(Ed	quation 25-	8 or 25-9)	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		0.61	6 using Ed	quation (Ext	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		299	5 pc/h		
$V_3^{}$ or $V_{av34}^{}$	pc/h (Equation 2	5-4 or 25-5)		V_3 or V_{av34}		140	9 pc/h (Equ	uation 25-1	5 or 25-16)
Is V ₃ or V _{av34} > 2,70	0 pc/h? 🔲 Yes	s 🗖 No			Is V ₃ or V _{av34}	₄ > 2,70				
Is V_3 or $V_{av34} > 1.5 *$					Is V ₃ or V _{av3}					
If Yes,V _{12a} =		Equation 2	5-8)		If Yes,V _{12a} =			h (Equation	า 25-18)	
Capacity Che			/					(/	
	Actual	(Capacity	LOS F?			Actual	Ca	apacity	LOS F?
					V _F		4404			No
V _{FO}		Exhibit 25-7			V _{FO} = V _F ·		3671	Exhibit 25-1	_	No
140					V _R	R	733	Exhibit 25-		No
	<u> </u>	<u> </u>				<u> </u>				NU
Flow Entering	Actual	1	Desirable	Violation?	Flow Ent		ctual	Max Desira		Violation?
V	Actual	Exhibit 25-7	Desilable	VIOIALION	V ₁₂			Exhibit 25-14	4400:All	No
V _{R12} Exhibit 25-7 Level of Service Determination (if not F)								erminatio		
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$								086 V ₁₂ - 0		r)
		5.0070 v ₁₂	- 0.00027 L _A					000 v ₁₂ - 0	.009 L _D	
D _R = (pc/mi/ln)						5 (pc/ı	,			
LOS = (Exhibit 2						`	it 25-4)			
Speed Determination					Speed Determination					
M _S = (Exibit 25	5-19)				, v	-	hibit 25-1	-		
S _R = mph (Exh	ibit 25-19)					-	(Exhibit 2	-		
$S_0^{=}$ mph (Exhibit 25-19) $S_0^{=}$ 64.2 mph (Exhibit 25-19)										
	ibit 25-14)				S = 56.5 mph (Exhibit 25-15)					

HCS+TM Version 5.5

Generated: 12/5/2011 1:36 PM

RAMPS AND RAMP JUNCTIONS WORKSHEET		
General Information Site Information		
Analyst sta Freeway/Dir of Travel SR 32 Westbound		
Agency or Company TranSystems Junction Bach Buxton Exit Ramp		
Date Performed 2/7/2011 Jurisdiction		
Analysis Time Period PM Peak Analysis Year 2030 ALT 4		
Project Description Segment IVa - P403100004		
Inputs		
Rai	ownstream amp	Adj
		On
	No	
$L_{up} = ft \qquad \qquad L_{dow}$ $S_{FF} = 60.0 \text{ mph} \qquad S_{FR} = 45.0 \text{ mph}$	_{own} = f	ft
$V_{u} = \text{veh/h} \qquad \qquad V_{D}$	₀ = v	reh/h
Conversion to pc/h Under Base Conditions		
$(pc/h) \qquad \begin{array}{c c} V \\ (Veh/hr) \end{array} PHF \qquad Terrain \qquad \% Truck \qquad \% Rv \qquad f_{HV} \qquad f_p \qquad v = f_{HV} \qquad F_{HV}$	= V/PHF x	f _{HV} x f _p
Freeway 3100 0.90 Level 3 0 0.985 1.00	3496	
Ramp 500 0.90 Level 3 0 0.985 1.00	564	
UpStream		
DownStream Diverse Average		
Merge AreasDiverge AreasEstimation of vEstimation of v		
$V_{12} = V_F (P_{FM})$ $V_{12} = V_R + (V_F - V_R)P_I$	10	
L_{EQ} = (Equation 25-2 or 25-3) L_{EQ} = (Equation 25-8 or	r 25-9)	
P_{FM} = using Equation (Exhibit 25-5) P_{FD} = 0.647 using Equat	ation (Exhibi	t 25-12)
V_{12} = pc/h V_{12} = 2460 pc/h		
V_3 or V_{av34} pc/h (Equation 25-4 or 25-5) V_3 or V_{av34} 1036 pc/h (Equation	on 25-15 o	or 25-16)
Is V ₃ or V _{av34} > 2,700 pc/h? TYes No Is V _{av34} > 2,700 pc/h? Yes No		
Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Tyes No Is $V_{av34} > 1.5 * V_{12}/2$ Tyes No		
If Yes, V_{12a} = pc/h (Equation 25-8) If Yes, V_{12a} = pc/h (Equation 25	5-18)	
Capacity Checks Capacity Checks		
Actual Capacity LOS F? Actual Capaci	city	LOS F?
V _F 3496 Exhibit 25-14	6900	No
V_{FO} Exhibit 25-7 $V_{FO} = V_F - V_R$ 2932 Exhibit 25-14	6900	No
V _B 564 Exhibit 25-3	2100	No
Flow Entering Merge Influence Area Flow Entering Diverge Influence	Area	
Actual Max Desirable Violation? Actual Max Desirable	ľ	Violation?
	1400:All	No
Level of Service Determination (if not F) Level of Service Determination (if	(if not F))
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$ $D_{R} = 4.252 + 0.0086 V_{12} - 0.00827 L_{A}$		
$D_R = (pc/mi/ln)$ $D_R = 20.9 (pc/mi/ln)$	D	
LOS = (Exhibit 25-4) $LOS = C (Exhibit 25-4)$		
Speed Determination Speed Determination		
$M_s = (Exibit 25-19)$ $D_s = 0.349 (Exhibit 25-19)$		
$S_{R}^{2} = mph (Exhibit 25-19)$ $S_{R}^{2} = 53.7 mph (Exhibit 25-19)$		
$S_0^{=}$ mph (Exhibit 25-19) $S_0^{=}$ 65.7 mph (Exhibit 25-19)		
S = mph (Exhibit 25-14) S = 56.8 mph (Exhibit 25-15)		

HCS+TM Version 5.5

Generated: 12/5/2011 1:37 PM

		RAMP	S AND RAM	P JUNCTI	ONS WO	RKSI	HEET			
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 V	Vestbound			
Agency or Company	Trans	Systems	Jur	nction	(Glen Es	te Exit Ram	р		
Date Performed	2/7/20			risdiction						
Analysis Time Period			An	alysis Year	2	2030 AI	t 4			
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Lev							L	
Upstream Adj Ramp		Terrain. Levi							Downstrea Ramp	am Adj
Yes Or									T Yes	C On
	Γ									C Off
L _{up} = ft			S _{FF} = 60.0 mph		S _{FR} = 4	5 0 mp	'n		L _{down} =	ft
V _u = veh/h	I			show lanes, L _A		0.0 mpi	1		V _D =	veh/h
Conversion to	o pc/h Und	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4200	0.90	Level	3	0	0.9	985	1.00	47	'37
Ramp	265	0.90	Level	3	0	0.9	985	1.00	2	99
UpStream										
DownStream					ļ					
Fatimatian of		Merge Areas			F atimati			verge Areas		
Estimation of	v ₁₂				Estimati	on o				
	V ₁₂ = V _F	(P _{FM})					V ₁₂ = V	/ _R + (V _F - V	_R)P _{FD}	
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-	3 or 25-9)	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		0.62	8 using E	quation (Ext	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		308	5 pc/h		
V ₃ or V _{av34}	pc/h (Equation 2	5-4 or 25-5)		V_3 or V_{av34}		165	2 pc/h (Equ	ation 25-1	5 or 25-16)
Is V_3 or $V_{av34} > 2,70$			-			₄ > 2,70		Yes 🗹 No		,
Is V_3 or $V_{av34} > 1.5$						-		Yes 🗹 No		
		Equation 2	5-8)		If Yes,V _{12a} =	•		/h (Equation	n 25-18)	
Capacity Che			,						,	
	Actual		Capacity	LOS F?			Actual	C	apacity	LOS F?
	7101001	Ì		20011	V _F		4737	Exhibit 25-1		No
V		Exhibit 25-7			$V_{FO} = V_F$	- V	4438	Exhibit 25-1		
V _{FO}						- ^v R			_	No
					V _R		299	Exhibit 25-		No
Flow Entering		1			Flow En			<u>e Influer</u>		
	Actual	1	Desirable	Violation?			Actual	Max Desira	î.	Violation?
V _{R12}		Exhibit 25-7			V ₁₂			Exhibit 25-14	4400:All	No
Level of Service Determination (if not F) $D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$					1			erminatio		F)
		0.0078 V ₁₂	- 0.00627 L _A		1	0 _R = 4	.252 + 0.0	086 V ₁₂ - 0	.009 L _D	
D _R = (pc/mi/In)				D _R = 26.	.3 (pc/	mi/ln)			
LOS = (Exhibit 2	25-4)				LOS = C	(Exhib	oit 25-4)			
Speed Determination					Speed Determination					
M _S = (Exibit 2	5-19)				D _s = 0.3	325 (E)	khibit 25-1	9)		
	ibit 25-19)					.2 mph	(Exhibit 2	5-19)		
S ₀ = mph (Exh		S ₀ = 63.3 mph (Exhibit 25-19)								
	ibit 25-19)				1.	-	(Exhibit 2			
		$\Gamma = -57$.v mpn		5 15/					

HCS+TM Version 5.5

Generated: 12/5/2011 1:39 PM

		RAMP	S AND RAM	P JUNCTI	ONS WOR	RKSI	HEET			
General Informati	on			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32 V	Vestbound			
Agency or Company	TranS	ystems	Jur	nction	(Glen Es	te Exit Ram	р		
Date Performed	2/7/20			isdiction						
Analysis Time Period	PM Pe		Ana	alysis Year	2	2030 Al	t 4			
Project Description Segme	ent IVa - F	P403100004								
Inputs		Terrain: Leve	J						L	
Upstream Adj Ramp			1						Downstrea Ramp	ım Adj
I Yes I On I No I Off									Tes	☐ On
										C Off
L _{up} = ft		c	6 _{FF} = 60.0 mph		S _{FR} = 45	5 0 mpl	<u> </u>		L _{down} =	ft
V _u = veh/h		C		how lanes, L _A		5.0 mpi	I		V _D =	veh/h
Conversion to pc/	′h Und	er Base	Conditions							
(nc/h)	V eh/hr)	PHF	Terrain	%Truck	%Rv	1	HV	fp	v = V/PHF	x f _{HV} x f _p
Freeway 32	00	0.90	Level	3	0	0.9	985	1.00	36	09
Ramp 4 ⁻	10	0.90	Level	3	0	0.9	985	1.00	40	62
UpStream										
DownStream										
Estimation of v	N	lerge Areas			Estimati	<u></u>		verge Areas		
Estimation of v ₁₂					Esuman	011 0				
\ \	/ ₁₂ = V _F (P _{FM})					V ₁₂ = '	V _R + (V _F - V	_R)P _{FD}	
L _{EQ} =	(Equa	tion 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-8	3 or 25-9)	
P _{FM} =	using E	Equation (I	Exhibit 25-5)		P _{FD} =		0.64	49 using Ed	quation (Exh	nibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		250)3 pc/h		
$V_3^{}$ or $V_{av34}^{}$	pc/h (l	Equation 28	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		110	6 pc/h (Equ	ation 25-1	5 or 25-16)
Is V ₃ or V _{av34} > 2,700 pc/h?	? □ Yes	🗆 No			Is V ₃ or V _{av34} > 2,700 pc/h?					
Is V_3 or $V_{av34} > 1.5 * V_{12}/2$	🗌 Yes	🗆 No			Is V_3 or V_{av34}	₄ > 1.5	* V ₁₂ /2 🔲	Yes 🗹 No		
lf Yes,V _{12a} =	pc/h (I	Equation 2	5-8)		If Yes,V _{12a} =		рс	h (Equatior	n 25-18)	
Capacity Checks			-		Capacity		ecks			
	ctual	C	apacity	LOS F?	<u> </u>		Actual	Ca	apacity	LOS F?
					V _F	Í	3609			No
V _{FO}		Exhibit 25-7			V _{FO} = V _F	- V _D	3147	Exhibit 25-1	_	No
FU					V _R		462	Exhibit 25-		No
Elow Entoring Mo	rao Int	luonoo (1.00			torin	-			NO
Flow Entering Me	tual		Desirable	Violation?	FIOW EII	-	ctual	ge Influer Max Desira		Violation?
		Exhibit 25-7	Desirable	violation:	V ₁₂			Exhibit 25-14	4400:All	No
V _{R12} Exhibit 25-7 Level of Service Determination (if not F)								erminatio	1	
$D_{\rm R} = 5.475 + 0.00734 v_{\rm R} + 0.0078 V_{12} - 0.00627 L_{\rm A}$					1			0086 V ₁₂ - 0		r)
	rv _R +0	.0070 v ₁₂	0.00027 L _A		1			12 - 0	.009 L _D	
D _R = (pc/mi/ln)						.3 (pc/	-			
LOS = (Exhibit 25-4)						`	it 25-4)			
Speed Determination					Speed Determination					
M _S = (Exibit 25-19)					, v	-	hibit 25-1	-		
S _R = mph (Exhibit 25	5-19)					.9 mph	(Exhibit 2	25-19)		
S ₀ = mph (Exhibit 25	5-19)				S ₀ = 65.4 mph (Exhibit 25-19)					
S = mph (Exhibit 25	5-14)				S = 57.	.0 mph	(Exhibit 2	25-15)		

HCS+TM Version 5.5

Generated: 12/5/2011 1:39 PM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed FFS = 75 min 70 60 65 min 60 55 min 50 55 min 50 0 50 0 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 50 60 50 60 50 60 50		1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, LC FFS, LC	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information Analyst	sta		Site Inform	nation ection of Travel	<u> </u>	astbound
Agency or Company Date Performed Analysis Time Period	TranSystems 2/7/2011 AM Peak		From/To Jurisdiction Analysis Yea		Bach Bu	xton Ent to Olive Exit enario 8 a1 (Alt 4)
	nt IVa - P4031000	04				
Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	2100	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn			-		1.0	
f _p E _T	1.00 1.5		E _R		1.2 0.985	
Speed Inputs	1.0			$\frac{1}{T} - 1) + P_R(E_R - 1)]$		
Lane Width	12.0	ft	1	u Auj aliu FFS)	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N x f _p)		pc/h/ln	<u>Design (N)</u> Design LOS) DHV) / (PHF x N x	f _{HV} x	pc/h
Ś	60.0	mi/h	f _p)			
$D = v_p / S$	13.1	pc/mi/ln	S D-v /S			mi/h
LOS	В		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume			Version 5.5		nerated: 3/26/2012 10:34

HCS+TM Version 5.5

Generated: 3/26/2012 10:34 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Froe-Flow Speed FFS = 75 mith 70 60 65 mith 60 55 mith 50 55 mith 50 0 50 0 50 0 50 0 60 55 mith 50 0		1600 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
	Flow Rate (pc/h/ln)					
General Information	sta		Site Inform	nation ection of Travel	SD 22 E	astbound
Agency or Company Date Performed Analysis Time Period	TranSystems 2/7/2011 PM Peak		From/To Jurisdiction Analysis Yea		Bach Bu	xton Ent to Olive Exit enario 8 a1 (Alt 4)
	nt IVa - P4031000					
Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	4135	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn						
f _p	1.00		E _R		1.2	
E _T	1.5			T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs Lane Width	10.0	<i>t</i> 1	Calc Spee	d Adj and FFS	6	
Rt-Shoulder Lat. Clearance	12.0 6.0	ft ft	f _{LW}			mi/h
Interchange Density	0.0 0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3	1/1111	f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
LOS and Performance	Measures	111/11	Design (N))		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N)$ $f_p)$		pc/h/ln	<u>Design (N)</u> Design LOS	/ DHV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			
$D = v_p / S$	25.9	pc/mi/ln	S D-v /S			mi/h
LOS	С		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume			Version 5.5		

HCS+TM Version 5.5

Generated: 3/26/2012 10:33 AM

BASIC FF		EGMENTS W	ORKSHEET			
B,	1750	0 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	FFS, LOS, FFS, LOS, FFS, N, A& FFS, LOS,	v _p N, S, D N v _p , S, D (DT LOS, S, D AADT N, S, D	
Flow Rate (pc/h/ln)						
				SD 22 Eas	though	
		• •			nt to Bach Buxton	
-				Ex		
2/7/2011			r	2020 600-	aria 9 11 (14 1)	
)4	Analysis Yea	1	2030 SCEN	anu o A'i (Alt 4)	
		Des.(N)		Plann	ing Data	
	1					
2180	veh/h	Peak-Hour Fa	actor, PHF	0.90		
	veh/day	%Trucks and	l Buses, P _T	3		
		%RVs, P _R		0		
				Level		
1.00	veh/h			mi		
		En		12		
1.0						
12.0	ft			,		
-		f _{LW}			mi/h	
		f _{LC}			mi/h	
	1/1111	f _{ID}			mi/h	
-	mi/h	f _N			mi/h	
60.0				60.0	mi/h	
	mi/n		\			
Measures		1)			
x f _{HV} x		-		f		
820	pc/h/ln	$v_p = (v \text{ or } DD)$	//////////////////////////////////////	ι _{ΗV} χ	pc/h	
60.0	mi/h	r _p)			-	
13.7	pc/mi/ln	S D v (C			mi/h	
В	-				pc/mi/ln	
		Factor Loo	cation			
•		E _P - Exhibits	23-8, 23-10	f	_{LW} - Exhibit 23-4	
-					_{LC} - Exhibit 23-5	
EEC Eree flow	anaad					
		f Page 23-	12	f	- Exhibit 23-6	
BFFS - Base fre		f _p - Page 23- LOS, S, FFS	12 , v _p - Exhibits 23-2		_N - Exhibit 23-6 _{ID} - Exhibit 23-7	
	Lico Flow Rate (pc/h/ln) Sta TranSystems 2/7/2011 AM Peak Di IVa- P40310000 2180 1.00 1.00 1.00 1.00 1.5 12.0 6.0 0.50 3 60.0 Measures X f _{HV} X 820 60.0 1.3.7 B S - Speed D - Density	Image: stale in the stale	Iso Iso <thiso< th=""> <thiso< th=""> <thiso< th=""></thiso<></thiso<></thiso<>	Operational (LOS) Design (N) Design (N) Planning (UOS) Planning (N) Pla	Application Operational (LOS) Design (N) Planning (LOS) Planning (LOS) Planning (N) FFS, LOS, Planning (N) FFS, LOS, Planning (N) Planning (N) FFS, LOS, FFS, LOS, FFS, LOS, Planning (N) FFS, LOS, Planning (N) FFS, LOS, FFS, LOS, Planning (N) FFS, LOS, FFS, LOS, Planning (N) Planning (N) FFS, LOS, FFS, LOS, Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N) Planning (N)	

HCS+TM Version 5.5

Generated: 3/26/2012 10:32 AM

	BASIC F	REEWAY S	EGMENTS W	ORKSHEET		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B C		00 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, vp FFS, LOS, FFS, LOS, FFS, N, AA FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D IDT LOS, S, D AADT N, S, D
General Information	Flow Rate (pc/h/ln)		Site Inform	nation		
Analyst	sta			ection of Travel	SR 32 Eas	tbound
Agency or Company	TranSystems		From/To			nt to Bach Buxton
Date Performed	2/7/2011		Jurisdiction		Ex	
Analysis Time Period	PM Peak		Analysis Yea	r	2030 Scen	ario 8 A1 (Alt 4)
	nt IVa- P4031000)4	, ,			
🗹 Oper.(LOS)			Des.(N)		🗌 Plann	ing Data
Flow Inputs						
/olume, V	4160	veh/h	Peak-Hour Fa		0.90	
ADT		veh/day	%Trucks and	Buses, P _T	3	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D			%RVs, P _R General Terra	oin:	0 Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr	nents					
fp	1.00		E _R		1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E)]$	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	3	
_ane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft				mi/h
nterchange Density	0.50	I/mi	f _{LC}			
Number of Lanes, N	3		t _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
OS and Performance	Measures		Design (N)			
			Design (N)			
<u>Operational (LOS)</u>			Design LOS			
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1564	pc/h/ln	v _p = (V or DD	HV) / (PHF x N x	f _{HV} x	
p)	<u> </u>	-	f _p)			pc/h
	60.0	mi/h	s			mi/h
$D = v_p / S$	26.1	pc/mi/ln	$D = v_p / S$			pc/mi/ln
_OS	D			mber of Lanes, N		
Glossary			Factor Loc			
N - Number of lanes	S - Speed					_
/ - Hourly volume	D - Density		E _R - Exhibits			LW - Exhibit 23-4
$v_{\rm p}$ - Flow rate	FFS - Free-flow	speed		23-8, 23-10, 23-1		_{LC} - Exhibit 23-5
_OS - Level of service	BFFS - Base fre		f _p - Page 23-			_N - Exhibit 23-6
DDHV - Directional design ho			LOS, S, FFS	, v _p - Exhibits 23-2	2, 23-3 f	_{ID} - Exhibit 23-7
Copyright © 2010 University of Florida				Version E E		ated: 3/26/2012 10:30

Generated: 3/26/2012 10:30 AM

	BASIC FF	REEWAY	EGMENTS W	ORKSHEET			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B	50 1600 1750 10 10 1600 20	00 2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _p FFS, LOS, v _p FFS, LOS, N FFS, N, AADT FFS, LOS, AA FFS, LOS, N		
General Information	Flow Rate (pc/h/ln)		Site Infor	mation			
Analyst	sta			ection of Travel	SR 32 Westb	ound	
Agency or Company	TranSystems		From/To			ent to Eastgate	
• • • •	2				Ex		
Date Performed Analysis Time Period	2/7/2011 AM Peak		Jurisdiction Analysis Yea	ar	2030 Scenari	0 8 A2 (Alt 4)	
-	nt IVa - P4031000	04	7 11 19 31 3 1 60				
✓ Oper.(LOS)		Γ	Des.(N)		🗌 Planning	j Data	
Flow Inputs			· ·				
Volume, V AADT	4010	veh/h veh/day	Peak-Hour F %Trucks and		0.90 3		
Peak-Hr Prop. of AADT, K			%RVs, P _R		0		
Peak-Hr Direction Prop, D		l. /l.	General Terr		Level		
DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	Grade %	Length Up/Down %	mi		
Calculate Flow Adjustr							
f _p	1.00		E _R		1.2		
ε _τ	1.5			E _T - 1) + P _R (E _R - 1)]	0.985		
Speed Inputs	1.0			ed Adj and FFS			
_ane Width	12.0	ft	- í · · ·		,		
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h	
nterchange Density	0.50	l/mi	f _{LC}			mi/h	
Number of Lanes, N	3	1/1111	f _{ID}			mi/h	
FFS (measured)	60.0	mi/h	f _N			mi/h	
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h	
LOS and Performance	Maggurga	111/11	Decign (N	<u>\</u>			
	MedSules		Design (N Design (N))			
Operational (LOS)							
$v_p = (V \text{ or DDHV}) / (PHF x N)$	x f _{HV} x 1507	na/h/h	Design LOS)H//) / /DHE v N v	fv		
, p)	1507	pc/h/ln		DHV) / (PHF x N x	'HV ^	pc/h	
S	60.0	mi/h	t _p)			mi/h	
$D = v_p / S$	25.1	pc/mi/ln	о П_У /е			mi/h	
_OS É	С		$D = v_p / S$	and an after the		pc/mi/ln	
				mber of Lanes, N			
Glossary	6 00000		Factor Lo	Callon			
N - Number of lanes	S - Speed		E _R - Exhibits	23-8, 23-10	f _{l w}	- Exhibit 23-4	
 Hourly volume 	D - Density			23-8, 23-10, 23-1		- Exhibit 23-5	
/ _p - Flow rate	FFS - Free-flow		f - Page 23-12 f _v - Exhibit 23-6				
LOS - Level of service	BFFS - Base fre	e-flow speed					
DDHV - Directional design ho			LOS, S, FFS	5, v _p - Exhibits 23-2	2, 23-3 I _{ID}	Exhibit 23-7	

Generated: 3/26/2012 10:38 AM

	BASIC F	REEWAY SI	EGMENTS W	ORKSHEET		
80 Free-Flow: Speed FFS = 75 min 70 70 min 70 65 min 60 65 min 50 10 s 10 55 min 40 55 min 90 10 s 10 10 s 10 10 s 10 10 s	B,	50 (600 1/50 0		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, v _F FFS, LOS, FFS, LOS, FFS, N, A FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
- 0 400 800	1200 Flow Rate (pc/h/ln)	1600 200	0 2400			
General Information			Site Inforr	nation		
Analyst Agency or Company	sta TranSystems		Highway/Dire From/To	ection of Travel	SR 32 We Bach Buxt Ex	stbound on ent to Eastgate
Date Performed Analysis Time Period	2/7/2011 PM Peak		Jurisdiction Analysis Yea	r		aario 8 A2 (Alt 4)
i i i	nt IVa - P4031000					
Oper.(LOS)			Des.(N)		🗌 Planr	ning Data
Flow Inputs Volume, V AADT	2120	veh/h veh/day	Peak-Hour F		0.90 3	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	%RVs, P _R General Terr Grade %	ain: Length Up/Down %	0 Level mi	
Calculate Flow Adjustr	nents					
f _p	1.00		E _R		1.2	
E _T	1.5		$f_{HV} = 1/[1+P_{T}(E)]$	E _T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
nterchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	3					
FFS (measured)	60.0	mi/h	f _N		00.0	mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N :	x f _{HV} x 797	no/h/+-	<u>Design (N)</u> Design LOS)U\/) / (DUE v N v	fv	
f _p)	191	pc/h/ln	f)	0HV) / (PHF x N x	'HV ^	pc/h
S	60.0	mi/h	'ρ' S			mi/h
$D = v_p / S$	13.3	pc/mi/ln	0 D = v _p / S			pc/mi/ln
LOS	В			mber of Lanes, N		
Glossary			Factor Lo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre	-	E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1	1	f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design ho				•		
Convright © 2010 University of Florida	All Dights Deserved		una TM	Varaian E E	Conor	ated: 3/26/2012 10:40

Generated: 3/26/2012 10:40 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 min 70 60 65 min 60 55 min 50 0 40 55 min 90 400			2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, LO FFS, LO	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
	Flow Rate (pc/h/ln)	1000 2000				
General Information	- 1-		Site Inform		00.00.14	/estbound
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 AM Peak		From/To Jurisdiction Analysis Yea	ection of Travel r	Olive Bra	anch Ent to Bach Exit enario 8 Alt A1 (Alt 4)
-	nt IVa - P4031000	04	,			
Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	3835	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn						
f _p E _T	1.00 1.5		E _R		1.2 0.985	
Speed Inputs	1.0			T - 1) + P _R (E _R - 1)]		
Lane Width	12.0	ft		d Adj and FFS)	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N x f _p)		pc/h/ln	<u>Design (N)</u> Design LOS) DHV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			
$D = v_p / S$	24.0	pc/mi/ln	S D = v _p / S			mi/h pc/mi/ln
LOS	С			mber of Lanes, N		pc/m/m
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho				Version 5.5		nerated: 3/26/2012 10:35

HCS+TM Version 5.5

Generated: 3/26/2012 10:35 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 Free-Flow Speed FFS = 75 min 70 60 65 min 60 55 min 50 0 40 55 min 90 400		1000 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, LC FFS, LC)S, V _p N, S, D)S, N V _P , S, D AADT LOS, S, D)S, AADT N, S, D
	Flow Rate (pc/h/ln)	1000 2000				
General Information			Site Inform		00.00.14	la a tha a sur al
Analyst Agency or Company Date Performed Analysis Time Period	sta TranSystems 2/7/2011 PM Peak		From/To Jurisdiction Analysis Yea	ection of Travel r	Olive Bra	/estbound anch Exit to Bach Ent enario 8 Alt A1 (Alt 4)
Project Description Segmer	nt IVa - P4031000	04				
Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K	2670	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R	•	0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustn ،					1.0	
f _p E _T	1.00 1.5		E _R	1) L D (E 1)]	1.2 0.985	
Speed Inputs	1.0		1	^{T - 1) + P_R(E_R - 1)] d Adj and FFS}		
Lane Width	12.0	ft		u Auj anu FFS)	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	3		f _{ID}			mi/h
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS	00.0	mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N x f _p)		pc/h/ln	<u>Design (N)</u> Design LOS) HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			
D = v _p / S	16.7	pc/mi/ln	S D-v /S			mi/h
LOS	В		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design ho				Version 5.5		nerated: 3/26/2012 10:36

HCS+TM Version 5.5

Generated: 3/26/2012 10:36 AM

Analyst: sta Agency: TranSystems Date: 7/18/2011 Period: Am Peak Hour Project ID: Segment IVa E/W St: EB Off Ramp Inter.: EB Ramps @ New Bach Buxton
Area Type: All other areas
Jurisd:
Year : Alt 8 A1 (Alt 4)

N/S St:

		T.	O.T.O		יד חח			CITIMNA	DV				
		tbou			tboui		CTION	thbou		S_01	 .thbou		. <u> </u>
	Las	T	R	L	T	R		T	R	L	T	R	
No. Lanes LGConfig Volume Lane Width RTOR Vol	1 L 250 12.0	0	1 R 200 12.0 0	0	0	0	0	3 TR 525 12.0	0 135 0	2 L 235 12.0	1 T 365 12.0	0	
Duration	0.25		Area I				areas ions						
Phase Combi EB Left Thru Right	nation	A A	2	3	4	 NB 	Left Thru Right	5	6 A A	7	8	 }	
Peds WB Left Thru Right Peds NB Right						 SB EB	Peds Left Thru Right Peds Right	A	A				
SB Right Green Yellow All Red		31.5 3.5 1.5				WB	Right	12.0 3.5 1.5			90.0	S	ecs
Appr/ Lan Lane Gro		Ad	ntersec j Sat w Rate		Perfo tios	ormanc			o App		 1		
	acity		(s)	v/c	g,	/C	Delay	/ LOS	Dela	IY LOS	5		
Eastbound L 61	9	17	70	0.45	0	. 35	23.1	C	22.9	с			
R 55 Westbound	4	15	83	0.40	0	.35	22.6	С		-			
Northbound													
TR 17	25	49	29	0.42	0	.35	22.5	С	22.5	C			
Southbound		2.4	2 9	0.57	0	.13	38.3	D					
ь 45	8	34	37	0.07	•	. = 0	00.0						
	8 04		63	0.40		.54	12.5		22.6	C C			

Analyst: sta								
TranSystems								
7/18/2011								
PM Peak Hour								
ID: Segment IVa								
EB Off Ramp								

Inter.: EB Ramps @ New Bach Buxton
Area Type: All other areas
Jurisd:
Year : Alt 8 A1 (Alt 4)

N/S St: Bach Buxton

		SIC	GNALIZED	INTERSE	CTION	SUMMAR	RY			
	Eas	tbound	Westb	ound	Nor	thbour	nd	Southbound		
	L	TR	L I	R	L	Т	R	L	Т	R
No. Lanes LGConfig Volume Lane Width RTOR Vol	 L 290 n 12.0	0 1 R 410 12.0 0	0	0 0		3 TR 510 2 12.0	 0 255 0	2 L 420 12.0	1 T 410 12.0	0
					I 					I
Duration	0.25	Area 1		l other l Operat						
Phase Comb EB Left Thru Right Peds WB Left Thru Right Peds NB Right SB Right Green Yellow All Red		A A 31.5 3.5 1.5	3	4 NB SB EB WB	Left Thru Right Peds Left Thru Right Right	A A 16.5 3.5 1.5 Cycl	6 A A 27.0 3.5 1.5 Le Len		90.0	secs
·	ane	Adj Sat	Rati		_			proach		
	roup apacity	Flow Rate (s)	v/c	g/C	 Delay	LOS	Dela	y LOS	 }	
Eastbound L 6	519	1770	0.52	0.35	24.0	C	31.3	C		
R 5 Westbound	554	1583	0.82	0.35	36.5	D	51.5	C		
Northbound	ł									
TR 1	L099	3663	0.77	0.30	32.2	С	32.2	С		
Southbound	đ									
	530 L004	3437 1863	0.74 0.45				26.4	C		
]	Intersec	tion Delay	= 29.8	(sec/ve	h) I	nterse	ection	LOS	= C	

Analyst: sta								
Agency:	TranSystems							
Date:	7/18/2011							
Period:	AM peak Hour							
Project	ID: Segment IVa Alt 8A1							
E/W St:	WB Ramps							

Inter.: WB Ramp @ New Bach Buxton
Area Type: All other areas
Jurisd:
Year : Alt 8 Al (Alt 4)

N/S St: New Bach Buxton

		SIG	SNALIZEI	O INTERS	ECTION	SUMMAR	Y		
	Eas	tbound	Westbound Northbound			nd Southbound			
	L	T R	L S	Г R	L	Т	R	L T	R
No. Lan LGConfi	1	0 0	1 _L	0 2 R	2 _L	1 T	0	0 3 TR	
Volume Lane Wi	d+b		265 12.0	505 12.0	485	295		335 12.0	460
RTOR Vo			12.0	12.0		12.0		12.0	0
KIOK VO	- I	I		0	I		I		0
Duratio	n 0.25	Area 1		ll other al Opera					
Phase C	ombination	1 2	3	4		5	6	7	8
EB Lef	t			NB	Left	A			
Thr					Thru	A	A		
Rig				ļ	Right	A			
Ped				ļ	Peds				
WB Lef		A		SB					
Thr		_			Thru		A		
Rig		A		ļ	Right		A		
Ped					Peds				
NB Rig SB Rig				EB WB	5				
SB Rig Green		22.5		WB	RIGHU	16.0	36.5		
Yellow		3.5				3.5	3.5		
All Red		1.5				1.5	1.5		
								gth: 90.0	secs
		Intersec	tion Pe	erforman	ce Summa	ary			
Appr/ Lane	Lane Group	Adj Sat Flow Rate	Rat	ios	Lane (Group	Аррі	roach	
Grp	Capacity		v/c	g/C	Delay	LOS	Delay	y LOS	
Eastbou	nd								
Westbou	.nd								
L	443	1770	0.66	0.25	34.1	С			
							36.8	D	
R	701	2803	0.80	0.25	38.2	D			
Northbo	und								
L	611	3437	0.88	0.18	50.3	D			
Т	1190	1863	0.28	0.64	7.2	A	34.0	C	
Southbo	und								
TR	973	2398	0.91	0.41	37.2	D	37.2	D	

Intersection Delay = 36.0 (sec/veh) Intersection LOS = D

Analyst	: sta
Agency:	TranSystems
Date:	7/18/2011
Period:	PM peak Hour
Project	ID: Segment IVa Alt 8A1
E/W St:	WB Ramps

Inter.: WB Ramp @ New Bach Buxton
Area Type: All other areas
Jurisd:
Year : Alt 8 Al (Alt 4)

N/S St: New Bach Buxton

		SI	GNALIZED	INTERSE	CTION S	SUMMAR	Y		
	Eas	stbound	Westb	ound	Nort	thbound	d	Southbou	ind
	L	T R	L T	'R	L	T I	R	L T	R
No. Lane LGConfig Volume Lane Wid RTOR Vol	9 lth	0 0	 L 130 12.0	0 2 R 420 12.0 0	2 L 395 4 12.0 1	т 405	- 0 	0 3 TR 700 12.0	0 200 0
Duration	0.25	Area		l other l Operat					
Phase Co EB Left Thru Righ Peds WB Left Thru Righ Peds NB Righ SB Righ Green Yellow All Red	1 1 5 5 1 1 1 5 1 1	A A 25.5 3.5 1.5	3	4 NB SB SB EB WB	Left Thru Right Peds Left Thru Right Right Right	15.5 3.5 1.5	6 A A A 34.0 3.5 1.5	7 8	
				rformanc		ary		gth: 90.0	secs
	Lane Group	Adj Sat Flow Rate	Rati	OS	Lane (Group	App	roach	
	Capacity		v/c	g/C	Delay	LOS	Dela	y LOS	
Eastbour	nd								
Westbour	ıd								
L	501	1770	0.29	0.28	25.5	С	28.1	С	
R Northbou	794 1nd	2803	0.59	0.28	28.9	С		-	
L	592	3437	0.74	0.17	40.3	D			
Т	1128	1863	0.40	0.61	9.5	A	24.7	C	
Southbou	ınd								
TR	1245	3295	0.80	0.38	28.9	С	28.9	С	
	Intersec	ction Delay	= 27.2	(sec/ve	h) Ir	nterse	ction	LOS = C	

Analyst: sta Inter.: Marian Dr @ Bach-Buxton Agency: TranSystems Area Type: All other areas 7/18/2011 Date: Jurisd: Period: AM Peak Year : Alt 8 Al (Alt 4) Project ID: Segment IVa Alt 8A1 E/W St: Old 74 WB N/S St: Bach Buxton NB and Old 74 SB SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T Т T. Т R R L Т R L R 0 1 1 0 No. Lanes 0 1 0 0 1 1 0 1 LGConfig LTR LTR L ΤR L ΤR 30 495 Volume 20 15 10 30 20 225 10 415 15 40 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Area Type: All other areas Duration 0.25 ____Signal Operations___ Phase Combination 1 2 5 7 3 4 | 6 8 EB Left А NB Left А Thru А Thru Α Right А Right Α Peds Peds SB Left A WB Left А А Thru Thru Α Α Α Right А Right A А Peds Peds NB Right EΒ Right SB Right Right WΒ 7.0 Green 32.5 35.5 Yellow 3.5 3.5 3.5 All Red 1.5 1.5 1.5 Cycle Length: 90.0 secs __Intersection Performance Summary___ Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate v/c q/C Delay LOS Delay LOS Grp Capacity (s) Eastbound 542 1502 0.09 0.36 19.1 LTR В 19.1 В Westbound LTR 579 1604 0.53 0.36 23.6 С 23.6 С Northbound 729 0.04 0.39 16.8 L 288 В 731 1853 0.65 0.39 24.3 24.2 С ΤR С Southbound 349 1770 0.09 0.53 12.6 L В ΤR 972 1842 0.61 0.53 15.9 В 15.8 В Intersection Delay = 20.3 (sec/veh) Intersection LOS = C

Analyst: sta Inter.: Marian Dr @ Bach-Buxton Agency: TranSystems Area Type: All other areas 7/18/2011 Date: Jurisd: Period: PM Peak Year : Alt 8 Al (Alt 4) Project ID: Segment IVa Alt 8A1 E/W St: Old 74 WB N/S St: Bach Buxton NB and Old 74 SB SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T L Т T. Т R R Т R L R 0 1 | 1 1 1 No. Lanes 0 1 0 0 0 0 1 LGConfig LTR LTR L ΤR L ΤR 225 515 Volume 55 10 10 15 30 100 10 610 20 80 12.0 12.0 Lane Width 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Area Type: All other areas Duration 0.25 ____Signal Operations___ Phase Combination 1 2 5 7 3 4 | 6 8 EB Left Α NB Left Α Thru А Thru А Right А Right Α Peds Peds SB Left A WB Left А А Thru Thru Α Α Α Right Α Right A Α Peds Peds NB Right EΒ Right SB Right Right WΒ 7.0 Green 25.5 42.5 Yellow 3.5 3.5 3.5 All Red 1.5 1.5 1.5 Cycle Length: 90.0 secs __Intersection Performance Summary___ Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate v/c q/C Delay LOS Delay LOS Grp Capacity (s) Eastbound 386 1364 0.22 0.28 24.9 С LTR 24.9 С Westbound LTR 464 1639 0.35 0.28 26.1 С 26.1 С Northbound 705 0.03 0.47 12.8 L 333 В 875 1854 0.80 0.47 25.5 25.3 ΤR С С Southbound 1770 0.89 0.61 43.3 L 281 D ΤR 1105 1825 0.60 0.61 11.9 В 20.5 С Intersection Delay = 23.0 (sec/veh) Intersection LOS = C

Analyst	: sta
Agency:	TranSystems
Date:	7/18/2011
Period:	AM Peak
Project	ID: Segment IVa Alt 8A1
E/W St:	Old 74 WB

Inter.: Old 74 @ New Bach Buxton Area Type: All other areas Jurisd: old 74 east leg T's in Year : Alt 8 Al (Alt 4)

 $\rm N/S$ St: Bach Buxton NB and Old 74 SB

		SI	GNALIZED	INTERSE	CTION S	SUMMAR	Y			
	Eas	tbound	Westb	ound	Nort	thboun	d	Sou	thbour	nd
	L	T R	L T	R	L	T :	R	L	Т	R
No. Lane LGConfig Volume Lane Wid RTOR Vol	1 th	0 0	 L 245 12.0	0 1 R 325 12.0 0		Т	!	1 L 45 12.0	1 T 550 12.0	0
Duration	0.25	Area '		l other						
Dhage Co	mbination	1 2	Signa 3	l Operat 4	10ns	5	6	7		
EB Left Thru Righ	i I It		5	NB	Left Thru Right	-	A A	,	5	
Peds WB Left		7		 SB	Peds Left	7	P			
WB Left Thru Righ Peds	ı ıt	A			Thru Right Peds	A A	A			
NB Righ				EB	Right					
SB Righ	it	29.0		WB	Right	7 0	20.0			
Green Yellow		3.5				7.0 3.5	39.0 3.5	1		
All Red		1.5				1.5	1.5			
						Cycl	e Len	igth:	90.0	secs
				rformanc		-				
	Lane	Adj Sat	Rati	OS	Lane (Group	App	roach	1	
	Group Capacity	Flow Rate (s)	v/c	g/C	Delay	LOS	Dela	y LOS	3	
Eastboun	ıd									
Westboun		1770	0 4 0	0.22		G				
L	570	1770	0.48	0.32	25.1	C	28.6	C		
R Northbou	510 Ind	1583	0.71	0.32	31.3	С				
Т	807	1863	0.86	0.43	32.4	С	28.9	C		
R	686	1583	0.28	0.43	16.7	B		2		
Southbou			_							
L	238	1770	0.21	0.57	15.2	В	10 -	_		
Т	1056	1863	0.58	0.57	13.4	В	13.5	6 B		
	Intersec	tion Delay	= 24.2	(sec/ve	h) Ir	nterse	ction	LOS	= C	

	HCS+: Sig	gnalized :	Intersec	tions Relea	ase 5.	5		
Period: PM	8/2011 Peak Segment IVa Alt	: 8A1	Area Jur Yea:	er.: Old 74 a Type: Al isd: old 74 r : Alt 8 St: Bach H	l othe: 4 east Al (A	r area leg I lt 4)	as I's in	-
	SI	GNALIZED	INTERSE	CTION SUMMA	ARY			
	Eastbound	Westbo	ound	Northbou	und	Sou	thbou	nd
	LTR	L T	R	L T	R	L	Т	R
No. Lanes LGConfig Volume Lane Width RTOR Vol	0 0 0	1 (L 185 12.0	D 1 R 125 12.0 0	0 1 T 580 12.0	1 R 245 12.0 0	1 L 240 12.0	1 T 715 12.0	0
Duration	0.25 Area	Type: Al	l other a					
Phase Combi EB Left Thru Right Peds WB Left Thru Right Peds NB Right SB Right Green Yellow All Red	nation 1 2 A A 27.5 3.5 1.5	3	4 NB SB EB WB	Thru A Right Peds Right Right 9.0 3.5 1.5	6 A P A 38.1 3.5 1.5		8	
	Interse	ection Per	formanc	Cyc Cyc	cle Le	ngth:	90.0	secs
		Ratio		Lane Group		proach	1	
Appr/ Lane Gro	up Flow Rate			Lane Group		-		

Westboun	d							
L	541	1770	0.38	0.31	25.0	С		
2	4.0.4	1 5 0 0	0 00	0 01	04 1	a	24.6	C
R Northbou	484	1583	0.29	0.31	24.1	С		
Nortinbou	na							
Т	797	1863	0.81	0.43	28.7	С	25.6	С
R	677	1583	0.40	0.43	18.2	В		
Southbou	nd							
L	306	1770	0.87	0.58	39.2	D		
Т	1087	1863	0.73	0.58	16.2	В	21.9	С
				, ,				
	Intersect	ion Delay	= 23.8	(sec/ve	h) In	terse	ction L	OS = C

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	scf		Fre	eway/Dir of Tr	avel	SR 32	Eastbound			
Agency or Company		Systems		nction	I	Bach I	Buxton Entr	ance		
Date Performed	2/7/20			isdiction						
Analysis Time Period			Ana	alysis Year		2030 \$	Scenario 8A	1 (Alt 4)		
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve	1						1	
Upstream Adj Ramp		Terrain. Leve	1						Downstre Ramp	am Adj
Yes On									TYes	C On
🗹 No 🕅 Off	f								Mo No	C Off
L _{up} = ft			- 0			L _{down} =	ft			
V _u = veh/h S _{FF} = 60.0 mph Sketch (show lanes,					$S_{FR} = 4$ L_{D}, V_{R}, V_{f}	5.0 m	pn		V _D =	veh/h
Conversion to	o pc/h Und	ler Base	Conditions		0 11 1					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	= x f _{HV} x f _p
Freeway	1730	0.90	Level	3	0	0	.985	1.00	· ·	1951
Ramp	370	0.90	Level	3	0	-	.985	1.00		417
UpStream	0.0	0.00	20101		Ť			1.00		
DownStream										
					Diverge Areas	5				
Estimation of v ₁₂					Estimati	ion e	of v ₁₂			
$V_{12} = V_{F} (P_{FM})$					1		V ₁₂ =	V _R + (V _F - \	/ _P)P _{FD}	
L _{EQ} =	.= .	ation 25-2 or	[.] 25-3)		L _{EQ} =			(Equation 2		9)
P _{FM} =			ion (Exhibit 25-5)		P _{FD} =			using Equat		-
V ₁₂ =	1154 p		()		V ₁₂ =			pc/h	, , , , , , , , , , , , , , , , , , ,	- /
V_3 or V_{av34}	•		n 25-4 or 25-5)		V_3^{12} or V_{av34}^{12}			pc/h (Equation	1 25-15 or 25	-16)
ls V ₃ or V _{av34} > 2,70			1 20 4 01 20 0)			.>2				10)
Is V_3 or $V_{av34} > 1.5$ *					Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
If Yes, $V_{12a} =$		Equation 25	. 0)					pc/h (Equat		
	•	Equation 20	-0)		If Yes,V _{12a} =			pc/ii (Equal	1011 25-16)	
Capacity Che	Ϋ́		an a site		Capacity				anaoit (
	Actual	Ť	apacity	LOS F?	V		Actual	Exhibit 25	apacity	LOS F?
N/					V _F	<u>, , , , , , , , , , , , , , , , , , , </u>				
V _{FO}	2368	Exhibit 25-7		No	$V_{FO} = V_{F}$	- v _R		Exhibit 25	_	
					V _R			Exhibit 2		
Flow Entering		1	ř.		Flow En	i		rge Influe		
	Actual	i i	Desirable	Violation?			Actual	Max Des	sirable	Violation?
V _{R12}	1571	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
Level of Serv								eterminat		ot F)
$D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$						О _R =	4.252 + 0	0.0086 V ₁₂ -	0.009 L _D	
D _R = 14.4 (pc/m	i/ln)				D _R = (p	c/mi/	ln)			
LOS = B (Exhibit 2	25-4)				LOS = (E	xhibi	t 25-4)			
Speed Detern	nination				Speed Determination					
M _S = 0.295 (Exil	oit 25-19)				D _s = (E:	xhibit	25-19)			
-	Exhibit 25-19)					oh (Ex	hibit 25-19)	1		
	Exhibit 25-19)				S ₀ = mph (Exhibit 25-19)					
$S_0 = 56.1 \text{ mph} (Exhibit 25-14)$ S = 56.1 mph (Exhibit 25-14)					S = mph (Exhibit 25-15)					
	56.1 mph (Exnibit 25-14)									

		RAN		RAMP JUN		ORKSHE	ET					
General	Inforr				Site Infor							
Analyst Agency or Co Date Performe	ed	2/7/20		Ju	eeway/Dir of Tra nction risdiction	E	Bach E	Eastbound Buxton Ent	rance			
Analysis Time		PM P		An	alysis Year	2	2030 5	Scenario 8/	A1 (Alt 4)			
	iption	Segment IVa -	P403100004									
Inputs			Terrain: Leve								A 11	
Jpstream Adj	Ramp			1						Downstre Ramp	am Adj	
	□ Off									I Yes I No	☐ On ☐ Off	
	011											
_up =	ft		S	_{FF} = 60.0 mph		S _{FR} = 48	5.0 m	oh		L _{down} =	ft	
/ _u =	veh/h			Sketch (s	show lanes, L _A ,	L _D ,V _R ,V _f)				V _D =	veh/h	
Convers	ion to	pc/h Und	ler Base	Conditions								
(pc/h)		V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p	
Freeway		3460	0.90	Level	3	0	0.	985	1.00		3902	
Ramp		675	0.90	Level	3	0	0.	985	1.00		761	
UpStream						ļ	<u> </u>					
DownStream		Ν	lorgo Arooo						Diverge Area			
Merge Areas Estimation of v ₁₂						Estimati	<u></u>		Diverge Area	15		
_Stimatic						LSumati		12				
$V_{12} = V_F (P_{FM})$								V ₁₂ =	$V_R + (V_F -$	V _R)P _{FD}		
EQ =		(Equa	tion 25-2 or	· 25-3)		L _{EQ} =			(Equation 2	25-8 or 25-	9)	
• = FM		0.591	using Equat	ion (Exhibit 25-5)		P _{FD} =			using Equa	ation (Exhibi	25-12)	
/ ₁₂ =		2308 p	oc/h			$V_{12} =$			pc/h	,	,	
V_3 or V_{av34}			oc/h (Equation	on 25-4 or 25-		V_3^{12} or V_{av34}^{12}				on 25-15 or 2	5-16)	
	× 0 700	5)				Is V ₃ or V _{av34} > 2,700 pc/h? TYes No						
) pc/h? 🔲 Yes				$ _{SV_3 or V_{av34}} > 1.5 * V_{12}/2$ Yes No						
	> 1.5 "	V ₁₂ /2 ☐ Yes				If V_{3} of $V_{av34} > 1.5$ $V_{12}/2$ Yes No If Yes, $V_{12a} =$ pc/h (Equation 25-18)						
Yes,V _{12a} =			Equation 25	5-8)						1011 25-10		
Capacity	Che	cks	í		1	Capacity	/ Ch	ecks	1		1	
		Actual		apacity	LOS F?		\rightarrow	Actual		Capacity	LOS F?	
						V _F			Exhibit 2	25-14		
V_{FO}		4663	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	· V _R		Exhibit 2	25-14		
						V _R			Exhibit 2	25-3		
-low Ent	ering	Merge In	fluence A	rea		Flow En	terir	ng Dive	erge Influ	ence Are	ea	
		Actual	Max	Desirable	Violation?		ļ	Actual	Max De	esirable	Violation?	
V _{R12}		3069	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14	4		
		ce Detern	nination (if not F)		Level of	Ser	vice De	etermina	tion (if n	ot F)	
D _R = 5	5.475 + ().00734 v _R + 0	.0078 V ₁₂ - 0.0	0627 L _A) _R = 4	4.252 + (0.0086 V ₁₂	- 0.009 L _D		
$D_{\rm R} = 25.9 ({\rm pc/mi/ln})$						1	c/mi/l		12	D		
	Exhibit 2	-				1		t 25-4)				
Speed D						Speed D		,	on			
						<u> </u>			011			
0		it 25-19)				$D_{s} = (Exhibit 25-19)$						
		Exhibit 25-19)				S_R = mph (Exhibit 25-19)						
•		Exhibit 25-19)				S_0 = mph (Exhibit 25-19)						
= 54.4 mph (Exhibit 25-14)						S = mph (Exhibit 25-15)						
opyright © 201	ight © 2010 University of Florida, All Rights Reserved						HCS+ TM Version 5.5 Generated: 3/23/2012 1:34 F					

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	R 32 E	astbound			
Agency or Company	TranS	Systems	Jur	nction	В	lach Bu	uxton Exit R	amp		
Date Performed	2/7/20			isdiction						
Analysis Time Period			An	alysis Year	2	030 Sc	enario 8a1	(Alt 4)		
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve	N						L	
Upstream Adj Ramp			1						Downstrea Ramp	ım Adj
I Yes I On I No I Off									TYes	☐ On
	I									☐ Off ft
L _{up} = ft			6 _{FF} = 60.0 mph		S _{FR} = 45	50 mpł			L _{down} =	п
V _u = veh/h				how lanes, L _A ,		.o mpi	I		V _D =	veh/h
Conversion to	o pc/h Unc	ler Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2180	0.90	Level	3	0	0.9	985	1.00	24	59
Ramp	450	0.90	Level	3	0	0.9	985	1.00	50)8
UpStream					ļ	<u> </u>				
DownStream	L,	Merge Areas						verge Areas		
Estimation of		vierge Areas			Estimatio	\overline{n}		verge Areas		
Lotination of	Estimation of v ₁₂									
	$V_{12} = V_{F}$						12	V _R + (V _F - V		
L _{EQ} =		ation 25-2 o	-		L _{EQ} =			quation 25-8	,	
P _{FM} =	-	Equation (I	Exhibit 25-5)		P _{FD} =			75 using Ed	quation (Exh	iibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =			25 pc/h		
$V_3^{}$ or $V_{av34}^{}$		Equation 28	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$			pc/h (Equa	ation 25-15	or 25-16)
Is V ₃ or V _{av34} > 2,70					Is V ₃ or V _{av34} > 2,700 pc/h?					
Is V ₃ or V _{av34} > 1.5 *	^r V ₁₂ /2 🔲 Yes	s 🔲 No			Is V ₃ or V _{av34} > 1.5 * V ₁₂ /2					
If Yes,V _{12a} =	pc/h (Equation 28	5-8)		If Yes,V _{12a} =		рс	h (Equatior	n 25-18)	
Capacity Che	cks				Capacity	Che	ecks			
	Actual	C	apacity	LOS F?			Actual		pacity	LOS F?
					V _F		2459	Exhibit 25-1	4 6900	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$ -	V _R	1951	Exhibit 25-1	4 6900	No
					V _R		508	Exhibit 25-	3 2100	No
Flow Entering	, g Merge In	fluence A	Irea		Flow Ent	terin	g Diver	ge Influer	ce Area	
	Actual	1	Desirable	Violation?			ctual	Max Desira		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	1	825	Exhibit 25-14	4400:All	No
Level of Serv		Level of	Serv	vice Det	erminatio	n (if not	F)			
D _R = 5.475 + 0.					D	$P_{R} = 4$.252 + 0.0	0086 V ₁₂ - 0	.009 L _D	-
D _R = (pc/mi/ln		12					mi/ln)	12	D	
LOS = (Exhibit 2	,				LOS = B (Exhibit 25-4)					
Speed Detern	nination				Speed D	eteri	ninatio	n		
M _s = (Exibit 25					D _s = 0.34	44 (E>	hibit 25-1	9)		
	, ibit 25-19)				S _R = 53.8	8 mph	(Exhibit 2	25-19)		
						S ₀ = 65.8 mph (Exhibit 25-19)				
	ibit 25-14)				S = 56.5	5 mph	(Exhibit 2	25-15)		
		-	-		-					

HCS+TM Version 5.5

Generated: 3/23/2012 1:52 PM

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel	SR 32	Eastbound			
Agency or Company	TranS	Systems	Jur	nction		Bach B	uxton Exit F	Ramp		
Date Performed	2/7/20			isdiction						
Analysis Time Period			An	alysis Year		2030 S	cenario 8a1	(Alt 4)		
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve							L	
Upstream Adj Ramp			51						Downstrea Ramp	im Adj
Yes Or									Tes	☐ On
	I									☐ Off ft
L _{up} = ft		5	S _{FF} = 60.0 mph		S _{FR} = 4	5.0 mp	h		L _{down} =	ii.
V _u = veh/h			Sketch (s	how lanes, L _A		0.0 mp			V _D =	veh/h
Conversion te	o pc/h Und	ler Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4160	0.90	Level	3	0	0.	985	1.00	46	92
Ramp	700	0.90	Level	3	0	0.	985	1.00	78	39
UpStream		ļ								
DownStream	<u> </u>	Merge Areas						iverge Areas		
Estimation of		Estimati	ion o	of v	iverge Areas					
		(D)								
	$V_{12} = V_{F}$		2- - - - - - - - - -				12	V _R + (V _F - V	IC IE	
L _{EQ} =		ation 25-2 o	-		L _{EQ} =			Equation 25-	,	
P _{FM} =	-	Equation (Exhibit 25-5)		P _{FD} =			606 using E	quation (Exh	iibit 25-12)
V ₁₂ =	pc/h				V ₁₂ =			56 pc/h		
V ₃ or V _{av34}			5-4 or 25-5)		V ₃ or V _{av34}			36 pc/h (Equ		5 or 25-16)
Is V ₃ or V _{av34} > 2,70					Is V ₃ or V _{av34} > 2,700 pc/h? □ Yes ☑ No					
Is V ₃ or V _{av34} > 1.5 *					Is V ₃ or V _{av34} > 1.5 * V ₁₂ /2					
If Yes,V _{12a} =		Equation 2	5-8)		If Yes,V _{12a} =			c/h (Equation	n 25-18)	
Capacity Che	ecks			ù	Capacit	y Ch	ecks	1		
	Actual	(Capacity	LOS F?			Actual		apacity	LOS F?
					V _F		4692	Exhibit 25-	14 6900	No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3903	Exhibit 25-	14 6900	No
					V _R		789	Exhibit 25-	3 2100	No
Flow Entering	g Merge In	fluence A	Area		Flow En	terin	g Diver	ge Influer	nce Area	
	Actual	Max	Desirable	Violation?			Actual	Max Desira	1	Violation?
V _{R12}		Exhibit 25-7			V ₁₂	3	8156	Exhibit 25-14	4400:All	No
Level of Serv	ice Detern	nination (íif not F)		Level of	Ser	vice Det	terminatio	on (if not	F)
D _R = 5.475 + 0.		[D _R = 4	1.252 + 0.	0086 V ₁₂ - 0	.009 L _D				
D _R = (pc/mi/In)				D _R = 26	6.9 (pc	/mi/ln)			
LOS = (Exhibit 25-4)					LOS = C	(Exhil	oit 25-4)			
Speed Determination					Speed D	Deter	minatio	n		
M _s = (Exibit 25-19)					D _s = 0.369 (Exhibit 25-19)					
	, ibit 25-19)				S _R = 53.4 mph (Exhibit 25-19)					
							S ₀ = 63.7 mph (Exhibit 25-19)			
	ibit 25-14)					-	(Exhibit 2	-		
ļ · ·	,						•	,		

HCS+TM Version 5.5

Generated: 3/23/2012 1:30 PM

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32	Westbound			
Agency or Company	Trans	Systems	Jur	nction	B	Bach E	Buxton Entrar	ice Ramp		
Date Performed	2/7/2			isdiction						
Analysis Time Period			Ana	alysis Year	2	2030 S	cenario 8 a1	(ALT 4)		
Project Description	Segment IVa -	P403100004								
Inputs		Terrain: Leve	1						L	
Upstream Adj Ramp		Terrain. Leve	I						Downstrea Ramp	am Adj
I Yes I On I No I Off									Tes	C On
	ſ								⊠ No	☐ Off ft
L _{up} = ft		S _{FR} = 45	5 0 mr	h		L _{down} =	it.			
V _u = veh/h S _{FF} = 55.0 mph Sketch (show lanes, I					110	h			V _D =	veh/h
Conversion to pc/h Under Base Conditions										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	3065	0.90	Level	3	0	0.	985	1.00	3	457
Ramp	945	0.90	Level	3	0	0.	985	1.00	1	066
UpStream					ļ	ļ			ļ	
DownStream		Merge Areas						verge Areas		
Estimation of		vierge Areas			Estimatio	<u>on c</u>		Verge Areas)	
							12			
$V_{12} = V_F (P_{FM})$							$V_{12} = V$	_R + (V _F - V	/ _R)P _{FD}	
L _{EQ} =		ation 25-2 or	-		L _{EQ} =		(E	quation 2	5-8 or 25-9)
P _{FM} =	0.591	using Equat	ion (Exhibit 25-5)		P _{FD} =		u	sing Equat	ion (Exhibit)	25-12)
V ₁₂ =	2045 p				V ₁₂ =		р	c/h		
V ₃ or V _{av34}	-	oc/h (Equatio	on 25-4 or 25-		V_3^{12} or V_{av34}^{12}		D(h (Equation	n 25-15 or 25	-16)
	5) 0 po/b2 🗔 V				Is V ₃ or V _{av34} > 2,700 pc/h? Yes No					- /
Is V_3 or $V_{av34} > 2,70$					$ s V_3 \text{ or } V_{av34} > 1.5 * V_{12}/2$ Yes No					
Is V_3 or $V_{av34} > 1.5*$					If Yes,V _{12a} =	+	.=	c/h (Equati		
If Yes,V _{12a} =		Equation 25	-8)				-			
Capacity Che	r -				Capacity	Ch		1 0		
	Actual		apacity	LOS F?		\rightarrow	Actual		apacity	LOS F?
					V _F			Exhibit 25		
V _{FO}	4523	Exhibit 25-7		No	$V_{FO} = V_{F}$ -	V _R		Exhibit 25	-14	
					V _R			Exhibit 25	5-3	
Flow Entering	g Merge In	fluence A	rea		Flow Ent	terir	ng Diverg	ge Influe	ence Are	а
	Actual	Max	Desirable	Violation?		A	Actual	Max Des	sirable	Violation?
V _{R12}	3111	Exhibit 25-7	4600:All	No	V ₁₂			xhibit 25-14		
Level of Serv			/		Level of					t F)
D _R = 5.475 +	0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A) _R = 4	4.252 + 0.0	086 V ₁₂ -	0.009 L _D	
D _R = 26.1 (pc/m	ii/ln)				D _R = (po	c/mi/l	n)			
LOS = C (Exhibit :	25-4)				LOS = (Ex	xhibit	: 25-4)			
Speed Determination Spee					Speed D	eter	minatio	1		
M _S = 0.364 (Exit							25-19)			
-	(Exhibit 25-19)				S _R = mph (Exhibit 25-19)					
					S ₀ = mph (Exhibit 25-19)					
5 00.7 mpm (50.7 mph (Exhibit 25-14) S = mph (Exhibit 25-15)									

HCS+TM Version 5.5

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst	sta		Fre	eway/Dir of Tr	avel S	SR 32	Westboun	d		
Agency or Company		Systems		nction	E	Bach E	Buxton Ent	rance Ramp		
Date Performed	2/7/20			isdiction						
Analysis Time Period			Ana	alysis Year		2030 5	Scenario 8	a1 (ALT 4)		
Project Description Inputs	Segment Iva -	P403100004								
		Terrain: Leve							Downstr	oom Adi
Upstream Adj Ramp	1								Ramp	,
⊠ No □ Off									I Yes I No	☐ On □ Off
L _{up} = ft	ft								L _{down} =	ft
		S	_{FF} = 55.0 mph		S _{FR} = 4	5.0 m	oh			
V _u = veh/h			Sketch (s	how lanes, L _A	L _D ,V _R ,V _f)				V _D =	veh/h
Conversion to	o pc/h Und	ler Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p
Freeway	2120	0.90	Level	3	0	0.	985	1.00	Í	2391
Ramp	600	0.90	Level	3	0	0.	985	1.00		677
UpStream					ļ	<u> </u>			ļ	
DownStream		Merge Areas								
Estimation of		Estimati	ion d		Diverge Area	5				
Estimation of v ₁₂					Lounau				() 5	
	V ₁₂ = V _F (V _R + (V _F -)		
L _{EQ} =		ation 25-2 o	-		L _{EQ} =			(Equation 2		
P _{FM} =			ion (Exhibit 25-5)		P _{FD} =			using Equa	tion (Exhib	it 25-12)
V ₁₂ =	1414 p				V ₁₂ =			pc/h		
V ₃ or V _{av34}			n 25-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$	_		pc/h (Equatio		25-16)
Is V_3 or $V_{av34} > 2,70$					Is V ₃ or V _{av34} > 2,700 pc/h? □ Yes □ No					
Is V ₃ or V _{av34} > 1.5 *						Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Tyes I No				
If Yes,V _{12a} =		Equation 28	5-8)		If Yes,V _{12a} =			pc/h (Equa	tion 25-18)
Capacity Che	Ϋ́	·		1	Capacity	y Ch				
	Actual		apacity	LOS F?			Actual		Capacity	LOS F?
					V _F			Exhibit 2		
V _{FO}	3068	Exhibit 25-7		No	$V_{FO} = V_F$	- V _R		Exhibit 2		
					V _R			Exhibit 2	5-3	
Flow Entering	g Merge In	fluence A	lrea		Flow En	terii	ng Dive	erge Influ		ý.
	Actual	i i	Desirable	Violation?			Actual	Max De	T.	Violation?
V _{R12}	2091	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
Level of Serv					1			eterminat		ot F)
$D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$						D _R = -	4.252 + (0.0086 V ₁₂ -	0.009 L _D	
D _R = 18.3 (pc/m	i/ln)				D _R = (p	c/mi/	ln)			
LOS = B (Exhibit 2	25-4)				LOS = (E	xhibi	t 25-4)			
Speed Detern	nination				Speed D)eter	rminati	on		
M _S = 0.308 (Exit	oit 25-19)				D _s = (E:	xhibit 2	25-19)			
	Exhibit 25-19)				S _R = mp	oh (Ex	hibit 25-19)		
	Exhibit 25-19)				S ₀ = mp	oh (Ex	hibit 25-19)		
							hibit 25-15)		

HCS+TM Version 5.5

Generated: 3/23/2012 2:15 PM

		RAMF	S AND RAMI	P JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor	mation						
Analyst sta			Fre	Freeway/Dir of Travel			SR 32 Westbound				
Agency or Company	TranS	Systems	Jur	nction	I	Bach B	uxton Exit F	Ramp			
Date Performed 2/7/2011				isdiction							
Analysis Time Period			An	alysis Year		2030 S	cenario 8 a'	1 (Alt 4)			
Project Description	Segment IVa -	P403100004									
Inputs		Terrain: Lev							1		
Upstream Adj Ramp		ei						Downstrea Ramp	ım Adj		
Yes On									T Yes	C On	
No Off										Coff ft	
L _{up} = ft			S _{ER} = 45.0 mph			_L _{down} =	п				
V _u = veh/h			S _{FF} = 60.0 mph Sketch(s	how lanes, L _A		.o.u mp	"		V _D =	veh/h	
Conversion to	o pc/h Und	der Base	Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	3835	0.90	Level	3	0	0.	985	1.00	43	25	
Ramp	770	0.90	Level	3	0	0.	985	1.00	8	68	
UpStream											
DownStream	,]		
Estimation of		Merge Areas			Estimati	ion o	U of v	iverge Areas			
LSUMATION	•=				LSumau						
	V ₁₂ = V _F						12	V _R + (V _F - V	IC IE		
L _{EQ} =	(Equation 25-2 or 25-3) L _{EQ} = (Equ				Equation 25-	uation 25-8 or 25-9)					
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		0.6	12 using E	quation (Exh	nibit 25-12)	
V ₁₂ = pc/h						V ₁₂ = 2984 pc/h					
$V_3^{}$ or $V_{av34}^{}$	pc/h (Equation 2	5-4 or 25-5)		$V_3^{}$ or $V_{av34}^{}$		134	41 pc/h (Equ	uation 25-1	5 or 25-16)	
Is V_3 or $V_{av34} > 2,700$ pc/h? \Box Yes \Box No					Is V ₃ or V _{av34} > 2,700 pc/h? Yes No						
Is V ₃ or V _{av34} > 1.5 *	V ₁₂ /2 Tes	s 🗌 No			Is V_3 or V_{av3}	₃₄ > 1.5	* V ₁₂ /2	Yes 🗹 No			
lf Yes,V _{12a} =	pc/h (Equation 2	5-8)		If Yes,V _{12a} =		р	c/h (Equatior	n 25-18)		
Capacity Che	cks				Capacity		ecks				
	Actual	(Capacity	LOS F?	1		Actual	Ca	apacity	LOS F?	
					V _F	ĺ	4325		14 6900	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_F$		3457	Exhibit 25-		No	
10					V _R		868	Exhibit 25-		No	
Flow Entering	<u>.</u> n Morao In	l	l Area			torin		ge Influer		110	
	Actual	1	Desirable	Violation?			Actual	Max Desira		Violation?	
V _{R12}	7101001	Exhibit 25-7		riolation.	V ₁₂	-	2984	Exhibit 25-14	4400:All	No	
Level of Serv	ico Dotorn		(if not E)					terminatio			
					1					·)	
$D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$ $D_R = (pc/mi/ln)$					$D_R = 4.252 + 0.0086 V_{12} - 0.009 L_D$ $D_R = 25.4 (pc/mi/ln)$						
	·						,				
LOS = (Exhibit 25-4)				LOS = C (Exhibit 25-4)							
Speed Determination				Speed Determination							
5				$D_s = 0.376$ (Exhibit 25-19)							
S _R = mph (Exhibit 25-19)				S _R = 53.2 mph (Exhibit 25-19)							
S ₀ = mph (Exhibit 25-19)			S ₀ = 64.5 mph (Exhibit 25-19)								
S = mph (Exhibit 25-14)					S = 56.3 mph (Exhibit 25-15)						

HCS+TM Version 5.5

Generated: 3/23/2012 1:40 PM

		RAMF	S AND RAM	P JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor	mation						
-			Fre	Freeway/Dir of Travel			SR 32 Westbound				
Agency or Company	TranS	Systems	Jur	nction		Bach B	uxton Exit F	Ramp			
Date Performed 2/7/2011				Jurisdiction							
Analysis Time Period			An	alysis Year		2030 S	cenario 8 a	1 (Alt 4)			
Project Description	Segment IVa -	P403100004									
Inputs		Terrain: Lev							L		
Upstream Adj Ramp	D I						Downstrea Ramp	am Adj			
Yes On									Tes	☐ On	
No Of	I									☐ Off ft	
L _{up} = ft			S _{ER} = 45.0 mph				L _{down} =	п			
V _u = veh/h		S _{FF} = 60.0 mph S Sketch (show lanes, L _A , L _D ,V					V _D =	veh/h			
Conversion to	o pc/h Und	der Base	Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	${\rm x}~{\rm f}_{\rm HV}~{\rm x}~{\rm f}_{\rm p}$	
Freeway	2670	0.90	Level	3	0	0.	985	1.00	30	11	
Ramp	550	0.90	Level	3	0	0.	985	1.00	62	20	
UpStream					ļ				ļ		
DownStream	<u> </u>	Merge Areas						iverge Areas			
Estimation of		vierge Areas			Estimat	ion o		Iverge Areas			
		(D)									
	$V_{12} = V_{F}$						12	V _R + (V _F - V	IC ID		
{EQ} = (Equation 25-2 or 25-3)				L{EQ} = (Equation 25-8 or 25-9) P_{FD} = 0.656 using Equation (Exhibit 25-12)							
P _{FM} =	-	Equation (Exhibit 25-5)		P _{FD} =			-	quation (Exh	nibit 25-12)	
V ₁₂ = pc/h					V ₁₂ =			89 pc/h			
V ₃ or V _{av34}			5-4 or 25-5)		V ₃ or V _{av34}			2 pc/h (Equ		or 25-16)	
Is V_3 or $V_{av34} > 2,700$ pc/h? TYes No						Is V ₃ or V _{av34} > 2,700 pc/h?					
Is V ₃ or V _{av34} > 1.5 *						• ·	. –				
If Yes,V _{12a} =		Equation 2	5-8)		If Yes,V _{12a} =		-	c/h (Equatio	n 25-18)		
Capacity Checks					Capacity Checks						
	Actual	(Capacity	LOS F?			Actual		apacity	LOS F?	
					V _F		3011	Exhibit 25-	14 6900	No	
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2391	Exhibit 25-	14 6900	No	
					V _R		620	Exhibit 25-	3 2100	No	
Flow Entering	g Merge In	fluence A	Area		Flow En	terin	ng Diver	ge Influer	nce Area		
	Actual	Max	Desirable	Violation?		/	Actual	Max Desira	ible	Violation?	
V _{R12}		Exhibit 25-7			V ₁₂	2	2189	Exhibit 25-14	4400:All	No	
Level of Serv	ice Detern	nination ((if not F)		Level of	Ser	vice De	terminatic	on (if not	F)	
D _R = 5.475 + 0.	00734 v _R + (0.0078 V ₁₂	- 0.00627 L _A			D _R = 4	1.252 + 0.	0086 V ₁₂ - 0	.009 L _D		
D _R = (pc/mi/ln)						D _R = 18.6 (pc/mi/ln)					
LOS = (Exhibit 25-4)			LOS = B (Exhibit 25-4)								
Speed Determination					Speed Determination						
M _s = (Exibit 25-19)				D _s = 0.354 (Exhibit 25-19)							
S _R = mph (Exhibit 25-19)				S _R = 53.6 mph (Exhibit 25-19)							
$S_R^{=}$ mph (Exhibit 25-19) $S_0^{=}$ mph (Exhibit 25-19)			S ₀ = 65.8 mph (Exhibit 25-19)								
	ibit 25-14)				S = 56.5 mph (Exhibit 25-15)						

HCS+TM Version 5.5

Generated: 3/23/2012 1:44 PM

BASIC FF	REEWAY SE	EGMENTS W	ORKSHEET				
Br C	0.000		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	FFS, LOS, FFS, N, AA FFS, LOS,	Ń v _P , S, D DT LOS, S, D AADT N, S, D		
1200 Flow Rate (pc/h/ln)	1600 2000) 2400					
		Site Inform	nation				
Analyst scf					SR 32 Eastbound		
TranSystems		From/To			ntrance to Gien		
7/06/11		Jurisdiction			Build Volumes		
AM Peak		Analysis Yea	r	2030 Alt 1			
nt IVa - P4031000							
		Des.(N)		🗌 Plann	ing Data		
0.000	1.4	<u> </u>					
2329							
	ven/uay		Duses, P _T				
			ain [.]	-			
	veh/h	Grade %	Length	mi			
1.00			Up/Down %				
nents							
1.00		E _R		1.2			
1.5		f _{HV} = 1/[1+P _T (E	_T - 1) + P _R (E _R - 1)]	0.985			
		Calc Spee	d Adj and FFS	5			
12.0	ft	f			mi/h		
6.0	ft						
0.50	I/mi				mi/h		
3		† _{ID}			mi/h		
60.0	mi/h	f _N			mi/h		
		FFS		60.0	mi/h		
Measures	,	Design (N)				
incucaroo			/				
(f _{HV} x	nc/h/ln	-)H\/) / (PHF x N y	f x			
0,0	POINT	f)		.HV 、	pc/h		
60.0	mi/h	'p' S			mi/h		
14.6	pc/mi/ln	$D = \sqrt{S}$			pc/mi/ln		
В			mber of Lance N		ρο/πι/π		
6 9paad		Factor LO					
-		E _R - Exhibits	23-8, 23-10	f	_{_W} - Exhibit 23-4		
-	anaad				_{_C} - Exhibit 23-5		
P					 v - Exhibit 23-6		
BFFS - Base fre	e-flow speed	E C			•		
ur volume	-	LOS, S, FFS	, v _n - Exhibits 23-2	2, 23-3 t	_D - Exhibit 23-7		
	Image: Constraint of the sector of the se	1300 1350 1150 100 1200 1600 2000 How Rate (perh/ln) 1600 2000 Flow Rate (perh/ln) 1000 2000 Scf TranSystems 7/06/11 AM Peak M Neh/h 11Va - P403100004 1000 2000 2329 veh/h veh/h 1.00 1.5 100 12.0 ft 6.0 1.00 1.5 100 12.0 ft 6.0 1.00 1.5 1/mi 3 60.0 mi/h 60.0 mi/h mi/h 14.6 pc/h/ln 60.0 14.6 pc/mi/ln B	Image: sector of the secto	Operational (LOS) Design (N) Design (N) Design (V) Planning (N) P	Application Operational (LOS) Design (W) Design (W) FFS, LOS, Design (W) FFS, LOS, Design (W) FFS, LOS, Design (W) Provided (LOS) Design (W) Provided (LOS) Planning (Wp)Input FFS, LOS, FFS, LOS, Design (W) Provided (W) FFS, LOS, Planning (Wp)scfSite InformationscfHighway/Direction of Travel JurisdictionrranSystemsFrom/TorranSystemsFrom/TorranSystemsFrom/TorranSystemsFrom/TorranSystemsProm/TorranSystemsProm/TorranSystemsProm/TorranSystemsProm/TorranSystemsProm/TorranSystemsProm/TorranSystemsProm/TorranSystemsProm/TorranSystemsProm/Toranded (LOS)Planning2329veh/hveh/dayPeak-Hour Factor, PHF0.90General Terrain:1.00ER1.20ft1.00FFS1.00ER1.20ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1.00ft1		

HCS+TM Version 5.5

Generated: 12/5/2011 11:16 AM

	BASIC F		EGMENTS W	ORKSHEET		
80 Free-Flow Speed FrS = 75 mith 70 65 mith 60 65 mith 50 10 K M 90 55 mith 90 55 mith 90 50 10 K M 50	Br C	150 1600 1750		Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	<u>Input</u> FFS, N, v _I FFS, LOS, FFS, LOS, FFS, N, AJ FFS, LOS, FFS, LOS,	v _p N, S, D N v _p , S, D ADT LOS, S, D AADT N, S, D
≥ 30 1 0 400 800		1600 200) 2400			
General Information			Site Inform	nation		
Analyst	scf		Highway/Dire	ection of Travel	SR 32 Eas	
Agency or Company	TranSystems		From/To		Eastgate e Este	entrance to Glen
Date Performed	7/06/11		Jurisdiction		No-Build V	/olumes
Analysis Time Period	PM Peak		Analysis Yea	r	2030 Alt 1	
Project Description Segmer	nt IVa - P4031000	04				
Coper.(LOS)			Des.(N)		🗌 Planr	ning Data
Flow Inputs						
Volume, V AADT	3386	veh/h veh/day	Peak-Hour Face Not Peak-Hour Face Not Peak-Hour Face Not Peak Peak Peak Peak Peak Peak Peak Peak		0.90 3	
Peak-Hr Prop. of AADT, K		ven/uay	%RVs, P _R	- 20003, 1 _T	3 0	
Peak-Hr Direction Prop, D			General Terr	ain:	u Level	
DDHV = AADT x K x D		veh/h	Grade %	Length	mi	
Driver type adjustment	1.00			Up/Down %		
Calculate Flow Adjustr						
f _p	1.00		E _R		1.2	
E _T	1.5			^E _T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	\$	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	3					
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
Operational (LOS)			Design (N)			
<u>Operational (LOS)</u>	vfv		Design LOS			
v _p = (V or DDHV) / (PHF x N i f)	1273 x 1273	pc/h/ln	v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	na/h
f _p) S	60.0	mi/h	f _p)			pc/h
D = y / S	21.2	pc/mi/ln	s			mi/h
D = v _p / S LOS	21.2 C	pc/m/m	$D = v_p / S$			pc/mi/ln
	C		Required Nu	mber of Lanes, N		
Glossary			Factor Lo	cation		
N - Number of lanes	S - Speed			22 0 22 10		
V - Hourly volume	D - Density		E _R - Exhibits			f _{LW} - Exhibit 23-4
v _p - Flow rate	FFS - Free-flow	speed		23-8, 23-10, 23-1		f _{LC} - Exhibit 23-5
LOS - Level of service	BFFS - Base fre	e-flow speed	f _p - Page 23-			f _N - Exhibit 23-6
DDHV - Directional design ho			LUS, S, FFS	, v _p - Exhibits 23-2	2, 23-3	f _{ID} - Exhibit 23-7
Copyright © 2010 University of Florida				Varaian E E	Conor	ated: 12/5/2011 11:34

HCS+TM Version 5.5

Generated: 12/5/2011 11:34 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(ujiuu) 70 70 60 60 60 60 60 60 60 60 60 6	B	50 1/500 1/750 0 1/750 1/	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, N, FFS, LC FFS, LC	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
Concretion	Flow Rate (pc/h/ln)		Cite Inform			
General Information Analyst	scf		Site Inform Highway/Dire	nation ection of Travel	SR 32 E	astbound
Agency or Company Date Performed Analysis Time Period	TranSystems 7/06/11 AM Peak		From/To Jurisdiction Analysis Yea	r		74 to Olive Branch exi I Volumes 5
	nt IVa - P4031000					
✓ Oper.(LOS) Flow Inputs			Des.(N)		□ Pla	nning Data
Volume, V AADT Peak-Hr Prop. of AADT, K	2404	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents					
f _p	1.00		E _R		1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E)]$	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	2		f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS		mi/h			00.0	1111/11
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N) f _p)	x f _{HV} x 1356	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			. //
$D = v_p / S$	22.6	pc/mi/ln	S D=v /S			mi/h
LOS	С		D = v _p / S Required Nu	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design ho				•		
Copyright © 2010 University of Florida,	All Rights Reserved		UCC. TM	Version 5.5	Cor	nerated: 12/5/2011 11:52

HCS+TM Version 5.5

Generated: 12/5/2011 11:52 AM

80 Free-Flow Speed FFS = 75 min						
S0 Froe-Flow Speed FIS = 75 min 70 60 65 min 60 55 min 50 10 A 50 10 A 50 10 A 60 55 min 60 55 min 60 55 min 60 55 min 60 55 min 60 10 A 70 10 A 70 10 A 70 10 A 70 10 A	B		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO: FFS, LO: FFS, LO: FFS, LO:	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D
0	Flow Rate (pc/h/ln)		0:4- 4-4-			
General Information	scf		Site Inform	nation ection of Travel	SR 32 Ea	asthound
Agency or Company Date Performed Analysis Time Period	<i>TranSystems</i> 7/06/11 <u>PM Peak</u> nt IVa - P4031000	04	From/To Jurisdiction Analysis Yea			'4 to Olive Branch exi Volumes
Project Description Segmen	11178 - P4031000		Des.(N)		Plar	nning Data
Flow Inputs						
Volume, V AADT Peak-Hr Prop. of AADT, K	3699	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R		0.90 3 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D Driver type adjustment	1.00	veh/h	General Terra Grade %	ain: Length Up/Down %	Level mi	
Calculate Flow Adjustr	nents					
f _p	1.00		E _R		1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E)]$	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	I/mi	f _{ID}			mi/h
Number of Lanes, N	2		f _N			mi/h
FFS (measured)	60.0	mi/h				
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N			
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N : f _p)	x f _{HV} x 2086	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	pc/h
S	56.6	mi/h	r _p)			. <i>n</i>
$D = v_p / S$	36.9	pc/mi/ln	S D V (S			mi/h
LOS	E		$D = v_p / S$	mber of Lance N		pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_{N} - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho				Version 5.5		erated: 12/5/2011 11:50 /

HCS+TM Version 5.5

Generated: 12/5/2011 11:50 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
80 FrœFlow Spzed FLS = 75 min. 70 65 min. 70 min. 60 65 min. 60 min. 50 10 S A 55 min. 40 400 800	B	50 1750 1750 1750 1750 10 10 10 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LC FFS, LC FFS, N, FFS, LC FFS, LC	NS, V _P N, S, D IS, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
Constal Information	Flow Rate (pc/h/ln)		Site Inform	nation		
General Information Analyst Agency or Company Date Performed Analysis Time Period Project Description Segmer	scf TranSystems 7/06/11 AM Peak nt IVa - P4031000	04	Site Inform Highway/Dire From/To Jurisdiction Analysis Yea	ction of Travel	Glen Est	/estbound e to Eastgate exit o-Build Volumes 5
Oper.(LOS)			Des.(N)		🗌 Pla	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	3478	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.90 3 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustr	1.00 nents	veh/h	Grade %	Length Up/Down %	mi	
f _p	1.00 1.5		E _R		1.2	
E _⊤ Speed Inputs	1.5		1	T ^{-1) + P_R(E_R-1)] d Adj and FFS}	0.985	
Lane Width	12.0	ft	1	u Auj anu FFS)	
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LW}			mi/h
Interchange Density	0.50	I/mi	f _{LC}			mi/h
Number of Lanes, N	2	1/111	f _{ID}			mi/h
		mi/h	f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS	Maggurag	mi/h				-
LOS and Performance Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x N)$ f_p)		pc/h/ln	Design (N) Design (N) Design LOS $V_p = (V \text{ or DD})$) HV) / (PHF x N x	f _{HV} x	pc/h
S	58.4	mi/h	r _p)			
$D = v_p / S$	33.6	pc/mi/ln	S D = v / S			mi/h
LOS	D		D = v _p / S Required Nur	mber of Lanes, N		pc/mi/ln
Glossary			Factor Loc			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f _{LW} - Exhibit 23-4 f _{LC} - Exhibit 23-5 f _N - Exhibit 23-6 f _{ID} - Exhibit 23-7
DDHV - Directional design hc				Version 5.5		nerated: 12/5/2011 11:53

HCS+TM Version 5.5

Generated: 12/5/2011 11:53 AM

		2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)		S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D S, AADT N, S, D	
Flow Rate (pc/h/ln)						
scf				SR 32 W/	esthound	
TranSystems 7/06/11 PM Peak	04	From/To Jurisdiction		Glen Este No-Build	e to Eastgate exit Volumes	
t Iva - P4031000		Des (N)		- Plan	ning Data	
	,	500.(11)			inig Data	
2738	veh/h veh/day	%Trucks and	•	0.90 3 0		
1.00	veh/h	General Terra Grade %	Length	Level mi		
nents						
1.00		E _R		1.2		
1.5				0.985		
		Calc Spee	d Adj and FFS	<u> </u>		
		f _{LW}			mi/h	
		f _{LC}			mi/h	
	l/mi				mi/h	
					mi/h	
60.0				60.0	mi/h	
-	mi/h			00.0		
Measures						
f _{HV} x 1544	pc/h/ln	Design LOS	9HV) / (PHF x N x	f _{HV} x	pc/h	
60.0	mi/h	^{р)}			·: //	
25.7	pc/mi/ln				mi/h pc/mi/ln	
С			mber of Lanes N		pc/m/m	
		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1 12		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7	
ur volume			, 'p	-, 200		
	1200 Flow Rate (pc/h/ln) Scf TranSystems 7/06/11 PM Peak IVa - P40310000 2738 1.00 1.00 1.5 1.00 1.5 12.0 6.0 0.50 2 60.0 Measures f _{HV} × 1544 60.0 25.7 C S - Speed D - Density FFS - Free-flow BFFS - Base free ir volume	Flow Rate (pc/h/ln) scf TranSystems 7/06/11 PM Peak IVa - P403100004 IVa - P403100004 2738 veh/h 2738 veh/h veh/h veh/h 1.00 veh/h 1.00 1.5 1.00 1.5 1.00 1.5 6.0 ft 0.50 I/mi 2 mi/h 60.0 mi/h 60.0 mi/h fHv <x< td=""> 1544 pc/h/ln 60.0 mi/h S - Speed pc/h/ln C S Speed D - Density FFS - Free-flow speed BFFS - Base free-flow speed BFFS - Base free-flow speed</x<>	1200160020002400Bite InformsofHighway/DireTranSystemsFrom/To7/06/11JurisdictionPM PeakAnalysis YeaIVA - P4031000042738veh/hPeak-Hour FaVeh/hPeak-Hour FaVeh/hPeak-Hour FaVeh/hPeak-Hour FaVeh/hPeak-Hour FaVeh/hPeak-Hour FaVeh/hPeak-Hour FaVeh/hPeak-Hour FaVeh/hPeak-Hour FaVeh/hPeak-Hour FaI.00ER1.00ER1.00ER1.00ER1.00ER1.00ER1.00FaII.00FaDesign (N)Design (N)Design (N)Design (N)Design (N)Design (N)Design (N)Design (N)Design (N)Design (N)Design (N) <th cols<="" td=""><td>Planning (v_p)Toto 2000 2000 2000Site InformationSite InformationSite InformationSite InformationTranSystemsFrom/To7/06/11JurisdictionPM PeakAnalysis Year2738Veh/hPeak-Hour Factor, PHF% RVS, P % Trucks and Buses, P % Trucks and Buses, P % WRVS, P % General Terrain: Grade % Length Up/Down %1.00E R (1.00Calc Speed Adj and FFS1.00E R fLC1.00E R fLC1.00E fLC1.00f fLC<t< td=""><td>Item Item Planning (v_p) FFS, L0S 1200 1600 2000 2400 Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Note: Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information</td></t<></td></th>	<td>Planning (v_p)Toto 2000 2000 2000Site InformationSite InformationSite InformationSite InformationTranSystemsFrom/To7/06/11JurisdictionPM PeakAnalysis Year2738Veh/hPeak-Hour Factor, PHF% RVS, P % Trucks and Buses, P % Trucks and Buses, P % WRVS, P % General Terrain: Grade % Length Up/Down %1.00E R (1.00Calc Speed Adj and FFS1.00E R fLC1.00E R fLC1.00E fLC1.00f fLC<t< td=""><td>Item Item Planning (v_p) FFS, L0S 1200 1600 2000 2400 Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Note: Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information</td></t<></td>	Planning (v_p)Toto 2000 2000 2000Site InformationSite InformationSite InformationSite InformationTranSystemsFrom/To7/06/11JurisdictionPM PeakAnalysis Year2738Veh/hPeak-Hour Factor, PHF% RVS, P % Trucks and Buses, P % Trucks and Buses, P % WRVS, P % General Terrain: Grade % Length Up/Down %1.00E R (1.00Calc Speed Adj and FFS1.00E R fLC1.00E R fLC1.00E fLC1.00f fLC <t< td=""><td>Item Item Planning (v_p) FFS, L0S 1200 1600 2000 2400 Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Note: Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information</td></t<>	Item Item Planning (v_p) FFS, L0S 1200 1600 2000 2400 Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Note: Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information Site Information

HCS+TM Version 5.5

Generated: 12/5/2011 11:49 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(ujuu) 70 70 70 60 65 mih 60 60 mih 55 mih 60 60 mih 55 mih 60 60 mih 55 mih 60 60 mih		50 1000 1750 100 100 2000	2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	і́́, v _p N, S, D S, N v _p , S, D AADT LOS, S, D IS, AADT N, S, D
General Information	Flow Rate (pc/h/ln)		Site Inform	mation		
Analyst Agency or Company Date Performed Analysis Time Period	scf TranSystems 7/06/11 AM Peak nt IVa - P4031000	04		ection of Travel	Olive Bra	/estbound anch ent to Old SR 74 Volumes 1
Oper.(LOS)			Des.(N)		🗌 Plai	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	2290	veh/h veh/day	Peak-Hour Fa %Trucks and %RVs, P _R General Terra	Buses, P _T	0.90 3 0 Level	
DDHV = AADT x K x D Driver type adjustment Calculate Flow Adjustn	1.00 nents	veh/h	Grade %	Length Up/Down %	mi	
f _p	1.00		E _R		1.2	
E _T	1.5		f _{HV} = 1/[1+P _T (E	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance	6.0	ft	f _{LC}			mi/h
Interchange Density	0.50	l/mi	f _{ID}			mi/h
Number of Lanes, N	2					
FFS (measured)	60.0	mi/h	f _N			mi/h
Base free-flow Speed, BFFS		mi/h	FFS		60.0	mi/h
LOS and Performance	Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x N x f _p)	x f _{HV} x 1291	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DD	0HV) / (PHF x N x	f _{HV} x	pc/h
S	60.0	mi/h	r _p)			·
$D = v_p / S$	21.5	pc/mi/ln	S D v / C			mi/h
LOS	С		$D = v_p / S$			pc/mi/ln
Glossary			Factor Loc	mber of Lanes, N		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service	S - Speed D - Density FFS - Free-flow BFFS - Base fre		E _R - Exhibits: E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
DDHV - Directional design ho	ur volume			Version 5.5		

HCS+TM Version 5.5

Generated: 12/5/2011 11:20 AM

	BASIC FF	REEWAY SE	GMENTS W	ORKSHEET		
(1)(iii) 70 70 70 70 70 70 70 70 70 70			2400	Application Operational (LOS) Design (N) Design (v _p) Planning (LOS) Planning (N) Planning (v _p)	Input FFS, N, FFS, LO FFS, LO FFS, N, FFS, LO FFS, LO	S, V _P N, S, D S, N V _P , S, D AADT LOS, S, D IS, AADT N, S, D
Concret Information	Flow Rate (pc/h/ln)		Cito Inform	matian		
General Information Analyst Agency or Company Date Performed Analysis Time Period Project Description Segmer	scf TranSystems 7/06/11 PM Peak nt IVa - P40310000	04	Site Inform Highway/Dire From/To Jurisdiction Analysis Yea	ction of Travel	Olive Bra	/estbound anch ent to Old SR 74 Volumes T 1
✓ Oper.(LOS)			Des.(N)		🗌 Plai	nning Data
<i>Flow Inputs</i> Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	1915	veh/h veh/day veh/h	Peak-Hour Fa %Trucks and %RVs, P _R General Terra Grade %	Buses, P _T	0.90 3 0 Level mi	
Driver type adjustment Calculate Flow Adjustr	1.00 nents			Up/Down %		
f _p	1.00		E _R		1.2	
Ē _T	1.5		f _{HV} = 1/[1+P _T (E	_T - 1) + P _R (E _R - 1)]	0.985	
Speed Inputs			Calc Spee	d Adj and FFS	6	
Lane Width	12.0	ft	f _{LW}			mi/h
Rt-Shoulder Lat. Clearance Interchange Density	6.0 0.50	ft I/mi	f _{LC} f _{ID}			mi/h mi/h
Number of Lanes, N	2		f _N			mi/h
FFS (measured)	60.0	mi/h	FFS		60.0	mi/h
Base free-flow Speed, BFFS		mi/h			00.0	111/11
LOS and Performance Operational (LOS) $V_p = (V \text{ or DDHV}) / (PHF x N x)$ f_p)		pc/h/ln	Design (N) Design (N) Design LOS $v_p = (V \text{ or } DD)$ f)) HV) / (PHF x N x	f _{HV} x	pc/h
S D = v _p / S LOS	60.0 18.0 B	mi/h pc/mi/ln	S D = v _p / S Required Nur	mber of Lanes, N		mi/h pc/mi/ln
Glossary			Factor Loo			
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service DDHV - Directional design ho	S - Speed D - Density FFS - Free-flow BFFS - Base fre our volume		E _R - Exhibits2 E _T - Exhibits f _p - Page 23-	23-8, 23-10 23-8, 23-10, 23-1		f_{LW} - Exhibit 23-4 f_{LC} - Exhibit 23-5 f_N - Exhibit 23-6 f_{ID} - Exhibit 23-7
Copyright © 2010 University of Florida.				Version 5.5		nerated: 12/5/2011 11:42

HCS+TM Version 5.5

Generated: 12/5/2011 11:42 AM

HCS+: Signalized Intersections Release 5.5

Inter.: SR 32 & Glen Este-Withamsville 20Agency: TranSystems Jurisd: Year : 2030 No-Build

Analyst	: lpk
Date:	06/08/2010
Period:	AM

Project ID: Segment IVa; P403 10 0004 E/W St: SR 32

N/S St: Glen Este-Withamsville Road

			STO	NAT.T	ZED T	NTERSE	CTION	STIMM	ARY				
	Fag	stbour			stbou			thbou		501	thbo	und	1
	L	T	R	L	T	R	L	T	R	L	T	R	
No. Lanes	2	2	1	2	2	1	2	2	1	2	2	1	
LGConfig	L	Ť	R		Ť	R	L	Ť	R	⊥	T	R	
Volume	289			247	2179		732		80	1110	456	567	
Lane Width						12.0	12.0			12.0			
RTOR Vol	1 2.0	12.0	0	1 12.0	12.0	0	1 2.0	12.0	0	1 2.0	12.0	0	
	1		0	1		0	1		0	1		0	
Duration	0.25		Area 🤉			other Operat							
Phase Combi	natio	n 1	2	3	4			5	6	7		8	
EB Left		A				NB	Left	А					
Thru			А			İ	Thru		A				
Right			А			İ	Right	5	A				
Peds						İ	Peds						
WB Left		A				SB	Left	А					
Thru			А			İ	Thru		A				
Right			А			İ	Right	5	A				
Peds						İ	Peds						
NB Right						EB	Right	5					
SB Right						WB	Right	5					
Green		12.5	48.5					15.5	5 23.5	5			
Yellow		3.5	3.5					3.5	3.5				
All Red		1.5	1.5					1.5	1.5				
									cle Ler	ngth:	120.	0 s	ecs
			ntersed										
Appr/ Lan			j Sat		atios		Lane	Group	p App	proach	1		
Lane Gro			w Rate										
Grp Cap	acity	((s)	v/c	g	/C	Delay	/ LOS	Dela	ay LOS	3		
Eastbound													
L 35		340		0.93		.10	79.2						
	19	351		1.3		.40	179.5		143.	.5 F			
R 63	4	156	58	0.6	50	.40	31.2	C					
Westbound													
ь 35		340		0.7		.10	62.6			-			
	19	351		1.7		.40	356.5		316.	.3 F			
R 56	8	156	58	0.1	70	.36	26.1	C					
Northbound													
L 44		343		1.8		.13	435.0						
т 69		354		0.3		.20	42.3		315.	.1 F			
R 31	0	158	33	0.2	9 0	.20	41.6	D					
Southbound		_			_								
L 44	-	343		0.2		.13	47.5			<i>.</i> .			
т 69		354		0.7		.20	49.2		286.	.6 F			
R 31		158		2.0		.20	523.9						
In	terse	ction	Delay	= 254	4.1 (sec/ve	h)]	Inters	sectior	n LOS	= F		

HCS+: Signalized Intersections Release 5.5

	Eas	stboun	d	Wes	stbou	nd	Nor	thbou	ınd	l Soi	uthbo	und	
	L	T	R	L	T	R	L	Т	R	L	T	R	
No. Lanes	2	2	1	2	2	1	2	2	1	 2	2	1	-
LGConfig	L	Т	R	L	Т	R	L	Т	R	Ь Г	Т	R	Ì
Volume	763	1938		228	1814		517	476	436	399	381	407	Ì
Lane Width	1	12.0				12.0				1	12.0		
RTOR Vol	İ		0			0			0			0	İ
Duration	0.25		Area 1			other							
 Phase Combi	natior	 1 1	2	SIQ 3	gnai 4		ions	5	6	7		 8	
EB Left		А				NB	Left	А					
Thru			А			İ	Thru		A				
Right			А			İ	Right	2	A				
Peds						İ	Peds						
WB Left		А				SB	Left	А					
Thru			А			i	Thru		A				
Right			А			i	Right		A				
Peds						i	Peds						
NB Right						EB	Right						
						WB	Right						
-							J						
SB Right		16.0	50.5			I		12.5	5 21.	0			
SB Right Green		16.0 3.5	50.5 3.5			I		12.5		0			
SB Right Green Yellow		3.5	3.5			I		3.5	3.5	0			
SB Right Green Yellow						I		3.5 1.5	3.5 1.5		120.	0 se	ecs
SB Right Green Yellow		3.5 1.5 In	3.5 1.5 tersec				e Summ	3.5 1.5 Cyc	3.5 1.5 cle Lei	ngth:	120.	0 se	ecs
SB Right Green Yellow All Red 		3.5 1.5 In Adj	3.5 1.5 tersec Sat	Ra	Perf		e Summ Lane	3.5 1.5 Cyc nary	3.5 1.5 cle Lei	ngth:		0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro	oup	3.5 1.5 In Adj Flow	3.5 1.5 tersec Sat Rate	Ra	atios		Lane	3.5 1.5 Cyc mary Group	3.5 1.5 cle Len p App	ngth: proacl	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro		3.5 1.5 In Adj Flow	3.5 1.5 tersec Sat	Ra	atios			3.5 1.5 Cyc mary Group	3.5 1.5 cle Len p App	ngth:	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound	oup bacity	3.5 1.5 In Adj Flow (3.5 1.5 tersec Sat Rate s)	Ra v/c	atios g	/C	Lane Delay	3.5 1.5 Cyc ary Group LOS	3.5 1.5 cle Len p App	ngth: proacl	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45	oup bacity 54	3.5 1.5 In Adj Flow (340	3.5 1.5 tersec Sat Rate s) 3	Ra v/c 1.8'	atios g 	/C .13	Lane Delay 450.9	3.5 1.5 Cyc ary Group r LOS	3.5 1.5 cle Len Dela	ngth: proacl ay LO:	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14	oup Dacity 54 178	3.5 1.5 In Adj Flow (340 351	3.5 1.5 tersec Sat Rate s) 3 2	Ra v/c 1.8' 1.40	atios 7 0 5 0	/C .13 .42	Lane Delay 450.9 244.1	3.5 1.5 Cyc Group Group LOS	3.5 1.5 cle Len Dela	ngth: proacl	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66	oup Dacity 54 178	3.5 1.5 In Adj Flow (340	3.5 1.5 tersec Sat Rate s) 3 2	Ra v/c 1.8'	atios 7 0 5 0	/C .13	Lane Delay 450.9	3.5 1.5 Cyc Group Group LOS	3.5 1.5 cle Len Dela	ngth: proacl ay LO:	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound	bup pacity 54 578 50	3.5 1.5 In Adj Flow (340 351 156	3.5 1.5 tersec Sat Rate s) 3 2 8	Ra v/c 1.8° 1.40 1.1!	atios 7 0 5 0 5 0	/C .13 .42 .42	Lane Delay 450.9 244.1 120.2	3.5 1.5 Cyc ary Group LOS F F F	3.5 1.5 cle Len Dela	ngth: proacl ay LO:	h	0 56	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45	bup bacity 54 178 50 54	3.5 1.5 In Adj Flow (340 351 156 340	3.5 1.5 tersec Sat Rate s) 3 2 8 3	Ra v/c 1.8° 1.40 1.19 0.50	atios 7 0 5 0 5 0 6 0	/C .13 .42 .42 .13	Lane Delay 450.9 244.1 120.2 50.2	3.5 1.5 Cyc ary Group TLOS F F F F	3.5 1.5 cle Len p App Dela 265	ngth: proacl ay LO: .6 F	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14	bup bacity 54 578 50 54 54 54	3.5 1.5 —In Adj Flow (340 351 156 340 351	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2	Ra v/c 1.8° 1.4° 1.1! 0.5° 1.3°	atios 7 0 5 0 5 0 5 0 5 0	/C .13 .42 .42 .13 .42	Lane Delay 450.9 244.1 120.2 50.2 203.0	3.5 1.5 Cyc Group Group F F F F F	3.5 1.5 cle Len p App Dela 265	ngth: proacl ay LO:	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14 R 59	bup bacity 54 578 50 54 54 54	3.5 1.5 In Adj Flow (340 351 156 340	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2	Ra v/c 1.8° 1.40 1.19 0.50	atios 7 0 5 0 5 0 5 0 5 0	/C .13 .42 .42 .13	Lane Delay 450.9 244.1 120.2 50.2	3.5 1.5 Cyc ary Group TLOS F F F F	3.5 1.5 cle Len p App Dela 265	ngth: proacl ay LO: .6 F	h	0 se	
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14 R 59 Northbound	bup bacity 54 578 50 54 578 95	3.5 1.5 In Adj Flow (340 351 156 340 351 156	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2 8	Ra v/c 1.8' 1.40 1.19 0.50 1.30 0.2'	g 7 0 5 0 5 0 6 0 6 0 7 0	/C .13 .42 .42 .13 .42 .38	Lane Delay 450.9 244.1 120.2 50.2 203.0 26.0	3.5 1.5 Cyc Group Group F F F F F C	3.5 1.5 cle Len p App Dela 265	ngth: proacl ay LO: .6 F	h	0 se	2CS
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14 R 59 Northbound L 35	bup bacity 54 578 50 54 578 55 58	3.5 1.5 In Adj Flow (340 351 156 340 351 156 343	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2 8 7	Ra v/c 1.8° 1.40 1.19 0.50 1.30 0.2° 1.60	g 7 0 5 0 5 0 6 0 7 0 0 0 0 0	/C .13 .42 .42 .13 .42 .38 .10	Lane Delay 450.9 244.1 120.2 50.2 203.0 26.0 338.0	3.5 1.5 Cyc Group Group F F F F C F C F	3.5 1.5 cle Len Dela Dela 265	ngth: proacl ay LO: .6 F .5 F	h	0 56	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14 R 59 Northbound L 35 T 62	bup bacity 54 578 50 54 578 55 58 58 21	3.5 1.5 In Adj Flow (340 351 156 340 351 156 343 354	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2 8 7 7	Ra v/c 1.8° 1.4° 1.19 0.5° 1.3° 0.2° 1.6° 0.89	g 7 0 5 0 5 0 6 0 7 0 0 0 0 0 0 0 0 0	/C .13 .42 .42 .13 .42 .38 .10 .17	Lane Delay 450.9 244.1 120.2 50.2 203.0 26.0 338.0 59.0	3.5 1.5 Cyc Group Group F F F C F C F E	3.5 1.5 cle Len Dela Dela 265	ngth: proacl ay LO: .6 F	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14 R 59 Northbound L 35 T 62 R 27	bup bacity 54 578 50 54 578 55 58 58 21	3.5 1.5 In Adj Flow (340 351 156 340 351 156 343	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2 8 7 7	Ra v/c 1.8° 1.40 1.19 0.50 1.30 0.2° 1.60	g 7 0 5 0 5 0 6 0 7 0 0 0 0 0 0 0 0 0	/C .13 .42 .42 .13 .42 .38 .10	Lane Delay 450.9 244.1 120.2 50.2 203.0 26.0 338.0	3.5 1.5 Cyc Group Group F F F C F C F E	3.5 1.5 cle Len p App Dela 265	ngth: proacl ay LO: .6 F .5 F	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14 R 59 Northbound L 35 T 62 R 27 Southbound	bup bacity 54 778 50 54 77 58 21 77	3.5 1.5 In Adj Flow (340 351 156 340 351 156 343 354 158	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2 8 7 7 3	Ra v/c 1.8° 1.4° 1.1° 0.5° 1.3° 0.2° 1.6° 0.8° 1.7°	g 7 0 5 0 5 0 6 0 7 0 5 0 6 0 7 0 5 0 6 0 7 0 5 0 5 0 5 0 5 0	/C .13 .42 .42 .13 .42 .38 .10 .17 .17	Lane Delay 450.9 244.1 120.2 50.2 203.0 26.0 338.0 59.0 400.3	3.5 1.5 Cyc Group Group F F F C F F C F F C F F F F F F F F F F F F F	3.5 1.5 cle Len p App Dela 265	ngth: proacl ay LO: .6 F .5 F	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14 R 59 Northbound L 35 T 62 R 27 Southbound L 35	bup bacity 54 778 50 54 77 58 21 77 58	3.5 1.5 I.5 Adj Flow (340 351 156 340 351 156 343 354 158 343	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2 8 7 7 3 7	Ra v/c 1.8° 1.40 1.1! 0.50 1.30 0.2° 1.60 0.8! 1.7! 1.24	g 7 0 5 0 5 0 5 0 6 0 7 0 5 0 5 0 5 0 5 0 5 0 5 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 8 0	/C .13 .42 .42 .13 .42 .38 .10 .17 .17 .10	Lane Delay 450.9 244.1 120.2 50.2 203.0 26.0 338.0 59.0 400.3 182.4	3.5 1.5 Cyc Group Group F F F C F F F F F F F F F F F F F	3.5 1.5 cle Len Dela 265 175 264	ngth: proacl ay LO: .6 F .5 F .0 F	h	0 se	ecs
SB Right Green Yellow All Red Appr/ Lan Lane Gro Grp Cap Eastbound L 45 T 14 R 66 Westbound L 45 T 14 R 59 Northbound L 35 T 62 R 27 Southbound	bup bacity 54 778 55 58 21 77 58 21	3.5 1.5 In Adj Flow (340 351 156 340 351 156 343 354 158	3.5 1.5 tersec Sat Rate s) 3 2 8 3 2 8 7 7 3 7 7	Ra v/c 1.8° 1.40 1.19 0.50 1.30 0.2° 1.60 0.89 1.79 1.24 0.68	atios g 7 0 5 0 5 0 5 0 6 0 7 0 5 0 5 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 7 0 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 8 0	/C .13 .42 .42 .13 .42 .38 .10 .17 .17	Lane Delay 450.9 244.1 120.2 50.2 203.0 26.0 338.0 59.0 400.3 182.4 49.4	3.5 1.5 Cyc Group Group F F F D F C F F C C C F C C F C F C F C F C F C F C F C F C F C F C F C F C C F C C F C C C C C C C C C C C C	3.5 1.5 cle Len Dela 265 175 264	ngth: proacl ay LO: .6 F .5 F	h	0 50	ecs

Analyst: lpkInter.: SR 32 & Elick LaneAgency: TranSystemsArea Type: All other areasDate: 06/08/2010Jurisd:Period: AMYear : 2030 No-BuildProject ID: Segment IVa; P403 10 0004N/S St: Elick Lane

			SIGNALIZEI) INTERSE	CTION	SUMMA	ARY				
	Ea	stbound	West	oound	Nor	thbou	ınd	Soi	lthbou	und	
		T R	L [r r	L	Т	R	L	Т	R	
No. Lan	nes 1	2 1	 1	2 0	2	1	1	 2	1	1	
LGConfi	g L	T R	ĹГ	TR	L	Т	R	L	Т	R	
Volume	15	1650 240	79 19	965 173	495	146	60	66	170	45	
Lane Wi	dth 12.0	12.0 12.	0 12.0 12	2.0	12.0	12.0	12.0	12.0	12.0	12.0	
RTOR Vo)l	0	Ì	0	Ì		0	ĺ		0	
Duratio	on 0.25	Are	a Type: A								
 Phase C		n 1 2		al Operat 4	.10118	5	б	7		 3	
EB Lef		A		NB	Left	А	A				
Thr		A		ļ	Thru		А	А			
Rig		A		ĺ	Right		А	А			
Ped				ļ	Peds						
WB Lef	t	А		SB	Left	А					
Thr	u	A			Thru			А			
Rig	nht	A			Right			А			
Ped				l	Peds						
NB Rig				EB	Right						
SB Rig				WB	Right						
Green	,	8.5 66	. 0	1)	7.0	3.5	10	. 0		
Yellow		3.5 3.	5			3.5	3.5	3.5	5		
All Red	l	1.5 1.				1.5	1.5	1.5			
						T • J		× ×			
						Cyc	cle Ler) sec	!s
/		Inter	section Pe			Cyc ary	cle Ler	ngth:	120.0) sec	:s
	Lane	Inter Adj Sa	section Pe t Rat:		e Summ Lane	Cyc ary	cle Ler		120.0) sec	:s
Lane	Group	Inter Adj Sa Flow Ra	section Pe t Rat: te	ios	Lane	Cyc ary Grou <u>r</u>	cle Ler	ngth: proach	120.0) sec	:s
Lane		Inter Adj Sa Flow Ra	section Pe t Rat:	ios		Cyc ary Grou <u>r</u>	cle Ler	ngth:	120.0) sec	
Lane Grp Eastbou	Group Capacity und	Inter Adj Sa Flow Ra (s)	section Pe t Rat: te v/c	ios g/C	Lane Delay	Cyc ary Group LOS	cle Ler	ngth: proach	120.0) sec	
Lane Grp Eastbou L	Group Capacity und 124	Inter Adj Sa Flow Ra (s) 1752	section Pe t Rat: te v/c 0.14	ios g/C 0.07	Lane Delay 52.8	Cyc ary Group LOS D	o App Dela	ngth: proach ay LOS	120.0) sec	
Lane Grp Eastbou L T	Group Capacity und 124 1932	Inter Adj Sa Flow Ra (s) 1752 3512	section Pe t Rat: te v/c 0.14 0.95	ios g/C 0.07 0.55	Lane Delay 52.8 36.2	Cyc ary Group LOS D D	cle Ler	ngth: proach ay LOS	120.0) sec	
Lane Grp Eastbou L T R	Group Capacity und 124 1932 862	Inter Adj Sa Flow Ra (s) 1752	section Pe t Rat: te v/c 0.14	ios g/C 0.07	Lane Delay 52.8	Cyc ary Group LOS D	o App Dela	ngth: proach ay LOS	120.0) sec	
Lane Grp Eastbou L T R Westbou	Group Capacity Ind 124 1932 862 Ind	Inter Adj Sa Flow Ra (s) 1752 3512 1568	section Pe t Rat: te v/c 0.14 0.95 0.31	ios g/C 0.07 0.55 0.55	Lane Delay 52.8 36.2 14.9	Cyc ary Group LOS D B	o App Dela	ngth: proach ay LOS	120.0) sec	
Lane Grp Eastbou L T R Westbou L	Group Capacity Ind 124 1932 862 and 124	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752	section Pe t Rat: te v/c 0.14 0.95 0.31 0.71	ios g/C 0.07 0.55 0.55 0.07	Lane Delay 52.8 36.2 14.9 71.7	Cyc ary Group LOS D B E	21e Ler Apr Dela 33.	ngth: proach ay LOS 7 C	120.0) sec	
Lane Grp Eastbou L T R Westbou L	Group Capacity Ind 124 1932 862 Ind	Inter Adj Sa Flow Ra (s) 1752 3512 1568	section Pe t Rat: te v/c 0.14 0.95 0.31	ios g/C 0.07 0.55 0.55	Lane Delay 52.8 36.2 14.9	Cyc ary Group LOS D B E	21e Ler Apr Dela 33.	ngth: proach ay LOS	120.0) sec	
Lane Grp Eastbou L T R Westbou L TR Northbo	Group Capacity Ind 124 1932 862 Ind 124 1909	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752 3470	section Pe t Rat: te 0.14 0.95 0.31 0.71 1.24	ios g/C 0.07 0.55 0.55 0.07 0.55	Lane Delay 52.8 36.2 14.9 71.7 141.5	Cyc ary Groug LOS D B B F	21e Ler Apr Dela 33.	ngth: proach ay LOS 7 C	120.0) sec	
Lane Grp Eastbou L T R Westbou L TR Northbo L	Group Capacity Ind 124 1932 862 Ind 124 1909 Ound 448	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752 3470 3471	section Pe t Rat: te 0.14 0.95 0.31 0.71 1.24 1.23	ios g/C 0.07 0.55 0.55 0.07 0.55 0.13	Lane Delay 52.8 36.2 14.9 71.7 141.5 173.1	Cyc ary Group LOS D D B E F	21e Ler Apr Dela 33.7 139	ngth: proach ay LOS 7 C .0 F	120.0) sec	
Lane Grp Eastbou L T R Westbou L TR Northbo L T	Group Capacity Ind 124 1932 862 Ind 124 1909 Jound 448 290	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752 3470 3471 1881	section Pe t Rat: te 0.14 0.95 0.31 0.71 1.24 1.23 0.56	ios g/C 0.07 0.55 0.55 0.07 0.55 0.13 0.13	Lane Delay 52.8 36.2 14.9 71.7 141.5 173.1 49.4	Cyc ary Group LOS D B E F F	21e Ler Apr Dela 33.7 139	ngth: proach ay LOS 7 C	120.0) sec	
Lane Grp Eastbou L T R Westbou L TR Northbo L T R	Group Capacity Ind 124 1932 862 Ind 124 1909 Jound 448 290 247	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752 3470 3471	section Pe t Rat: te 0.14 0.95 0.31 0.71 1.24 1.23	ios g/C 0.07 0.55 0.55 0.07 0.55 0.13	Lane Delay 52.8 36.2 14.9 71.7 141.5 173.1	Cyc ary Group LOS D D B E F	21e Ler Apr Dela 33.7 139	ngth: proach ay LOS 7 C .0 F	120.0) sec	
Lane Grp Eastbou L T R Westbou L TR Northbo L T R Southbo	Group Capacity Ind 124 1932 862 Ind 124 1909 Jund 448 290 247 Jund	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752 3470 3471 1881 1599	section Part t Rat: te 0.14 0.95 0.31 0.71 1.24 1.23 0.56 0.27	ios g/C 0.07 0.55 0.55 0.07 0.55 0.13 0.15 0.15	Lane Delay 52.8 36.2 14.9 71.7 141.5 173.1 49.4 45.4	Cyc ary Groug LOS D B E F F D D	21e Ler Apr Dela 33.7 139	ngth: proach ay LOS 7 C .0 F	120.0) sec	
Lane Grp Eastbou L T R Westbou L TR Northbo L T R Southbo L	Group Capacity Ind 124 1932 862 Ind 124 1909 Jund 247 247 Jund 202	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752 3470 3471 1881 1599 3471	section Part te Rat: v/c 0.14 0.95 0.31 0.71 1.24 1.23 0.56 0.27 0.36	ios g/C 0.07 0.55 0.55 0.07 0.55 0.13 0.15 0.15 0.06	Lane Delay 52.8 36.2 14.9 71.7 141.5 173.1 49.4 45.4 55.5	Cyc ary Groug D D B E F F D D E E	21e Ler Dela 33. 139 136	ngth: proach ay LOS 7 C .0 F .4 F	120.0) sec	
Lane Grp Eastbou L T R Westbou L TR Northbo L T R Southbo L T	Group Capacity Ind 124 1932 862 Ind 124 1909 Jound 448 290 247 Jound 202 157	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752 3470 3471 1881 1599 3471 1881	section Pa t Rat: te 0.14 0.95 0.31 0.71 1.24 1.23 0.56 0.27 0.36 1.20	ios g/C 0.07 0.55 0.55 0.07 0.55 0.13 0.15 0.15 0.15 0.06 0.08	Lane Delay 52.8 36.2 14.9 71.7 141.5 173.1 49.4 45.4 55.5 192.0	Cyc ary Group LOS D D B E F D D E F	21e Ler Dela 33. 139 136	ngth: proach ay LOS 7 C .0 F	120.0) sec	
Grp Eastbou L T R Westbou L TR Northbo L T R	Group Capacity Ind 124 1932 862 Ind 124 1909 Jound 448 290 247 Jound 202 157 133	Inter Adj Sa Flow Ra (s) 1752 3512 1568 1752 3470 3471 1881 1599 3471 1881 1599	section Part te Rat: v/c 0.14 0.95 0.31 0.71 1.24 1.23 0.56 0.27 0.36	ios g/C 0.07 0.55 0.55 0.07 0.55 0.13 0.15 0.15 0.06	Lane Delay 52.8 36.2 14.9 71.7 141.5 173.1 49.4 45.4 55.5 192.0 53.8	Cyc ary Group LOS D D B F F D D E F D D E F D	21e Ler Dela 33. 139 136	ngth: proach ay LOS 7 C .0 F .4 F .9 F	120.0) sec	

Analyst: lpkInter.: SR 32 & Elick LaneAgency: TranSystemsArea Type: All other areasDate: 06/08/2010Jurisd:Period: PMYear : 2030 No-BuildProject ID: Segment IVa; P403 10 0004N/S St: Elick Lane

								CTION						
			stbour		!	stbou		1	thbou		!	uthbo		
		L	Т	R	L	Т	R	L	Т	R	L	Т	R	
No. Lar	nes	1	2	1		2	0	2	1	1	2	1	1	
LGConf	iq İ	L	т	R	L L	TR		L	Т	R	ĹГ	Т	R	i
Volume	- 1	03	2462	415	93	1694	62	431	277	257	515	145	37	i
Lane Wi	idth 1	2.0	12.0	12.0	12.0	12.0		12.0	12.0	12.0	12.0	12.0	12.0) j
RTOR Vo	ol			0	İ		0	İ		0	İ		0	İ
Duratio	on 0	.25		Area 1			 other Operat							
Phase (Combina	tior	 1 1	2	3	عتيمير 4	_	10115	5	6	7		8	
EB Lei			A		-	_	NB	Left	A	-				
Thi				A				Thru		А				
	ght			А			i	Right	:	A				
Peo	-						i	Peds						
WB Lef	ft		А				SB	Left	А					
Thi	ru			А			İ	Thru		А				
Ric	ght			А			i	Right		А				
Pec	-						i	Peds						
NB Riq							EB	Right						
SB Rig	-						WB	Right						
Green	5		8.0	52.0			1	5		0 1 0	<u>^</u>			
									11.0	U 19.	0			
Yellow														
			3.5 1.5	3.5 1.5					11.0 3.5 1.5	0 19. 3.5 1.5				
			3.5 1.5	3.5 1.5					3.5 1.5 Cyc	3.5 1.5 cle Le		110.	٤ O	sec
All Rec	d 		3.5 1.5 Ir	3.5 1.5 ntersed					3.5 1.5 Cyo nary	3.5 1.5 cle Le	ngth:		ء 0 	sec:
All Rec	d Lane		3.5 1.5 Ir Ir	3.5 1.5 ntersed j Sat		Perf		e Sumn Lane	3.5 1.5 Cyo nary	3.5 1.5 cle Le			<u>ء</u> 0	sec:
All Rec Appr/ Lane	d Lane Group		3.5 1.5 Ir Ad: Flow	3.5 1.5 ntersed j Sat w Rate	Ra	atios		Lane 	3.5 1.5 Cyc nary Grou	3.5 1.5 cle Le	ngth: proac	h 	0 s 	sec:
All Rec Appr/ Lane	d Lane		3.5 1.5 Ir Ad: Flow	3.5 1.5 ntersed j Sat		atios			3.5 1.5 Cyc nary Grou	3.5 1.5 cle Le	ngth:	h 	0 s	5eC:
All Rec Appr/ Lane Grp Eastbou	d Lane Group Capac und		3.5 1.5 Ir Ad: Flow	3.5 1.5 ntersed j Sat w Rate (s)	Ra v/c	atios g	/C	Lane Delay	3.5 1.5 Cyc ary Group r LOS	3.5 1.5 cle Le	ngth: proac	h 	ء 0 	5ec:
All Rec Appr/ Lane Grp Eastbou L	d Lane Group Capac und 127	ity	3.5 1.5 Ir Ad: Flow	3.5 1.5 ntersec j Sat w Rate (s) 	Ra v/c 0.90	atios g 0 0	/C .07	Lane Delay 100.6	3.5 1.5 Cyc ary Group r LOS	3.5 1.5 cle Le o Ap Del	ngth: proac ay LO	h S	ء 0 	5eC;
All Rec Appr/ Lane Grp Eastbou L T	d Lane Group Capac und 127 1660	ity	3.5 1.5 Ad: Flow 175 35	3.5 1.5 ntersec j Sat w Rate (s) 52 12	Ra v/c 0.90 1.65	atios g 0 0 5 0	/C .07 .47	Lane Delay 100.6 323.4	3.5 1.5 Cyd ary Group T LOS	3.5 1.5 cle Le o Ap Del	ngth: proac	h S	ء 0 	sec:
All Rec Appr/ Lane Grp Eastbou L T R	d Lane Group Capac und 127 1660 741	ity	3.5 1.5 Ir Ad: Flow	3.5 1.5 ntersec j Sat w Rate (s) 52 12	Ra v/c 0.90	atios g 0 0 5 0	/C .07	Lane Delay 100.6	3.5 1.5 Cyc ary Group r LOS	3.5 1.5 cle Le o Ap Del	ngth: proac ay LO	h S	2 0	3ec:
All Rec Appr/ Lane Grp Eastbou L T R Westbou	d Lane Group Capac und 127 1660 741 und	:ity	3.5 1.5 Ir Ad: Flow 17! 35: 156	3.5 1.5 ntersed j Sat w Rate (s) 52 12 58	Ra v/c 0.90 1.65 0.62	atios g 0 0 5 0 2 0	/C .07 .47 .47	Lane Delay 100.6 323.4 23.3	3.5 1.5 Cyo ary_ Group LOS F F F C	3.5 1.5 cle Le o Ap Del	ngth: proac ay LO	h S	0 s	3ec:
All Rec Appr/ Lane Grp Eastbou L T R Westbou L	d Lane Group Capac und 127 1660 741 und 127	ity 	3.5 1.5 Ir Ad: Flow 175 355 156	3.5 1.5 ntersed j Sat w Rate (s) 52 12 58 52	Ra v/c 0.90 1.65 0.62	atios 0 0 5 0 2 0 L 0	/C .07 .47 .47 .07	Lane Delay 100.6 323.4 23.3 81.6	3.5 1.5 Cyo ary Group T LOS	3.5 1.5 cle Le p Ap Del 274	ngth: proac ay LO .0 F	h S	ء 0 	
All Rec Appr/ Lane Grp Eastbou L R Westbou L	d Lane Group Capac und 127 1660 741 und	ity 	3.5 1.5 Ir Ad: Flow 175 355 156	3.5 1.5 ntersed j Sat w Rate (s) 52 12 58 52	Ra v/c 0.90 1.65 0.62	atios 0 0 5 0 2 0 L 0	/C .07 .47 .47	Lane Delay 100.6 323.4 23.3 81.6	3.5 1.5 Cyo ary Group T LOS	3.5 1.5 cle Le p Ap Del 274	ngth: proac ay LO	h S	0 s	
All Rec Appr/ Lane Grp Eastbou L R Westbou L IR Northbo	d Lane Group Capac und 127 1660 741 und 127 1652 ound	ity 	3.5 1.5 Ad: Flow 17! 35: 150 17! 349	3.5 1.5 ntersec j Sat w Rate (s) 52 12 58 52 52	Ra v/c 0.90 1.65 0.62 0.82 1.18	atios g 0 0 5 0 2 0 1 0 3 0	/C .07 .47 .47 .07 .47	Lane Delay 100.6 323.4 23.3 81.6 117.0	3.5 1.5 Cyc ary_ Group T LOS F F F C F	3.5 1.5 cle Le p Ap Del 274	ngth: proac ay LO .0 F	h S	2 0	
All Rec Appr/ Lane Grp Eastbou L R Westbou L IR Northbo L	d Lane Group Capac und 127 1660 741 und 127 1652 ound 347	ity 	3.5 1.5 Ad: Flow 175 355 156 175 345	3.5 1.5 ntersec j Sat w Rate (s) 52 12 58 52 94 71	Ra v/c 0.90 1.65 0.62 0.82 1.18	atios g 0 0 5 0 2 0 1 0 3 0	/C .07 .47 .47 .07 .47 .10	Lane Delay 100.6 323.4 23.3 81.6 117.0 237.8	3.5 1.5 Cyc ary Grouy F F F F F F F F F	3.5 1.5 cle Le o Ap Del 274	ngth: proac ay LO .0 F .2 F	h 	2 0	3ec
All Rec Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T	d Lane Group Capac und 127 1660 741 und 127 1652 ound 347 325	ity 	3.5 1.5 Ad: Flow 175 355 156 345 347 188	3.5 1.5 ntersec j Sat w Rate (s) 52 12 58 52 94 71 31	Ra v/c 0.90 1.65 0.62 0.82 1.18 1.38 0.95	atios g 0 0 5 0 2 0 1 0 3 0 3 0 5 0	/C .07 .47 .47 .07 .47 .10 .17	Lane Delay 100.6 323.4 23.3 81.6 117.0 237.8 81.3	3.5 1.5 Cyc Group Group F F C F F F F F F F F F	3.5 1.5 cle Le o Ap Del 274	ngth: proac ay LO .0 F	h 	<u>ء</u> 0 	3ec
All Rec Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T R	d Lane Group Capac und 127 1660 741 und 127 1652 ound 347 325 276	ity 	3.5 1.5 Ad: Flow 175 355 156 175 345	3.5 1.5 ntersec j Sat w Rate (s) 52 12 58 52 94 71 31	Ra v/c 0.90 1.65 0.62 0.82 1.18	atios g 0 0 5 0 2 0 1 0 3 0 3 0 5 0	/C .07 .47 .47 .07 .47 .10	Lane Delay 100.6 323.4 23.3 81.6 117.0 237.8	3.5 1.5 Cyc Group Group F F C F F F F F F F F F	3.5 1.5 cle Le o Ap Del 274	ngth: proac ay LO .0 F .2 F	h 	0 s	3ec
All Rec Appr/ Lane Grp Eastbou L T R Westbou L TR Northbo L R Southbo	d Lane Group Capac und 127 1660 741 und 127 1652 ound 347 325 276 ound	ity 	3.5 1.5 Ir Ad: Flow 17! 35: 150 17! 34! 34! 188 15!	3.5 1.5 ntersec j Sat w Rate (s) 52 12 58 52 94 71 31 99	Ra v/c 0.90 1.69 0.62 0.82 1.18 1.38 0.99 1.04	atios g 0 0 5 0 2 0 1 0 3 0 3 0 5 0 4 0	/C .07 .47 .47 .07 .47 .10 .17 .17	Lane Delay 100.6 323.4 23.3 81.6 117.0 237.8 81.3 109.4	3.5 1.5 Cyc Group Group F F F F F F F F F F F F F	3.5 1.5 cle Le o Ap Del 274	ngth: proac ay LO .0 F .2 F	h 	2 0 	3ec
All Rec Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L Southbo L	d Lane Group Capac und 127 1660 741 und 127 1652 ound 347 325 276 ound 347	ity 	3.5 1.5 Ir Ad: Flow 17! 35: 15: 34: 34: 18: 15: 34: 34:	3.5 1.5 ntersec j Sat w Rate (s) 52 12 58 52 24 71 31 99 71	Ra v/c 0.90 1.69 0.62 0.82 1.18 1.38 0.99 1.04 1.69	atios g 0 0 5 0 2 0 1 0 3 0 3 0 5 0 4 0 5 0	/C .07 .47 .47 .07 .47 .10 .17 .17 .10	Lane Delay 100.6 323.4 23.3 81.6 117.0 237.8 81.3 109.4 353.9	3.5 1.5 Cyc Group Group F F F F F F F F F F F F F	3.5 1.5 cle Le <u>0 Ap</u> Del 274 115 158	ngth: proac ay LO .0 F .2 F .6 F	h S	<u>ء</u> 0 	
Yellow All Rec Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T R Southbo L T R Southbo L R	d Lane Group Capac und 127 1660 741 und 127 1652 ound 347 325 276 ound	ity 	3.5 1.5 Ir Ad: Flow 17! 35: 150 17! 34! 34! 188 15!	3.5 1.5 ntersec j Sat w Rate (s) 52 12 58 52 24 71 31 99 71 31	Ra v/c 0.90 1.69 0.62 0.82 1.18 1.38 0.99 1.04 1.69	atios g 0 0 5 0 2 0 1 0 3 0 5 0 4 0 5 0 0 0 0	/C .07 .47 .47 .07 .47 .10 .17 .17	Lane Delay 100.6 323.4 23.3 81.6 117.0 237.8 81.3 109.4 353.9 42.4	3.5 1.5 Cyc Group Group F F F F F F F F F F F F F	3.5 1.5 cle Le <u>0 Ap</u> Del 274 115 158	ngth: proac ay LO .0 F .2 F	h S	<u>۽</u> 0 	

Intersection Delay = 211.4 (sec/veh) Intersection LOS = F

Analyst: lpk Agency: TranSystems Date: 06/30/11 Jurisd: Period: AM Project ID: Segment IVa; P403 10 0004 E/W St: SR 32

Inter.: SR 32 & Old 74 Area Type: All other areas Year : 2030 No-Build

N/S St: Old 74

	E.	astbou	nd	West	bound	Nort	hbou	ınd	Sou	lthbo	und
	L	Т	R	L '	T R	L	Т	R	L	Т	R
Jo. Lan	les	L 2	0		2 0	 1	1	 0	1	1	 0
GConfi	g L	TR		L L	TR	L	TR		L	TR	
/olume	44	1730	2	154 1	825 311	13 5	59	332	342	104	380
Lane Wi	dth 12.	0 12.0		12.0 1	2.0	12.0 1	L2.0		12.0	12.0	
RTOR VO)l		0		0			0			0
Duratio	on 0.2	5	Area		ll other al Operat						
Phase C	ombinati	on 1	2	3	4		5	6	7		8
EB Lef	t	A			NB	Left	A				
Thr				A		Thru	A				
Rig				A	ļ	Right	А				
Ped				Х	ļ	Peds	Х				
VB Lef		A	A		SB	Left					
Thr			P	A	ļ	Thru	А				
Rig			P	A	ļ	Right					
Ped				Х		Peds	Х				
IB Rig					EB	Right					
SB Rig	ht				WB	Right					
Green		8.5	5.5	43.6			42.4	:			
Green Kellow		3.5	3.5	3.5			3.5	:			
Green Yellow	l						3.5 1.5				
Green Kellow	l	3.5 1.5	3.5 1.5	3.5 1.5	-	-	3.5 1.5 Cyc	le Len	-	120.	0 sec
Green Yellow All Red		3.5 1.5	3.5 1.5 nterse	3.5 1.5 ction P	erformanc		3.5 1.5 Cyc ary	le Len			0 sec
Green Yellow All Red Appr/	Lane	3.5 1.5 I1 Ad	3.5 1.5 nterse j Sat	3.5 1.5 ction P Rat		e Summa Lane G	3.5 1.5 Cyc ary	le Len	-		0 sec
Green Kellow All Red Appr/ Lane	Lane Group	3.5 1.5 I Adj Flor	3.5 1.5 nterse j Sat w Rate	3.5 1.5 ction P Rat	ios 	Lane G	3.5 1.5 Cyc ary Group	ele Len	roach	1 	0 sec
Green Zellow All Red Appr/ Jane	Lane Group	3.5 1.5 I Adj Flor	3.5 1.5 nterse j Sat	3.5 1.5 ction P Rat			3.5 1.5 Cyc ary Group	ele Len		1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou	Lane Group Capacit Ind	3.5 1.5 In Ad Flow	3.5 1.5 nterse j Sat w Rate (s)	3.5 1.5 ction P Rat v/c	ios g/C	Lane G Delay	3.5 1.5 Cyc ary Froup LOS	ele Len	roach	1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou	Lane Group Capacit Ind 124	3.5 1.5 In Ad Flow 7 17	3.5 1.5 nterse j Sat w Rate (s) 	3.5 1.5 ction P Rat v/c 0.40	ios g/C 	Lane G Delay 55.4	3.5 1.5 Cyc ary Froup LOS E	le Len App Dela	oroach	1 	0 sec
Green Kellow All Red Appr/ Lane Grp Lastbou	Lane Group Capacit Ind	3.5 1.5 In Ad Flow	3.5 1.5 nterse j Sat w Rate (s) 	3.5 1.5 ction P Rat v/c	ios g/C	Lane G Delay	3.5 1.5 Cyc ary Froup LOS	ele Len	oroach	1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou L IR Westbou	Lane Group Capacit Ind 124 1276	3.5 1.5 I Ad Flow 7 7	3.5 1.5 nterse j Sat w Rate (s) 52 12	3.5 1.5 ction P Rat v/c 0.40 1.51	ios g/C 0.07 0.36	Lane G Delay 55.4 270.8	3.5 1.5 Cyc ary Group LOS E F	le Len App Dela	oroach	1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou L IR Westbou L	Lane Group Capacit Ind 124 1276 Ind 275	3.5 1.5 I Ad Flow 7 17 35	3.5 1.5 nterse j Sat w Rate (s) 52 12 36	3.5 1.5 ction Pr Rat v/c 0.40 1.51 0.62	ios 0.07 0.36 0.16	Lane G Delay 55.4 270.8 51.4	3.5 1.5 Cyc ary Group LOS E F	le Len App Dela 265.	proach y LOS 5 F	1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou L TR Westbou	Lane Group Capacit Ind 124 1276	3.5 1.5 In Ad Flow 7 	3.5 1.5 nterse j Sat w Rate (s) 52 12 36	3.5 1.5 ction P Rat v/c 0.40 1.51	ios 0.07 0.36 0.16	Lane G Delay 55.4 270.8 51.4	3.5 1.5 Cyc ary Group LOS E F	le Len App Dela 265.	oroach	1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou S R Vestbou L R Northbo	Lane Group Capacit Ind 124 1276 Ind 275 1534	3.5 1.5 Ad Flow 7 17 35 17 34	3.5 1.5 nterse j Sat w Rate (s) 52 12 36 02	3.5 1.5 ction Pr Rat v/c 0.40 1.51 0.62 1.55	ios 0.07 0.36 0.16 0.45	Lane G Delay 55.4 270.8 51.4 282.6	3.5 1.5 Cyc ary Froup LOS E F D F	le Len App Dela 265.	proach y LOS 5 F	1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou S R Vestbou S R Northbo	Lane Group Capacity and 124 1276 and 275 1534 ound 104	3.5 1.5 I Ad Flow 7 	3.5 1.5 nterse j Sat w Rate (s) 52 12 36 02 3	3.5 1.5 ction Pr Rat v/c 0.40 1.51 0.62 1.55 0.13	ios 0.07 0.36 0.16 0.45 0.35	Lane G Delay 55.4 270.8 51.4 282.6 26.9	3.5 1.5 Cyc ary Froup LOS E F D F	267.	proach Ly LOS 5 F 1 F	1 	0 sec
Green Cellow All Red Appr/ Jane Grp Castbou CR Nestbou CR Northbo	Lane Group Capacit Ind 124 1276 Ind 275 1534	3.5 1.5 Ad Flow 7 17 35 17 34	3.5 1.5 nterse j Sat w Rate (s) 52 12 36 02 3	3.5 1.5 ction P Rat v/c 0.40 1.51 0.62 1.55 0.13	ios 0.07 0.36 0.16 0.45	Lane G Delay 55.4 270.8 51.4 282.6 26.9	3.5 1.5 Cyc ary Froup LOS E F D F	le Len App Dela 265.	proach Ly LOS 5 F 1 F	1 	0 sec
Green Yellow All Red Appr/ Jane Grp Lastbou TR Nestbou TR Northbo TR	Lane Group Capacit 124 1276 1276 1534 ound 104 569	3.5 1.5 In Ad Flow 7 17! 35: 17: 34 29: 16:	3.5 1.5 nterse j Sat w Rate (s) 52 12 36 02 310	3.5 1.5 ction Pr Rat v/c 0.40 1.51 0.62 1.55 0.13 0.76	ios 0.07 0.36 0.16 0.45 0.35 0.35	Lane G Delay 55.4 270.8 51.4 282.6 26.9 40.5	3.5 1.5 Cyc ary Froup LOS E F D F	267.	proach Ly LOS 5 F 1 F	1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo	Lane Group Capacit and 124 1276 and 275 1534 ound 104 569 ound 179	3.5 1.5 Ad Flow 7 17 35 17 34 29 16 50	3.5 1.5 nterse j Sat w Rate (s) 52 12 36 02 310 8	3.5 1.5 ction Pr Rat v/c 0.40 1.51 0.62 1.55 0.13 0.76 2.12	ios g/C 0.07 0.36 0.16 0.45 0.35 0.35 0.35	Lane G Delay 55.4 270.8 51.4 282.6 26.9 40.5 562.5	3.5 1.5 Cyc ary F LOS E F D F C D F	265. 267.	proach y LOS 5 F 1 F D	1 	0 sec
Green Yellow All Red Appr/ Lane Grp Eastbou L TR Westbou L TR Northbo L TR Southbo L TR	Lane Group Capacit and 124 1276 and 275 1534 ound 104 569 ound	3.5 1.5 Ad Flow 7 17 35 17 34 29 16 50	3.5 1.5 nterse j Sat w Rate (s) 52 12 36 02 310	3.5 1.5 ction Pr Rat v/c 0.40 1.51 0.62 1.55 0.13 0.76 2.12	ios 0.07 0.36 0.16 0.45 0.35 0.35	Lane G Delay 55.4 270.8 51.4 282.6 26.9 40.5 562.5	3.5 1.5 Cyc ary F LOS E F D F C D F	265. 267.	proach Ly LOS 5 F 1 F	1 	0 sec

Analyst: lpkInter.: SR 32 & Old 74Agency: TranSystemsArea Type: All other areasDate: 06/30/11Jurisd:Period: PMYear : 2030 No-BuildProject ID: Segment IVa; P403 10 0004K/S St: Old 74

	Eastbou	nd W	JIZED IN Vestboun			thboun		Sou	thbou	ind
	L T	R L	Т	R	L	T I	r İ	L	Т	R
No. Lanes	1 2	0	1 2	0	 1	1	_ 0	1	1	0
LGConfig	L TR	L	TR		L	TR	j	L	TR	
Volume	364 2876	6 270	1518	127	1 :	257 3	98 4	125	155	328
Lane Width	12.0 12.0	12.	0 12.0		12.0	12.0	İ 1	2.0	12.0	İ
RTOR Vol		0		0	İ	0	İ			0
Duration	0.25	Area Type								
Phase Combin	nation 1	8	Signal O S 4	 	lons	5	б	7	{	 3
EB Left	А			NB	Left	А				
Thru		А			Thru	А				
Right		А		İ	Right	А				
Peds		Х		i	Peds	Х				
VB Left	А			SB	Left	А				
Thru		A		i	Thru	А				
Right		A		Ì	Right	А				
Peds		Х			Peds	Х				
IB Right				EB	Right					
SB Right				WB	Right					
Green	7.0	42.6		i	5	55.4				
Yellow	3.5	3.5				3.5				
All Red	1.5	1.5				1.5				
							e Leng	gth:	120.0) secs
		ntersectio		ormance		—				
Appr/ Lane		-	Ratios		Lane (Group	Appr	roach		
		w Rate								
	-									
	-	(s) v/	'c g/	C	Delay	LOS	Delay	/ LOS		
Grp Capa Eastbound							Delay	/ LOS		
Grp Capa	2 17	52 3.	96 0.	06	1412	F				
Grp Capa	2 17	52 3.	96 0.				Delay 822.2			
Grp Capa Eastbound L 102 TR 124 Westbound	2 17 16 35	52 3. 11 2.	96 O. 57 O.	06 35	1412 747.8	F F				
Grp Capa Eastbound L 102 TR 124 Westbound L 102	2 17 46 35	52 3. 11 2. 36 2.	96 0. 57 0. 97 0.	06 35 06	1412 747.8 969.2	г F F	822.2	2 F		
Grp Capa Eastbound L 102 FR 124 Westbound L 102	2 17 46 35	52 3. 11 2. 36 2.	96 0. 57 0. 97 0.	06 35	1412 747.8 969.2	F F		2 F		
Grp Capa Eastbound L 102 FR 124 Westbound L 102 FR 122 Northbound	2 17 2 17 46 35 L 17 20 34	52 3. 11 2. 36 2. 38 1.	96 0. 57 0. 97 0. 50 0.	06 35 06 35	1412 747.8 969.2 267.3	г F F	822.2	2 F		
Grp Capa Eastbound FR 124 Westbound FR 102 FR 102 Northbound E 235	2 17 2 17 46 35 1 17 20 34 5 51	52 3. 11 2. 36 2. 38 1. 0 0.	96 0. 57 0. 97 0. 50 0. 00 0.	06 35 06 35 46	1412 747.8 969.2 267.3 17.4	г F F	822.2	2 F		
Grp Capa Eastbound I 102 FR 124 Nestbound IR 102 FR 122 Northbound I 235	2 17 2 17 46 35 1 17 20 34 5 51	52 3. 11 2. 36 2. 38 1. 0 0.	96 0. 57 0. 97 0. 50 0.	06 35 06 35 46	1412 747.8 969.2 267.3	F F F F	822.2	2 F		
Grp Capa Eastbound L 102 TR 124 Westbound L 101 TR 122 Northbound L 235 TR 774	2 17 2 17 46 35 1 17 20 34 5 51 4 16	52 3. 11 2. 36 2. 38 1. 0 0. 77 0.	96 0. 57 0. 97 0. 50 0. 94 0.	06 35 06 35 46 46	1412 747.8 969.2 267.3 17.4	F F F F	822.2	2 F 3 F		
Grp Capa Eastbound L 102 FR 124 Westbound L 102 FR 122 Northbound L 235	2 17 2 17 46 35 1 17 20 34 5 51 4 16	52 3. 11 2. 36 2. 38 1. 0 0. 77 0.	96 0. 57 0. 97 0. 50 0. 00 0.	06 35 06 35 46 46	1412 747.8 969.2 267.3 17.4	F F F B D	822.2	2 F 3 F		

STA TranSystems 2030 No-Build

Phone:

E-Mail:

Fax:

_____OPERATIONAL ANALYSIS_____OPERATIONAL ANALYSIS_____

Analyst:	lpk
Agency/Co.:	TranSystems
Date Performed:	06/30/11
Analysis Time Period:	PM
Intersection:	SR 32 & Old 74
Area Type:	All other areas
Jurisdiction:	
Analysis Year:	2030 No-Build
Project ID: Segment IVa;	P403 10 0004
E/W St: SR 32	N/S St: Old 74

_____VOLUME DATA______

	Ea	stbou	nd	Wes	stboui	nd	No:	rthbo	und	So	uthbo	und
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume	 364	2876	б	 270	1518	127	 1	257	398	 425	155	328
% Heavy Veh	3	3	3	4	4	4	3	3	3	2	2	2
PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
PK 15 Vol	101	799	2	75	422	35	1	71	111	118	43	91
Hi Ln Vol	ĺ			ĺ			İ			Ì		
% Grade	ĺ	0		ĺ	0		İ	0		Ì	0	
Ideal Sat	1900	1900		1900	1900		1900	1900		1900	1900	
ParkExist												
NumPark												
No. Lanes	1	2	0	1	2	0	1	1	0	1	1	0
LGConfig	L	TR		L	TR		L	TR		L	TR	
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
RTOR Vol			0			0			0			0
Adj Flow	404	3203		300	1828		1	728		472	536	
%InSharedLn												
Prop LTs		0.0	0 0		0.00	00		0 0.0	0 0		0.0	00
Prop RTs	-	.002		-	.077		1	.607		0	.679	
Peds Bikes	0		C	0		C	0		C	0		0
Buses	0	0		0	0		0	0		0	0	
%InProtPhase												
Duration	0.25		Area '	Type:	All d	other	areas					

_____OPERATING PARAMETERS_____

	Ea	stbou	nd	We	stboui	nd	No	rthbou	ınd	So	uthbou	ind
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Init Unmet	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Arriv. Type	3	3		3	3		3	3		3	3	Í
Unit Ext.	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	ĺ
I Factor	ĺ	1.00	0	ĺ	1.000)	ĺ	1.000)	ĺ	1.000)
Lost Time	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	ĺ
Ext of g	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	ĺ
Ped Min g	İ	3.2		ĺ	3.2		İ	3.2		İ	3.2	ĺ

				PI	HASE	DATA					
Pha	se Combinatior	n 1	2	3	4			5	6	7	8
EB	Left Thru Right Peds	A	A A X			NB	Left Thru Right Peds	A A A X			
WB	Left Thru Right Peds	A	A A X			SB	Left Thru Right Peds	A A A X			
NB	Right					EB	Right				
SB	Right					WB	Right				
	en low Red	7.0 3.5 1.5	42.6 3.5 1.5		I			55.4 3.5 1.5			

Cycle Length: 120.0 secs

VOLUME ADJUSTMENT AND SATURATION FLOW WORKSHEET								
Volume Adju								
	Eastbound	W	lestbound	Northbound	Southbound			
	L T R	2 Г	T R	LTR	L T R			
_								
Volume, V	364 2876 6	270		1 257 398	425 155 328			
PHF	0.90 0.90 0.		0 0.90 0.90	1	0.90 0.90 0.90			
Adj flow	404 3196 7	1		1 286 442	472 172 364			
No. Lanes		!	1 2 0					
Lane group	L TR	L	TR	L TR				
Adj flow	404 3203	300		1 728	472 536			
Prop LTs	0.000		0.000	1.000 0.000	1.000 0.000			
Prop RTs	0.002		0.077	0.607	0.679			
0								
				determine the adj				
		West		Northbound				
LG L So 1900			TR .900	L TR 1900 1900	L TR 1900 1900			
So 1900 Lanes 1			2 0	1 1 0	1 1 0			
		1.000 1	-	1.000 1.000	1.000 1.000			
		0.962 0		0.971 0.971	0.980 0.980			
		1.000 1		1.000 1.000	1.000 1.000			
	1.000	1.000 1		1.000 1.000	1.000 1.000			
		1.000 1		1.000 1.000	1.000 1.000			
		1.000 1		1.000 1.000	1.000 1.000			
	0.952	1.000 C		1.000 1.000	1.000 1.000			
fRT	1.000).988	0.909	0.898			
		0.950 1		0.277 1.000	0.898			
Sec.	1.000	0.950 1		0.277 1.000	0.110 1.000			
	1.000	1.000 1	000	1.000 1.000	1.000 1.000			
fRpb	1.000			1.000	1.000			
s 1752			3438	510 1677	216 1673			
Sec.	2211	1,20 2	,100	510 10//	210 10/5			
500.		Сараст	TY AND LOS	WORKSHEET				
		CALACI		MOUUDIIEET				

Capacity Analysis and Lane Group Capacity

Appr/ Mvmt	Lane Group	Adj Flow Rat (v)	Adj Sa e Flow Ra (s)		Green Ratio (g/C)		-
Eastbound	 1						
Prot							
Perm Left	L	404	1752	# 0.23	0.06	102	3.96
Prot	Ц	404	1752	# 0.23	0.00	IUZ	5.90
Perm							
Thru	TR	3203	3511	# 0.91	0.35	1246	2.57
Right	-						
Westbound Prot	d						
Proc Perm							
Left	L	300	1736	0.17	0.06	101	2.97
Prot							
Perm							
Thru Right	TR	1828	3438	0.53	0.35	1220	1.50
Northbour	nd						
Prot							
Perm							
Left	L	1	510	0.00	0.46	235	0.00
Prot							
Perm Thru	TR	728	1677	0.43	0.46	774	0.94
Right	110	,20	10,,	0.15	0.10	,,1	0.91
Southbour	nd						
Prot							
Perm Left	L	472	216	# 2.19	0.46	100	4.72
Prot	Ц	472	210	# 2.19	0.40	TOO	4./2
Perm							
Thru	TR	536	1673	0.32	0.46	772	0.69
Right							
<u> </u>	low rati	os for crit	igal lano		C	(w/g) =	2 22
		per cycle,			– Sulli	(3.33
		te to capac			= (Yc)((C)/(C-L) =	3.80
	-	d LOS Deter					
Appr/ H Lane	Ratios			ncremental actor Del	Res La Del	ane Group	Approach
Grp v/o	c q/C		Cap k			Delav LOS	Delay LOS
Eastbound							
		56.5 1.00				412 F	000 0 7
TR 2.5	/ 0.35	38.7 1.00	0 1246 0	.50 /09.1	0.0 74	47.8 F	822.2 F
Westbound	f						
L 2.9		56.5 1.00	0 101 0	.50 912.7	0.0 96	59.2 F	
TR 1.50		38.7 1.00	0 1220 0	.50 228.6	0.0 26	57.3 F	366.3 F
Northbour		17 / 1 00	0 0 2 5 0	11 0 0	0 0 1	7 4 5	
	J 0.46 4 0.46	17.4 1.00 30.7 1.00		.11 0.0 .45 19.4		7.4 в).1 D	50.1 D
	- 0.10	20., 1.00	0		5.5 50		
Southbour							
		32.3 1.00		.50 1697		729 F	004 C -
TR 0.69	9 0.46	25.6 1.00	0 772 0	.26 2.7	0.0 28	8.3 C	824.6 F

SUPPLEMENTAL PERMITTED LT WORKSHE	ET			
for exclusive lefts				
Input	пD	MD	ND	CD
Opposed by Single(S) or Multiple(M) lane approach Cycle length, C 120.0 sec Total actual green time for LT lane group, G (s) Effective permitted green time for LT lane group, g(s) Opposing effective green time, go (s) Number of lanes in LT lane group, N Number of lanes in opposing approach, No Adjusted LT flow rate, VLT (veh/h) Proportion of LT in LT lane group, PLT Proportion of LT in opposing flow, PLTo Adjusted opposing flow rate, Vo (veh/h) Lost time for LT lane group, tL Computation	EB	WB	0.00 536	
LT volume per cycle, LTC=VLTC/3600			0.0 1.00 0.54 22.39 33.01 11.20 1.00 1.00 2.15 0.07 0.00 0.28 fm<=1.0	24.27 0.0 1.00 0.54 38.87 16.53 19.44 1.00 1.00 2.57 0.07 0.00 0.12
<pre>For special case of single-lane approach opposed by mul see text. * If Pl>=1 for shared left-turn lanes with N>1, then as left-turn lane and redo calculations. ** For permitted left-turns with multiple exclusive lef For special case of multilane approach opposed by singl or when gf>gq, see text.</pre>	sume d t-turr	le-fact	to s, flt:	=fm.
SUPPLEMENTAL PERMITTED LT WORKSHE for shared lefts	ET			
Input	EB	WB	NB	SB
Opposed by Single(S) or Multiple(M) lane approach Cycle length, C 120.0 sec Total actual green time for LT lane group, G (s) Effective permitted green time for LT lane group, g(s) Opposing effective green time, go (s) Number of lanes in LT lane group, N				

```
Number of lanes in opposing approach, No
Adjusted LT flow rate, VLT (veh/h)
Proportion of LT in LT lane group, PLT
                                                       0.000 0.000 0.000 0.000
Proportion of LT in opposing flow, PLTo
Adjusted opposing flow rate, Vo (veh/h)
Lost time for LT lane group, tL
Computation
LT volume per cycle, LTC=VLTC/3600
Opposing lane util. factor, fLUo
                                                        0.952 0.952 1.000 1.000
Opposing flow, Volc=VoC/[3600(No)fLUo] (veh/ln/cyc)
qf=G[exp(- a * (LTC ** b))]-tl, qf<=q</pre>
Opposing platoon ratio, Rpo (refer Exhibit 16-11)
Opposing Queue Ratio, qro=Max[1-Rpo(go/C),0]
gq, (see Exhibit C16-4,5,6,7,8)
gu=g-gq if gq>=gf, or = g-gf if gq<gf</pre>
n=Max(gq-gf)/2,0)
PTHO=1-PLTO
PL*=PLT[1+(N-1)g/(gf+gu/EL1+4.24)]
EL1 (refer to Exhibit C16-3)
EL2=Max((1-Ptho**n)/Plto, 1.0)
fmin=2(1+PL)/g or fmin=2(1+Pl)/g
gdiff=max(gq-gf,0)
fm=[gf/g]+[gu/g]/[1+PL(EL1-1)], (min=fmin;max=1.00)
flt=fm=[gf/g]+[gu/g]/[1+PL(EL1-1)]+[gdiff/g]/[1+PL(EL2-1)],(fmin<=fm<=1.00)
or flt=[fm+0.91(N-1)]/N**
Left-turn adjustment, fLT
For special case of single-lane approach opposed by multilane approach,
see text.
* If Pl>=1 for shared left-turn lanes with N>1, then assume de-facto
 left-turn lane and redo calculations.
** For permitted left-turns with multiple exclusive left-turn lanes, flt=fm.
For special case of multilane approach opposed by single-lane approach
or when gf>gq, see text.
               SUPPLEMENTAL PEDESTRIAN-BICYCLE EFFECTS WORKSHEET
Permitted Left Turns
                                                        EΒ
                                                              WΒ
                                                                    NB
                                                                          SB
Effective pedestrian green time, qp (s)
                                                                   55.4
                                                                         55.4
Conflicting pedestrian volume, Vped (p/h)
                                                                   0
                                                                         0
                                                                   0
Pedestrian flow rate, Vpedg (p/h)
                                                                         0
0CCpedq
                                                                   0.000 0.000
                                                                   22.39 38.87
Opposing queue clearing green, gq (s)
Eff. ped. green consumed by opp. veh. queue, gq/gp
                                                                   0.404 0.702
                                                                   0.000 0.000
OCCpedu
Opposing flow rate, Vo (veh/h)
                                                                   536
                                                                         728
                                                                  0.000 0.000
OCCr
Number of cross-street receiving lanes, Nrec
                                                                   2
                                                                         2
Number of turning lanes, Nturn
                                                                   1
                                                                         1
ApbT
                                                                  1.000 1.000
Proportion of left turns, PLT
                                                                   1.000 1.000
Proportion of left turns using protected phase, PLTA
                                                                   0.000 0.000
                                                                   1.000 1.000
Left-turn adjustment, fLpb
Permitted Right Turns
                                                      42.6 42.6 55.4 55.4
Effective pedestrian green time, gp (s)
Conflicting pedestrian volume, Vped (p/h)
                                                      0
                                                             0
                                                                   0
                                                                         0
                                                      0
                                                             0
                                                                   0
                                                                         0
Conflicting bicycle volume, Vbic (bicycles/h)
Vpedg
                                                       0
                                                             0
                                                                   0
                                                                         0
                                                      0.000 0.000 0.000 0.000
OCCpedg
Effective green, g (s)
                                                       42.6 42.6 55.4 55.4
Vbicg
                                                       0
                                                             0
                                                                   0
                                                                         0
```

OCCr Number Number ApbT Proport Proport	Number of cross-street receiving lanes, Nrec112Number of turning lanes, Nturn111									
		SU	PPLEMENT	AL UNIFO	RM DELAY	WORKSH	EET			
Adj. LT v/c rat Protect Opposin Unoppos Red tim Arrival Protect Permitt XPerm XProt Case Queue a Queue a Residua	XProt									
		DELAY/	LOS WORK	SHEET WI	TH INITI	AL QUEU	E			
Appr/ Lane Group	Unmet	Demand		Delay Adj. dl sec		Unmet	Queu Dela	ay I	Lane Group Delay d sec	
 Eastbou										
L TR	0.0 0.0 0.0	0.00 0.00	56.5 38.7	56.5 38.7	0.00 0.00	75.5 489.3	0.0 0.0 0.0		1412 747.8	
Westbou										
L TR	0.0 0.0 0.0	0.00 0.00	56.5 38.7	56.5 38.7	0.00 0.00	49.8 152.0	0.0 0.0 0.0		969.2 267.3	
Northbo							- -			
L TR	0.0 0.0 0.0	0.00 0.00	32.3 32.3	17.4 30.7	0.00 0.00	0.0 0.0	0.0 0.0 0.0		17.4 50.1	
Southbo										
L TR	0.0 0.0 0.0	0.00 0.00	32.3 32.3	32.3 25.6	0.00 0.00	93.0 0.0	0.0 0.0 0.0		1729 28.3	
	Intersec	tion Del	ay 617.	4 sec/v	eh I	ntersec	tion I	LOS 1	 F	
			BACK	OF QUEU	E WORKSH	EET				

	Eastbound	Westbound	Northbound	Southbound
LaneGroup	L TR	L TR	L TR	L TR
Init Queue	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
Flow Rate	404 1682	300 960	1 728	472 536
So	1900 1900	1900 1900	1900 1900	1900 1900
No.Lanes	1 2 0			
SL	1752 1844	1736 1805	510 1677	216 1673
LnCapacity	102 654	101 640	235 774	100 772
Flow Ratio	0.2 0.9	0.2 0.5	0.0 0.4	2.2 0.3
v/c Ratio	3.96 2.57	2.97 1.50	0.00 0.94	4.72 0.69
Grn Ratio	0.06 0.35	0.06 0.35	0.46 0.46	0.46 0.46
I Factor	1.000	1.000	1.000	1.000
AT or PVG	3 3	3 3	3 3	3 3
Pltn Ratio	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00
PF2	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00
Q1	13.5 56.1	10.0 32.0	0.0 23.1	15.7 14.2
кВ	0.2 0.6	0.2 0.6	0.3 0.7	0.2 0.7
Q2	38.0 129.5	25.2 41.8	0.0 5.6	46.8 1.5
Q Average	51.5 185.6	35.2 73.8	0.0 28.7	62.5 15.7
Q Spacing	25.0 25.0	25.0 25.0	25.0 25.0	25.0 25.0
Q Storage	jo o	0 0	0 0	0 0
Q S Ratio				
70th Percent	tile Output:			
fB%	1.1 1.1	1.1 1.1	1.2 1.1	1.1 1.2
BOQ	58.1 204	40.2 82.3	0.0 33.0	70.1 18.3
QSRatio				
85th Percent	tile Output:			
fB%	1.4 1.3	1.4 1.3	1.6 1.4	1.3 1.5
BOQ	69.7 241	49.0 97.8	0.0 40.6	83.6 23.2
QSRatio				
90th Percent	tile Output:			
fB%	1.4 1.4	1.5 1.4	1.8 1.5	1.4 1.6
BOQ	73.7 260	51.7 104	0.0 42.9	88.6 24.8
QSRatio				
95th Percent	tile Output:			
fB%	1.5 1.5	1.6 1.5	2.1 1.6	1.5 1.8
BOQ	79.0 278	55.8 111	0.0 46.6	94.9 27.4
QSRatio				
	tile Output:			
fB%	1.7 1.7	1.8 1.7	2.7 1.8	1.7 2.0
BOQ	88.5 316	62.2 126	0.1 52.0	107 31.3
QSRatio				

_____ERROR MESSAGES_____

No errors to report.

APPENDIX E: PREVIOUS REPORTS (ON CD)

- Segment IV(a) Public Involvement Plan
- Segment IV(a) Purpose & Need (updated September 14, 2011)
- Segment IV(a) Red Flag Report

Eastern Corridor Segment IV(a) – Public Involvement Plan CLE-32-2.25 (PID 82370) July 2010

Introduction

The Segment IV(a) project is located in Clermont County as part of the Eastern Corridor family of projects. Segment IV(a) work is intended to complete Steps I through 4 of the Ohio Department of Transportation (ODOT) Project Development Process by supplementing the previous Tier I EIS. Capacity and safety improvements on SR 32 are the focus in this area, which may involve the addition of an interchange and elimination of several at-grade intersections. The project will evaluate local roads to determine additional changes necessary in coordination with the SR 32 improvements.

Clermont County Transportation Improvement District (CCTID) and ODOT are partners on this project. The anticipated study limits will be Eastgate Blvd, Stonelick Olive Branch Rd, Aicholtz Rd, and Old SR 74/Heitman Lane in the vicinity of I-275 and SR 32 in Clermont County.

This study will involve various project stakeholders, affected residents, business owners, community leaders, and the general public. Political entities and funding agencies will ultimately implement the proposed improvements. Therefore, the public involvement, detailed in this plan, is a critical component to the success of this project.

Purpose

In ODOT's Project Development Process (PDP), involving the public early and often is critical to helping the surrounding community understand transportation studies so it can, in turn, provide meaningful input to help shape the study. Two basic objectives include disseminating information and soliciting input. The Public Involvement Plan must address both. The Public Involvement Plan for the Segment IV(a) project will:

- Solicit public input to identify problems and solutions to project objectives
- Provide the public with information on the decision-making process
- Provide information on the potential impacts and benefits of each transportation solution under consideration
- Solicit input on the conclusions and recommendations of the alternatives analysis

In order to achieve these goals, the Project Team proposes to use several methods during the planning phase of the project. These methods are detailed within this Public Involvement Plan.

Title VI of the Civil Rights Act of 1964 and Executive Order 12898 on Environmental Justice (EJ) requires federal agencies to consider whether a project will have disproportionately high and adverse impacts to low-income, minority or elderly populations. Our Public Involvement efforts will identify and engage such populations existing within the project area and insure that their interests, concerns and needs are effectively addressed throughout the PDP. If potential EJ populations are identified within the study area, specific techniques (individual phone conversation, an e-mail response, meeting with individuals, etc.) may be necessary to address any specific issues or concerns related to the project.

1

Methods

Mailing List and Notifications – TranSystems will develop a public contact list that will serve as the basis for notifications and mailings. The public contact list will continue to be updated throughout the process with the names and contact information from meeting attendance sheets and submitted comments. At a minimum, property owners within the project study area will be included along with the Implementation Partners and Stakeholder Committees discussed below.

Implementation Partners – For the overall Eastern Corridor plan, the Implementation Partners group consists of ODOT, Clermont County, Hamilton County, City of Cincinnati, and Federal Highway Administration (FHWA). For specific details of the Segment IV(a) project, the Implementation Partners are a subset of that group, including FHWA, ODOT, and Clermont County. These decision-makers will use stakeholder and public input to make decisions about project recommendations. This group will meet approximately monthly to review project progress and issues. They will also review all stakeholder committee and open house public involvement materials prior to use.

Stakeholder Committee – The Stakeholder Committee will be formed at the beginning of the project to ensure that the interests of each community or organization near the study area are represented. It will include the Implementation Partners members as well as public sector and private sector community leaders and representatives. This committee will play a vital role in collecting public input and keeping the public informed throughout the duration of the project. Suggested stakeholders include:

- Ohio Department of Transportation, District 8, Jay Hamilton
- Clermont County Transportation Improvement District, Steve Wharton and Dave Spinney
- Clermont County Engineer, Pat Manger
- Miami Township Administrator, Larry Fronk
- Union Township Administrator, Ken Geis
- Clermont County Chamber of Commerce
- Neighborhood associations
- Local elected officials:
 - Clermont County Commissioners
 - Miami Township Trustees
 - Union Township Trustees
- Federal elected officials:
 - o U.S. House of Representatives, Ohio 2nd, Jean Schmidt
 - U.S. Senate, George Voinovich and Sherrod Brown
- State elected officials:
 - Ohio House of Representatives, District 66, Joe Uecker
 - Ohio Senate, District 14, Tom Niehaus

Meeting #1– The first meeting task will include a combination of public involvement meetings: one with stakeholders only, followed by an open house-style public meeting later the same day. These meetings will build off previous Eastern Corridor public involvement and will seek initial feedback on the Segment IV(a) project. TranSystems will present information on the project purpose and need, specifically related to congestion and safety issues on SR 32. Background information will be provided on the state routes, local highway network, and current land-use plans. The team will solicit input on the range of alternatives that should be considered to address the underlying transportation needs, as well as short-term countermeasures.

2

Stakeholders and property owners in the study area will be mailed notification at least two weeks prior to the meeting date, and will include respective times and locations of the meetings. For the open house, a press release will be produced for the media to provide notice to other members of the public. Written comments will be accepted at the meetings and two weeks after the meetings. Comments made after the meeting date will then be collected and summarized. A summary of comments will be provided to the Implementation Partners and Stakeholders, as well as posted on the website.

Meeting #2 – A second stakeholder meeting will be held in order to discuss how the project team will address comments and concerns raised during Meeting #1. Stakeholders will also be briefed on status of traffic analyses, alternatives development, and other technical issues. Following this meeting, the attendees will be provided with a summary of the discussion. This summary, along with the presentation and handouts will be published to the website.

Meeting #3 – Similar to the first meeting task, Meeting #3 will include a combination of public involvement meetings: one with stakeholders followed by an open house-style public meeting later the same day. TranSystems will present the alternatives, simulations, and draft comparison matrix for discussion. The intent will be to discuss the alternatives and solicit feedback from the stakeholders and the public. Stakeholders and property owners in the study area will be mailed notification at least two weeks prior to the meeting date, and will include respective times and locations of the meetings. For the open house, a press release will be produced for the meetings and two weeks after the meetings. Comments made after the meeting date will then be collected and summarized. A summary of comments will be provided to the Implementation Partners and Stakeholders, as well as posted on the website.

Project Newsletter – An electronic newsletter will be sent out to the project contact list between Meeting #1 and Meeting #3. It will update the stakeholders and the general public regarding ongoing project activities and schedule. The newsletter will be provided to property owners within the study area, stakeholders, additional people who have expressed interest in the project, local officials, and various news outlets.

Website – A project website has been created for the overall Eastern Corridor plan. Materials for Segment IV(a) will be provided to Entran for inclusion on this website, including mapping, status updates and ODOT-approved documents/deliverables. The website will allow for project-related information to be easily accessible at all times to the public. Contact information for the project team will be included.

Schedule

An approximate timeline of public involvement activities is summarized below. The exact dates, times and locations will be determined as the project progresses.

Activity	Timeframe
Develop project website and update	May 2010, continuous throughout project
Identify stakeholders/property owners and prepare contact database	July/August 2010
Develop and send introductory email/letter to mailing list	September 2010
Meeting #1 – Stakeholder and Public Open House to introduce project, discuss Purpose & Need, and seek input regarding evaluation criteria	September 2010
Newsletter creation and distribution to mailing list within study area	October 2010
Meeting #2 – Stakeholder update meeting to discuss progress	November 2010
Meeting 3# Stakeholder and Public Open House to discuss, compare and seek comments on alternatives	December 2010

Modifications to the Plan

A Public Involvement Plan is never final until the project is complete. The approaches being used for this project will continue to be examined during the progress of the work and adjusted as necessary. For instance, if appropriate representation from certain neighborhoods or communities is not being received, such as Environmental Justice populations, extra efforts will be made to reach out to those areas or specific populations.

Purpose and Need Statement—August 2011 SR 32 Eastgate Area Improvements

Eastern Corridor, Segment IV(a) CLE-32-2.25 (PID 82370)

I.0 PROJECT HISTORY

The State Route 32 Eastgate Area Improvements, also known as Eastern Corridor Segment IV(a), traces its roots to the Eastern Corridor Major Investment Study (MIS) completed in April 2000 by Ohio Kentucky Indiana Regional Council of Governments (OKI), the regional planning organization in southwestern Ohio. The purpose of the MIS was to identify alternatives to meet the regional transportation needs while balancing cost, social and economic benefits, and environmental impacts. The MIS studied a 200-square-mile area and ultimately recommended a multi-modal plan for the Eastern Corridor area, including Transportation Management System improvements, new and expanded bus transit service, new rail service, and highway capacity improvements.

Building upon the recommendations of the MIS for the overall study area, a Tier I Environmental Impact Statement (EIS) was prepared to identify strategies for improving long-term travel mobility specifically between the City of Cincinnati and its eastern suburbs. With this refined geographic focus, the Tier I EIS was a detailed examination of the range of alternatives that would meet the four general recommendations of the MIS. Therefore, within a I4-square-mile study area roughly centered on SR 32, several feasible alternatives were presented by mode and geographic area, to be further developed in Tier 2 environmental analyses. Of the modes, highway capacity alternatives were divided into four segments within the study area (Segments I through IV). Specifically, alternatives in Segment IV focused on the consolidation and management of access points in order to establish an improved SR 32 as a limited access arterial roadway east of I-275 to Olive Branch-Stonelick Road. Later, the interchange at SR 32 and I-275 was broken out as a separate project, and Segment IV(a) was defined by Eastgate Boulevard to the west and Olive Branch-Stonelick Road to the east.

The SR 32 corridor, including Segment IV(a), plays an important role in the Appalachian Development Highway System, serving the movement of raw materials, finished goods, and services to and from Interstates 71 and 75 via I-275. In addition to movement of goods and services, SR 32 serves as a direct route for employees from the eastern rural communities employed at Clermont County companies. Numerous businesses and residential developments are situated along the corridor and accessed directly or indirectly from SR 32.

2.0 PROJECT PURPOSE

The purpose of the Segment IV(a) project is to serve current and projected travel demand, reduce congestion and delay, and improve roadway safety, consistent with local transportation and economic development goals. The identified needs forming the basis of this purpose are each described in detail below.

3.0 IDENTIFIED NEEDS

3.1 TRAVEL DEMAND

SR 32 is an urban principal arterial throughout the Segment IV(a) study corridor. The SR 32 corridor provides two lanes in each direction, divided by a grassy median, and turn lanes at each intersection. The ADT for 2010 varies between 50,520 and 56,820, increasing with proximity to the I-275 interchange at the west end of the study corridor. There are three signalized intersections on SR 32 within the project limits: Glen Este-Withamsville Road, Elick Lane/Bach Buxton Road, and Old SR 74. (See Figure 1, Study Area Map.)

Certified traffic for these intersections and the SR 32 corridor was provided by ODOT Office of Technical Services in 2007 under PID 76289. The data presented 2010 and 2030 AM and PM design hour volumes, noting that the 2010 volumes were interpolated from the existing (2007) counts and the projected 2030 volumes. These ADT numbers are presented in Table I below.

Table 1: Average Daily Traffic (ADT)					
Road Segment	2010 ADT	2030 ADT	% Increase		
SR 32 (west of Glen Este)	61,800*	83,800*	36%		
SR 32 (btw Glen Este and Elick)	56,820	80,540	42%		
SR 32 (btw Elick and Old SR 74)	52,090	71,410	37%		
SR 32 (east of SR 74)	50,520	67,900	34%		
Glen Este (north of SR 32)	7,700*	9,800*	27%		
Glen Este (south of SR 32)	10,200*	13,700*	34%		
Elick Lane (north of SR 32)	6,380	6,690	5%		
Bach Buxton (south of SR 32)	13,110	14,390	10%		
Old SR 74 (north of SR 32)	9,540	10,340	8%		
Old SR 74 (south of SR 32)	16,390	18,030	10%		

* ADT estimated from ODOT-certified design hourly volumes.

With a mix of heavy commercial, industrial and residential development within the Eastern Corridor, combined with extensive commuter traffic along SR 32, a 1995 origin-destination survey reported in the Eastern Corridor MIS found that 50% of trips during peak periods were local and 50% were external. The result is a crossing configuration in traffic patterns in which through traffic is in conflict with heavy local traffic within the corridor.

3.2 CONGESTION AND DELAY

The standard criterion used to define quality of traffic flow is "level of service" (LOS). This is a qualitative assessment of factors such as speed, volume, geometry, delays, and ease of maneuvering. There are six level of service grades that represent all of the possible operating conditions; these levels range from LOS A, representing the best operating condition, to LOS F, representing the worst. Typically in urbanized areas, a roadway component is seen as acceptable if the corresponding level of service is LOS D or better.

Intersection capacity analyses for the AM and PM peak hours were performed at intersections within the study area using existing (year 2010) and 2030 no-build traffic volumes, assuming existing roadway configurations and traffic control. The resulting levels of services are shown in Table 2 and Table 3. Analyses resulting in LOS E and F are shown in red.

Based upon analyses of existing counts (shown in Table 2), most of the intersections along the SR 32 corridor are operating at a poor LOS during either the AM, PM or both peak hours. These include the signalized intersections of SR 32 with Glen Este-Withamsville Road, Elick Lane/Bach Buxton Road, and Old SR 74, where the overall intersection is at LOS E or F with several or all approaches at LOS E or F. The outbound movement from the unsignalized side streets (Fayard Drive and Glen Willow Lake Lane) experience considerable delays and operate at LOS F during either or both peak hours.

Table 2 No Build Capacity Analyses of Existing Counts

ntersection #	Intersection	Intersection Control	Assumed Str East-West	eet Orientation North-South	Approach	2010 Delay) AM LOS	2010 Delay) PM LOS				
1	Olive Branch Stonelick Road	STOP-sign	Lexington	Olive Branch	Westbound	9.3	A	9.6	A				
ļ	& Lexington Run Drive	STOF-sign	(stop controlled)		Southbound	7.3	A [L]	7.5	A [L B				
2	Olive Branch Stonelick Road & SR 32 WB Ramps	STOP-sign	SR 32 WB Ramps (stop controlled)	Olive Branch	Westbound Northbound	11.5 7.5	B A [L]	12.2 7.6	A [L				
3	Olive Branch Stonelick Road	STOP-sign	SR 32 EB Ramps	Olive Branch	Eastbound	11.3	В	13.0	В				
	& SR 32 EB Ramps	0	(stop controlled)		Southbound Eastbound	7.7 13.1	A [L] B	8.4 15.6	A [L B				
4	Olive Branch Stonelick Road	Traffic Signal	Old SR 74	Olive Branch	Westbound	7.4	A	3.9	A				
7	& Old SR 74	Hame olghai		Onve Branon	Southbound Intersection	13.1 10.9	В В	15.5 10.9	B				
F	Old CD 74 & Chaular Daad		Old SR 74	Shayler	Westbound	8.0	A [L]	8.5	A [L				
5	Old SR 74 & Shayler Road	STOP-sign	UID SR 74	(stop controlled)	Northbound	15.3	С	20.2	C				
					Eastbound Westbound	46.4 45.7	D D	157.7 242.9	F				
6	SR 32 @ Old SR 74	Traffic Signal	SR 32	Old SR 74	Northbound	21.5	C	54.7	D				
					Southbound Intersection	46.4 42.5	D D	244.0 193.0	F				
7			Heitman		Westbound	11.2	B	193.0	B				
7	Old SR 74 & Heitman Lane	STOP-sign	(stop controlled)	Old SR 74	Southbound	8.1	A [L]	8.3	A [L				
8	Old SR 74 & Elick Lane	STOP-sign	Old SR 74	Elick (stop controlled)	Westbound Northbound	7.8 15.2	A [L] C	9.4 36.9	A [L				
9	Old SR 74 & Schoolhouse	STOP-sign	Old SR 74	Schoolhouse	Eastbound	8.5	A [L]	8.5	A [L				
•	Road	or or sign		(stop controlled)	Southbound Eastbound	14.6 15.1	B	20.4 20.2	C C				
40		Traffia Oissaal		Taskauna	Westbound	27.2	C	20.2	C C				
10	Old SR 74 & Tealtown Road	Traffic Signal	Old SR 74	Tealtown	Southbound	27.5	С	25.2	С				
					Intersection Eastbound	25.2 27.0	с С	22.5 51.7	C D				
	Old SR 74 & Glen Este				Westbound	28.7	C	42.2	D				
11	Withamsville	Traffic Signal	Old SR 74	Glen Este	Northbound Southbound	22.4 28.6	C C	51.2 44.0	D				
					Intersection	20.0 27.7	c	44.0 48.4	D				
					Eastbound	17.1	В	18.7	В				
12	Old SR 74 & Eastgate Blvd.	Traffic Signal	Old SR 74	Eastgate Blvd.	Westbound Northbound	14.7 16.3	B	11.7 18.0	B				
		Hamo olghai		Euolgalo Bira.	Southbound	17.2	В	18.5	В				
					Intersection	15.4	B	16.3	B				
					Eastbound Westbound	14.4 14.6	B	16.4 16.6	B				
13	Eastgate Blvd. & Eastgate North Drive	Traffic Signal	Eastgate North	Eastgate Blvd.	Northbound	14.4	В	15.0	В				
	Holdi Billo				Southbound Intersection	13.3 13.8	В В	16.2 15.8	B				
					Westbound	13.2	B	15.5	B				
14	SR 32 WB Ramps & Eastgate	Traffic Signal SR	SR 32 WB Ramps	Eastgate Blvd.	Northbound	12.9	В	15.4	В				
	Blvd.			Ũ	Southbound Intersection	13.1 13.0	В В	13.7 14.8	B				
		Traffic Signal SR 32			Westbound	18.5	B	23.3	С				
16	SR 32 EB Ramps & Eastgate Blvd.		SR 32 EB Ramps	32 EB Ramps Eastgate Blvd.	Northbound	18.8	B	23.8	C				
	DIVU.				Southbound Intersection	10.3 17.2	В В	11.6 21.1	B				
				Eastbound	26.1	С	29.3	С					
17	Eastgate Blvd. & Eastgate	Traffic Signal	Traffic Signal Eastgate South	raffic Signal Eastgate South Eastgate Blvd.	Westbound Northbound	25.9 23.2	C C	28.3 29.6	C C				
	South Drive	Hamo olghai			Southbound	26.2	C	29.7	C				
					Intersection	25.3	C	29.3	C				
					Eastbound Westbound	18.1 13.5	B	20.0 14.4	C B				
18	Eastgate Blvd. & Aicholtz Road	Traffic Signal	Aicholtz	Aicholtz	nal Aicholtz	Traffic Signal Aicholtz Eastgate Blvd.	Eastgate Blvd.	Northbound	17.9	В	20.4	С	
					Southbound Intersection	12.6 13.8	B	18.1 18.3	B				
19	Eastanto Squaro & Ainholtz	STOP-sign	Aicholtz	Eastgate Square	Eastbound	13.0	В	10.0					
19	Eastgate Square & Aicholtz	STOP-sight	AICHOILZ	(stop controlled)	Southbound	44.0	5	47.4	D				
	Glen Este Withamsville Road		l Aicholtz Glei	-	Eastbound Northbound	11.3 5.7	B	17.1 11.7	B				
20	& Aicholtz Road	Traffic Signal		Glen Este	Southbound	11.5	В	16.5	В				
				Intersection Eastbound	7.9 15.0	A B	15.1 22.1	B					
	Glen Este Withamsville Road				Westbound	14.3	B	10.7	B				
21	& Clepper Drive	Traffic Signal	Clepper	Glen Este	Northbound	15.3	B	21.9	C				
					Southbound Intersection	15.1 15.2	B	22.3 21.8	С С				
					Eastbound	44.4	D	70.7	E				
22	SR 32 & Glen Este	Traffic Signal	SR 32	Glen Este	Westbound Northbound	87.0 84.7	F	48.2 70.2	D				
~~	Withamsville Road	Tamo Oignai	01102	JION LOLG	Southbound	88.2	F	53.3	D				
					Intersection	72.7	E	61.7	E				
					Eastbound Westbound	17.5 16.0	B	22.8 11.8	C B				
23	Glen Este Withamsville Road & Eastgate North Drive	Traffic Signal	Eastgate North	Glen Este	Northbound	9.4	A	18.4	В				
					Southbound Intersection	17.3 15.0	В В	23.1 20.4	С С				
				Equand	Eastbound	18.3	C [L]	15.1	C[
24	SR 32 & Fayard Drive	STOP-sign	SR 32	Fayard (stop controlled)	Northbound	10.0	A	13.7	В				
	SR 32 & Glen Willow Lake			Glen Willow Lake	Southbound Westbound	212.1 14.1	F B [L]	15.2 28.7	C D [
25	Lane	STOP-sign	SR 32	(stop controlled)	Northbound	69.2	F	7383.0	F				
					Eastbound	41.5	D	71.1	E				
26	SR 32 & Elick Lane Traffic Signal SR 32	SR 32	Elick	Westbound Northbound	51.7 49.8	D D	43.9 69.0	D					
		- 0	-	-	Southbound	50.3	D	69.9	E				
	SR 32 & Eastwood Drive			Eastwood/Newberry	Intersection Northbound	47.6 10.0 (-)	D A	63.4 14.6	E B				
27	(Newberry Drive)	STOP-sign	SR 32	(stop controlled)	Southbound	10.0 (-)	C A	14.6	B				
				· · · · /	Eastbound	13.4	В	20.5	С				
	Bach-Buxton Road & Shayler	Traffic Signal	Shavler	Bach-Buxton	Westbound Northbound	16.3 14.9	B	16.9 20.1	B				
28	,	Traffic Signal Shayler	I rattic Signal Shayler Bach-Bux	Shayler	Shayler Ba	Snayler	I Shayler	DUCH-DUXIUII		14.5	0	LU.1	
28	Road		onayior		Southbound	16.4	В	18.6	В				

Note: Delay in seconds. Intersection #15 (Eastgate Blvd NB @ SR 32 WB on Ramp) is not included as it is a free flow movement (no traffic control). Intersection #19 (Eastgate Square & Aicholtz Road) did not have existing traffic volumes for analysis.

Table 3 No-Build Capacity Analyses for 2030 Traffic Projections

Intersection #	Intersection	Intersection Control	Assumed Str East-West	reet Orientation North-South	Approach	2030 Delay	AM LOS	2030 Delay	PM LOS
1	Olive Branch Stonelick Road	STOP-sign	Lexington	Olive Branch	Westbound	15.5	С	13.0	B
I	& Lexington Run Drive	STOF-sight	(stop controlled)	Olive Bialich	Southbound	7.5	A [L]	8.1	A [L]
2	Olive Branch Stonelick Road & SR 32 WB Ramps	STOP-sign	SR 32 WB Ramps (stop controlled)	Olive Branch	Westbound Northbound	370.9 9.3	F A [L]	244.8 8.4	F A [L]
3	Olive Branch Stonelick Road	STOP-sign	SR 32 EB Ramps	Olive Branch	Eastbound	29.0	D	171.2	F
3	& SR 32 EB Ramps	STOP-sign	(stop controlled)	Olive Branch	Southbound	8.8	A [L]	11.0	B [L]
	Olive Branch Stonelick Road				Eastbound Westbound	27.9 4.6	C A	103.2 2.4	F A
4	& Old SR 74	Traffic Signal	Old SR 74	Olive Branch	Southbound	28.0	C	68.8	E
					Intersection	19.5	B	53.0	D
5	Old SR 74 & Shayler Road	STOP-sign	Old SR 74	Shayler	Westbound	11.0	B [L]	10.6	B [L]
-				(stop controlled)	Northbound	237.1 366.8	F	1258.0	F
					Eastbound Westbound	216.3	F F	363.5 337.9	F
6	SR 32 @ Old SR 74	Traffic Signal	SR 32	Old SR 74	Northbound	367.7	F	51.6	D
					Southbound	45.8	D	364.2	F
			Heitman		Intersection Westbound	253.6 20.9	F C	313.0 29.5	F C
7	Old SR 74 & Heitman Lane	STOP-sign	(stop controlled)	Old SR 74	Southbound	8.8	A [L]	10.7	B [L]
8	Old SR 74 & Elick Lane	STOP-sign	Old SR 74	Elick	Westbound	11.8	B [L]	15.3	C [L]
0		or or -sight		(stop controlled)	Northbound	3094.0	F	1582.0	F
9	Old SR 74 & Schoolhouse	STOP-sign	Old SR 74	Schoolhouse	Eastbound Southbound	9.9 36.0	A [L] E	9.7 149.0	A [L]
	Road			(stop controlled)	Eastbound	29.2	C	23.8	C C
					Westbound	53.3	D	39.8	D
10	Old SR 74 & Tealtown Road	Traffic Signal	Old SR 74	Tealtown	Northbound	24.4	С	39.3	D
					Southbound Intersection	52.0 44.2	D D	26.9 28.9	С С
					Eastbound	125.8	F	52.0	D
	Old SR 74 & Glen Este				Westbound	121.9	F	39.7	D
11	Withamsville	Traffic Signal	Old SR 74	Glen Este	Northbound	13.7	В	53.6	D
					Southbound	51.1 102.6	D F	34.5 48.6	C D
					Intersection Eastbound	23.8	F C	48.6 22.9	C
					Westbound	17.5	B	13.8	B
12	Old SR 74 & Eastgate Blvd.	Traffic Signal	Old SR 74	Eastgate Blvd.	Northbound	24.5	С	22.9	С
					Southbound	23.2	C	14.1	B
					Intersection Eastbound	22.2 15.2	C B	20.9 15.9	C B
					Westbound	14.3	B	17.7	B
13	Eastgate Blvd. & Eastgate North Drive	Traffic Signal	Eastgate North	Eastgate Blvd.	Northbound	15.1	В	18.2	В
	Notat Drive				Southbound	14.6	В	14.5	В
					Intersection	14.8	B	17.2	B
	SR 32 WB Ramps & Eastgate				Westbound Northbound	14.6 13.6	B	15.9 16.0	B
14	Blvd.	Traffic Signal	SR 32 WB Ramps E	Eastgate Blvd.	Southbound	15.2	B	14.5	B
					Intersection	14.6	В	15.6	В
				Westbound	18.9	B	23.6	C	
16	SR 32 EB Ramps & Eastgate Blvd.	Traffic Signal	SR 32 EB Ramps	Eastgate Blvd.	Northbound Southbound	19.5 13.4	B	23.2 9.8	C A
	Bird.				Intersection	16.4	B	19.7	B
				Eastbound	28.9	С	31.9	С	
47	Eastgate Blvd. & Eastgate	T (7 0)		Westbound	29.1	C	31.9	C	
17	South Drive	Traffic Signal	Eastgate South	Eastgate Blvd.	Northbound Southbound	21.3 28.8	C C	31.7 26.0	C C
					Intersection	27.2	č	30.2	č
					Eastbound	18.7	В	21.8	С
40	Eastgate Blvd. & Aicholtz	Traffic Oirrad	A in the last	Fastasta Dhul	Westbound	15.5	B	16.2	B
18	Road	Traffic Signal	Aicholtz	Eastgate Blvd.	Northbound Southbound	18.9 14.8	B	22.1 19.7	C B
					Intersection	15.8	B	20.0	C
19	Eastgate Square & Aicholtz	STOP-sign	Aicholtz	Eastgate Square	Eastbound	8.0	A [L]	9.5	A [L]
15		oron sign	7 NOTION2	(stop controlled)	Southbound	10.6	B	253.9	F
	Glen Este Withamsville Road				Eastbound Northbound	14.4 6.3	B A	17.8 12.5	B
20	& Aicholtz Road	Traffic Signal	Aicholtz	(alen Este	Southbound	15.0	B	12.3	B
					Intersection	10.4	В	15.7	В
					Eastbound	19.8	B	118.3	F
21	Glen Este Withamsville Road	Traffic Signal	Clepper	Clepper Glen Este	Westbound Northbound	19.0 17.9	B	14.6 17.8	B
- •	& Clepper Drive	orginal	Cioppoi	0.011 2010	Southbound	20.0 (-)	B	116.9	F
			ļ		Intersection	19.1	В	90.3	F
					Eastbound	127.9	F	109.3	F
22	SR 32 & Glen Este	Traffic Signal	SR 32	Glen Este	Westbound Northbound	165.4 160.2	F F	174.4 152.9	F
	Withamsville Road		511.02		Southbound	164.0	F	173.0	F
					Intersection	150.5	F	144.2	F
					Eastbound	23.1	С	26.6	C
23	Glen Este Withamsville Road	Traffic Signal	Eastgate North	Glen Este	Westbound Northbound	18.0 15.2	B	20.1 19.8	C B
20	& Eastgate North Drive	Tame olynai			Southbound	23.5	C	27.1	C
					Intersection	20.5	С	23.1	C
				Fayard	Eastbound	17.9	C [L]	20.4	C [L]
24	SR 32 & Fayard Drive	STOP-sign	SR 32	(stop controlled)	Northbound Southbound	11.4 >10,000	B	15.9 >10,000	C F
	SR 32 & Glen Willow Lake			Glen Willow Lake	Southbound Westbound	>10,000	F C[L]	>10,000	F C[L]
25	Lane	STOP-sign	SR 32	(stop controlled)	Northbound	94.4	F	1823.0	F
					Eastbound	47.2	D	51.9	D
		T (2 0)		<u> </u>	Westbound	110.7	F	120.3	F
26	SR 32 & Elick Lane	Traffic Signal	SR 32	Elick	Northbound Southbound	101.4 108.6	F F	122.0 119.5	F
					Intersection	108.6 85.3	F	96.5	F
07	SR 32 & Eastwood Drive		00.00	Eastwood/Newberry	Northbound	10.8	B	12.4	B
27	(Newberry Drive)	STOP-sign	SR 32	(stop controlled)	Southbound	17.5	С	17.5	C
					Eastbound	14.3	В	208.5	F
28	Bach-Buxton Road & Shayler	Traffic Signal	Shayler	Rach-Ruyton	Westbound Northbound	96.9 32.6	F C	212.5 132.3	F
28 Road Traffic Signal Shayl	Shayler	Bach-Buxton		<u>32.6</u> 90.7	<u> </u>	211.7	F		
	1				Southbound	907	F	Z117	

Intersection #15 (Eastgate Blvd NB @ SR 32 WB On Ramp) is not included as it a free flow movement (no traffic control). *[L] = Delay shown is for left turn movement only.

For 2030 (shown in Table 3) many of the intersections will operate at LOS E or F during the peak hours. The outbound movements from the unsignalized side streets along Old SR 74 and SR 32 will experience long delays and will operate at LOS E or F. The SR 32 ramps at Olive Branch Stonelick Road (unsignalized) will also operate at LOS E or F. All the at-grade signalized intersections along SR 32 will operate at an overall LOS F with all or several approaches operating at LOS E or F.

The desired condition is for the failing SR 32 intersections to function at LOS D or better, and for the local network within the Segment IV(a) study corridor to continue operating at acceptable levels of service. Reducing congestion to acceptable levels, and thereby improving regional travel times, is particularly important because of the role of SR 32 in goods movement within the region.

3.3 IMPROVE SAFETY

This corridor has regularly appeared on the ODOT high crash location list, known as the Highway Safety Program (HSP). ODOT's CLE-32 2.00-4.79 Corridor Safety Study, based on the 2007 HSP, states that CLE-32 2.00-4.00 is a Hot Spot location, ranked #22, while CLE-32 2.90-4.79, ranked #76, shows up as a congestion location. For purposes of this document, crash data for SR 32 was supplied by ODOT for the years 2007-2009. After review and mapping of the crash locations, 480 crashes were determined to be located within the study area. Following a review of the OH-1 reports, 13 of the 480 crashes could not be specifically logged on SR 32 or defined as intersection-related. Therefore, while the summary below captures all 480 crashes, the calculations have been based on only the 467 crashes that were verified as intersection or non-intersection related. The resulting crashes have been categorized as intersection or non-intersection crashes and were further broken down by type, location and year. The summary below indicates a trend of rear end crashes driven largely by congestion resulting from the high traffic volume and existing at-grade intersections, signalized and unsignalized, within this stretch of highway. The number of crashes by year shows a slightly higher frequency in 2007, but a generally similar trend in terms of number in each of the three years evaluated.

Crash Type

- 77.29% Rear End (371)
- 9.79% Side Swipe (47)
- 4.58% Angle (22)
- 3.33% Collision w/ Fixed Object (16)
- 5.00% Other (24)

Crash Rates – Section Crash Rate

Crash Location

- 58.75% Non-intersection (282)
- 40.21% Intersection (193)
 0.63% Driveway Access Related (3)
- 0.42% Not Stated (2)

Number of Crashes by Year

- 36% in 2007 (174)
- 32% in 2008 (152)
- 32% in 2009 (154)

As part of the crash analysis, the study corridor was divided into five sections between Eastgate Square and Olive Branch-Stonelick Road, and a crash rate per million vehicles was calculated for each section. Table 4 shows the crash rates and severity index for five segments along the study corridor. The severity index is intended to highlight the proportion of severe crashes, that is, those involving injury or fatality. Severity index is computed by dividing the sum of the injury and fatality crashes by the total number of crashes on the segment. Average crash rates were obtained from ODOT's 2009 report, covering the years 2007-2009. These statewide rates exclude intersection and intersection-related crashes. The segment crash rates calculated in Table 4 below adhered to this same methodology. Four of the five segments ranked above the statewide average, while the remaining one had a severity index higher than the mean + standard deviation for the sections in this study. These entries have been highlighted in Table 4. Because the segment crash rates can be compared against the statewide averages,

these results suggest that the SR 32 corridor is experiencing a substantially higher rate of crashes compared to other similar roadways in Ohio. In essence, this points to a safety problem. The severity index shows that on average 30% of the SR 32 segment crashes resulted in injury or fatality, with the easternmost segment experiencing this outcome in nearly half of the recorded crashes.

Table 4: Crash Rates and Severity Index for SR 32 Segments				
Road Segment (west to east)	Total Crashes	Severity Index	Crash Rate	State-wide Average*
Eastgate Square to Glen Este-Withamsville	39	0.31	3.00 acc/mvm	1.11 crash/mvm
Glen Este-Withamsville to Fayard	72	0.32	5.35 acc/mvm	1.11 crash/mvm
Fayard to Bach Buxton/Elick	100	0.26	3.98 acc/mvm	1.11 crash/mvm
Bach Buxton/Elick to Old SR 74	52	0.13	1.90 acc/mvm	1.11 crash/mvm
Old SR 74 to Olive Branch-Stonelick	13	0.46	0.36 acc/mvm	1.11 crash/mvm
Segment Total	276			
Mean		0.30		
Standard Deviation		0.12		
Mean + Standard Deviation		0.41		

* The statewide average crash rates can be found on ODOT's web page under Transportation System Development > Systems Planning & Program Management > Capital Programs > Crash Rate Information.

Crash Rates – Intersection Crash Rate

The SR 32 study corridor has seven intersections that were determined to be evaluated for intersection crash rates. Table 5 shows the crash rates for the six intersections, as well as the mean + standard deviation for the sample set. It should be noted that ODOT does not have statewide intersection crash rates available for comparison on an accidents per million entering vehicles basis. Two intersections (Glen Este-Withamsville Road and Elick Lane/Bach Buxton Road) have crash rates higher than the mean + standard deviation value of 1.09 and are thus highlighted in the table as critical crash locations. This indicates that these two intersections have experienced an unusually high rate of crashes as it relates to the SR 32 study corridor.

Table 5: Crash Rates for SR 32 Intersections					
Intersection (west to east)	Total Crashes	Calculated Crash Rate			
Eastgate Square—North	5	0.20 acc/mev			
Eastgate Square—South	1	0.04 acc/mev			
Glen Este-Withamsville	96	1.53 acc/mev			
Fayard	10	0.22 acc/mev			
Bach Buxton/Elick	63	1.15 acc/mev			
Newberry	2	0.09 acc/mev			
Old SR 74 (Batavia Pike)	14	0.24 acc/mev			
Intersection Total	191				
Mean		0.49			
Standard Deviation		0.59			
Mean + Standard Deviation		1.09			

ODOT has undertaken various safety studies and implemented improvements to address known safety problems on the SR 32 corridor. Specifically, signal timing adjustments were implemented as part of a 2007 signal timing and phasing study. The *Pilot for Systematic Signal Timing and Phasing Program, Final Traffic Signal Timing Report for SR-32* recommended and evaluated optimized and coordinated signal timing plans on SR 32 from Glen Este Withamsville Road to Cincinnati-Batavia Pike. Separate from the operational improvements, geometric modifications have also been considered including the recent construction of an eastbound right turn lane on SR 32 at the Elick Lane intersection.

3.4 CONSISTENCY WITH LOCAL TRANSPORTATION AND ECONOMIC DEVELOPMENT GOALS

State Transportation Planning

The State of Ohio's Long Range Multi-Modal Transportation Plan is titled Access Ohio 2004-2030. It includes a comprehensive analysis of existing transportation conditions, a 26-year projection of the needs and recommendations for Ohio's multi-modal transportation system, including roads, bridges, bicycle and pedestrian trails, rail systems, and air and water ports. Its vision and the projects and recommendations identified are distilled from long-range plans researched and compiled by regional Metropolitan Planning Organizations (MPO), ODOT's Safety and Congestion analysis, ODOT's Interstate Reconstruction Program, local public transit officials, the Ohio Rail Development Commission and many others, including hundreds of projects identified by state and local officials.

Macro-Highway Corridor 21 is a 200 mile east/west route that serves southern Ohio from Cincinnati to Marietta following routes SR 32, US 50 and SR 7. The corridor has been designated by the federal government as part of the Appalachian Development Highway System (ADHS). Due to the high cost of building roadways through the Appalachian's rocky terrain, most of the region had been bypassed by the Interstate Highway System and subsequently suffered economic implications. Prior to this important four-lane, limited access highway corridor being constructed, most counties within southern Ohio were serviced with only two-lane winding roads that were slow to drive and unsafe. Today thanks to the ADHS, southern Ohio residents and businesses have access to Interstates 70, 71, 75, and 77 from Corridor 21.

Access Ohio Objectives for Corridor 21:

- Improve mobility for freight and through traffic
- Complete US 50/Corridor D linkage into West Virginia via a new Ohio River crossing
- Support development of industrial and commercial areas
- Address safety and congestion deficiencies throughout the corridor
- Implement recommendation for the Eastern Corridor Study

Local Transportation Planning

At the local level, the various project segments and actions outlined in the Eastern Corridor Tier I EIS are being coordinated with land use, development, preservation and transportation plans within the individual jurisdictions within the Eastern Corridor in Clermont and Hamilton counties. Specifically, the Eastern Corridor transportation recommendations are consistent with and are incorporated in the SR 32 Corridor Thoroughfare Plan and Access Clermont, which is Clermont County's Long Range Plan. Improvements to the local network will affect how traffic accesses SR 32. Likewise, changes in access to the local network from SR 32 will affect how traffic utilizes the local network.

Direct local public investment in water, sewer and road infrastructure projects within the SR 32 corridor totals \$89 million in completed and planned improvements. A total of \$9.5 million in local road projects have recently been completed in the study area, and at least \$4.8 million in planned roadway projects adjacent to the SR 32 corridor will affect SR 32.

Other local studies that are relevant to SR 32 include: Green Infrastructure Concept Master Plan, February 2005; Eastgate Market Study, December 2007; and studies provided in support of the funding application to the Transportation Review Advisory Council (TRAC) for the adjacent project CLE-275-8.90.

Preserve and Support Local Economic Development

In addition to addressing critical safety, travel demand and congestion issues, transportation solutions for Segment IV(a) should also strive to preserve the economic vitality of the area. While SR 32 serves as a travel corridor for east-west commuters, it also provides local access to important commercial and retail development. The goods and services provided to local residents are as vital as the economic contributions are to the County as a whole. While the interface between the through-traffic and local traffic is the heart of the transportation problem, the challenge is to solve the problem in such a way as to minimize impact to the business community along SR 32.

4.0 SUMMARY

CLE-SR32-2.25 Segment IV(a) is part of the larger Eastern Corridor, a multi-modal family of projects in Hamilton and Clermont Counties, Ohio. As stated in the Tier I EIS, the purpose of the Eastern Corridor overall projects is to implement a multi-modal transportation program consistent with the adopted long-range plan for the region, addressing priority needs and furthering project goals established in the major investment study phase. Transportation recommendations were divided by mode, and recommendations for the highway mode were divided into four segments along SR 32. Segment IV in Clermont County represents the area between I-275 and Olive Branch-Stonelick Road.

The I-275 interchange was broken out as a separate project, and the west end of Segment IV(a) was defined as Eastgate Blvd.

The purpose of the Segment IV(a) project is to:

- Serve current and projected travel demand
- Reduce congestion and delay
- Improve roadway safety
- Be consistent with local transportation and economic development goals

5.0 LOGICAL TERMINI

Based upon the identified congestion and safety problems, the termini for the proposed improvements along SR 32 are Eastgate Boulevard to the west and Olive Branch-Stonelick Road to the east. These limits are specified as part of the Tier I Record of Decision for the Eastern Corridor.

Because changes to SR 32 have the potential to affect the local network and vice versa, it will be important to consider local road improvements necessary as a result of changes to the operation of SR 32. Therefore, the initial study area will incorporate the area from Old SR 74 on the north and Aicholtz Road—Clough Pike—Shayler Road—Old SR 74 on the south. (See Figure I, Study Area Map.) Traffic studies also extend to the nearby intersection of Bach-Buxton Road and Shayler Road just south of the study area.

Red Flag Summary CLE-SR32-2.25 (PID 82370)

Project Name (County, Route, Section):	CLE-SR32-2.25	PID:	82370
Date Red Flag Summary Completed:	October 2010	Prepared By:	Andrew Schneider
City, Township or Village Name(s):	Union Twp.	ODOT Project Manager:	Jay Hamilton

GENERAL PROJECT PLANNING INFORMATION:

Project Description:

The Segment IV(a) project is located in Clermont County as part of the Eastern Corridor family of projects. Segment IV(a) work is intended to complete Steps 1 through 4 of ODOT's Project Development Process by supplementing the previous Tier 1 EIS. Capacity and safety improvements on SR 32 are the focus in this area, which may involve the addition of an interchange and elimination of several at-grade intersections. The project will evaluate local roads to determine additional changes necessary in coordination with the SR 32 improvements.

Project Limits/General Location:

The anticipated east and west study limits are Eastgate Blvd. and Stonelick Olive Branch Road. The anticipated northern and southern limits are Aicholtz Road and Old SR74 / Heitman Lane.

ODOT DISCIPLINE INVOLVEMENT:

List name and phone number of individual(s) representing each discipline during the site visit and preparation of the Red Flag Summary. One individual may represent multiple disciplines.

DISCIPLINE	NAME	PHONE NUMBER
ODOT County Manager**	Josh Wallace	513-933-6660
District Production Administrator**	Doug Miller	513-933-6603
District Planning and Programming Administrator**	Andrew Fluegemann	513-933-6597
ODOT Project Manager	Jay Hamilton	513-933-6584
CCEO Project Contact	Pat Manger	513-732-8068
CCTID Contact	Steve Wharton	513-289-9051
** The County Manager, Production	n Administrator and Planning/Program	mming Administrator (or qualified

representative) must attend the site visit.

EXTERNAL AGENCY INVOLVEMENT:

Indicate external agency involvement during identification of red flags. List the name and phone number of individual(s) representing each agency during the site visit.

AGENCY	NAME	PHONE NUMBER
FHWA Engineer***	Mark Vonder Embse	614-280-6854 x6876

Red Flag Summary CLE-SR32-2.25 (PID 82370)

EXTERNAL AGENCY INVOLVEMENT:				
*** The FHWA Engineer should b Administration.	e invited on projects expected to require approva	l from Federal Highway		

General Project Planning Information	
Structures: Bridge Number Structure File Number Bridge Number Structure File Number Bridge Number Structure File Number	Project Sponsor: <u>ODOT District 8</u> Is local legislation required? X Yes No Is FHWA oversight required? X Yes No Is project location on congestion/safety list? X Yes No
Estimated Cost: \$65,850,000 Funding Source(s): × Federal × State × Local □ Private Are funding splits required? □ Yes □ No Specify: Possibly Anticipated quarter and Fiscal Year of project award:	Problem identified by (indicate document date): □ District Work Plan □ Congestion Study □ Congestion Study <u>ODOT 2006</u> □ Major New □ MPO TIP □ MPO LRP □ Access Ohio ⊥ Hot Spot Location <u>ODOT 2006</u> × HSP Location <u>ODOT 2006</u> × HSP Location <u>ODOT 2007</u> × Other <u>Eastern Corridor Project Tier 1 FEIS</u>
 Are there any other projects in the area (ODOT, local or util on the proposed detour route for the ODOT project, a resurf X Yes No Specify. Coordination with CCTID and CCE Are there growth or land use changes in the area surroundin 	acing project a year after a pavement marking project)? O

• Are there growth or land use changes in the area surrounding the project that could have an impact on project scope? x Yes □ No Specify.____

Are there any known public involvement issues? \Box Yes X No Specify.

Briefly describe the Purpose and Need (Must be a separate document for Major Projects):

The purpose of the project is to improve capacity and safety; and reduce traffic congestion on a portion of SR 32 while accounting for local improvements to Aicholtz Rd., Old SR 74 and Heitman Lane. The safety and congestion issues stem from the fact that SR 32 functions both as a busy arterial for thru-traffic as well as a local collector/distributor for dense business and residential developments along the route. The mix of the thru-traffic from the local traffic is a critical issue of the project.

Legal S	Speed <u>55 MPH</u>	
Design	Speed <u>60 MPH</u>	
Traffic	Data:	
	Opening Year ADT: (2006 ODOT TSR, East of Eastgate Blvd) 38,850 ADT	
	Design Year ADT: <u>N/A</u>	
	Design Hourly Volume: <u>N/A</u>	
	Directional Distribution: <u>N/A</u>	
	Trucks (24 Hour B&C): (2006 ODOT TSR, East of Eastgate Blvd) 3,240 ADT	
	(Traffic data does not need to be certified for the Red Flag Summary.)	
0110-	Functional Classification:	
	Interstate, freeway	
Х	Arterial	
Х	Collector	
Х	Local	
Locale	:	
	Rural	
X Urban		
Nationa	al Highway System (NHS):	
NH	IS Routes: <u>SR 32</u>	
No	on-NHS Routes: Aicholtz Road, Bach Buxton Road, Heitman Lane, Olive-Branch Stonelick Road, Glen Este-	
Withan	nsville Road	
Resurfa	acing, Restoration and Rehabilitation (3R) Project?	

SITE VISIT:

A site visit is required for ALL projects. The site visit shall consist of visual inspection of the entire project area including the ditch lines, cut slopes, stream banks, bridge foundations, pavement, embankment slopes, etc.

Date(s) of site visit:

ODOT COUNTY MANAGER CONCERNS:

List any comments/requests from the ODOT County Manager.

ODOT County Manager indicated no concerns at this time.

ACCIDENT DATA:

Briefly summarize accident history. Indicate any design features that should be revised to increase safety.

From ODOT's CLE-32 from Eastgate to Old 74 (CLE-32 2.00-4.79) study 2007 Hot Spot #22/Congestion #76 712 crashes from 2005-2007 70% rear end collisions mostly related to congestion at Glen Este-Withamsville, Elick and Old 74 intersections. Countermeasures being considered are changes to signing, signal modifications and consideration of turn lane restrictions as well as grade separations along SR 32.

ENVIRONM	ENTAL ISSUES:	
		nether the following resources will be affected by the proposed project. he issue. Comments are required for any Yes or Possible responses.
Involvement	Resource/Feature	Location/Comments
□Yes □ No x Possible	Parkland, nature preserves and wildlife areas (<i>Name</i>)	Veterans Park is a recreational park with ball fields and other sports facilities at Clough Pike & Glen Este-Withamsville. Ivy Point Park is located at Ferguson Dr near Clough Pike. Both parks are owned by Union Township. Recreational fishing occurs at three reservoirs: Glen Willow Lake and Wuerdeman Lakes are located off of Bach Buxton Rd, and Jackson Lake is located at Old State Route 74 near Eastgate Mall. Ball fields (Maquier Field) exist near Old S. R. 74 and Heitman Ln.
□Yes □ No X Possible	Cemetery (Name)	The Olive Branch Cemetery, Old Cemetery, and the Old-Apple-German- Olive Branch Cemetery were identified within the study area near Olive Branch Road.
□Yes XNo □ Possible	Scenic River (Name)	There are no designated Wild or Scenic Rivers located within one mile of study area. Little Miami River a state and national scenic river is > 3 mi from the project study area.
□Yes □ No x Possible	Public Facilities (Name)	Willowville Elementary School is at Schoolhouse Rd and Eva Ln. Glen Este Middle School and Glen Este High School are located at 4342 Glen Este- Withamsville Rd. Clough Pike Elementary is located at 808 Clough Pike. Union Township Civic Center is at 4350 Aicholtz Rd and houses Union Township Administration, West Clermont Local School District administrative offices, a post office, Clermont Senior Services, public meeting rooms, a gymnasium, and an amphitheatre. Union Township Fire Station headquarters (Station 51) is located at 860 Clough Pike. Union Township Fire Station 50 is located at 1141 Old SR 74. Union Township Police Department and Service Department are located at 4312 Glen Este- Withamsville Rd.
□Yes □ No ⊠ Possible	Threatened and Endangered Species and/or habitat (e.g., Indiana bat trees, etc.)	Seven (7) federally listed species for Clermont County. Potential Indiana bat habitat may be present throughout portions of the study area.
□Yes □ No X Possible	Existing cat tails (Location)	Cattail is present in areas of disturbance, i.e. roadside ditches, as well as potential wetland areas and retention pond fringes.
$\Box Yes \Box No X Possible$	Existing wet areas (Location)	NWI and soil survey maps indicate a presence of wet areas throughout the study area. Previous field investigations indicate the presence of wet areas throughout the study area.
□Yes □ No X Possible	Streams, rivers and watercourses (Use Designation)	The project area is within the East Fork Little Miami River watershed. Salt Run and Shayler Run are also within the study area and are designated WWH- aquatic life use, AWS & IWS-water supply use, PCR-recreation use. Numerous unnamed streams exist within the area as well.
□Yes □ No X Possible	Historic Building(s) (Location)	Previously identified historic buildings are located within the study area. None are known to be eligible for the NRHP.
$\Box Yes \times No$ $\Box Possible$	Historic Bridge(s) (Location)	No bridges listed on the NRHP.
□Yes □ No × Possible	Farmland (Location)	Farmland was identified along Eastgate Boulevard and Aicholtz Road as well as west of Traction Lane.
⊠Yes □ No □ Possible	Air Quality non- attainment area or concerns (ozone particulate or air toxics)	Clermont County is a basic non-attainment county.
$\Box Y es \Box No$ $X Possible$	Landfill(s), Superfund Site(s) and/or evidence of hazardous materials (<i>Location</i>)	No mapped landfills or superfund sites. Numerous haz mat and LUST/UST sites of concern are located throughout project area.

ENVIRONMENTAL ISSUES:			
	Make a preliminary determination on whether the following resources will be affected by the proposed project. Comments must identify the location of the issue. Comments are required for any Yes or Possible responses.		
$\Box Yes \Box No X Possible$	Known Archaeological Sites	Previously identified archaeological sites are located in the study area. None are known to be eligible for the NRHP.	
□Yes □ No X Possible	Total Maximum Daily Load (TMDL) Streams	Salt Run is a Section 303(d) impaired water.	
	ODOT MS4 Phase 2 Regulated Areas	The entire project study area falls within an ODOT MS4 Regulated Area.	
□Yes □ No × Possible	Sensitive environmental justice areas	Locations to be determined as project planning continues.	
$\Box Yes \boxtimes No$ $\Box Possible$	Federal Emergency Management Agency (FEMA) floodplains	No special flood hazard areas were identified as occurring within the project study area.	
$\Box Yes \boxtimes No$ $\Box Possible$	Lake Erie Coastal Management Area	Project area is not located within the Lake Erie Coastal Management Area.	
$\Box Yes \boxtimes No$ $\Box Possible$	Sole Source Aquifers (Location)	No sole source aquifers are located within the project study area.	
$\Box Yes X No$ $\Box Possible$	Wellhead Protection Areas (Specify)	No wellhead protection areas are located within the project study area.	
$\Box Yes \Box No \\ \hline X Possible$	Does it appear that noise abatement will be an issue for the project?	There are several single-family and multi-family residential developments as well as a school, cemetery, and park within the project study area. Abatement may be feasible.	
□Yes □ No X Possible	Other environmental issues	Need to consider Veteran's Park, and several cemeteries near Olive Branch.	

GEOMETRIC ISS	UES:		
Use the design speed, design functional classification and available traffic data to make a preliminary determination as to the geometric standards for the project. Compare these requirements to accident data and impacts if deviations are being considered.			
Design Exception Required?	Design Feature	Preliminary Comments Regarding Justification	
□Yes X No □Possible □Not Applicable	Lane Width (including curve widening)		
□Yes X No □Possible □Not Applicable	Graded Shoulder Width		
□Yes X No □Possible □Not Applicable	Bridge Width		
□Yes X No □Possible □Not Applicable	Structural Capacity		
□ Yes □ No X Possible □ Not Applicable	Horizontal Alignment (including Excessive Deflections, Degree of Curve, Lack of Spirals, Transition/Taper Rates and Intersection Angles)	Reconnection of side roads near potential overpass location.	

GEOMETRIC ISSUES:			
Use the design speed, design functional classification and available traffic data to make a preliminary determination as to the geometric standards for the project. Compare these requirements to accident data and impacts if deviations are being considered.			
 □ Yes □ No × Possible □ Not Applicable 	Vertical Alignment (including grade breaks)	Reconnection of side roads near potential overpass location.	
□Yes □ No × Possible □ Not Applicable	Grades	Reconnection of side roads near potential overpass location.	
□Yes □No × Possible □ Not Applicable	Stopping Sight Distance		
□Yes X No □ Possible □ Not Applicable	Pavement Cross Slopes		
□Yes X No □ Possible □ Not Applicable	Super elevation (Maximum rate, transition, position)		
□Yes X No □ Possible □ Not Applicable	Horizontal Clearance		
□Yes X No □ Possible □ Not Applicable	Vertical Clearance		

GEOMETRIC ISS	SUES:		
Indicate if the following geometric issues are present or should be considered during project development. Consider work on the mainline as well as any side roads or service roads. Provide additional comments as needed.			
	Design Issue	Comments	
X Yes \Box No	Does the existing horizontal	The intersection of SR 32 is severely skewed with side	
\Box Possible	alignment need to be modified?	roads entering near the main intersection. These side roads	
□ Not Applicable		may see increased traffic due to mainline changes.	
\Box Yes \Box No	Does the existing vertical alignment	Various side roads have vertical alignments that should be	
X Possible	need to be modified?	analyzed for design speed conformance.	
□ Not Applicable			
\Box Yes X No	Does stopping sight distance need to		
\Box Possible	be increased?		
□ Not Applicable			
\Box Yes X No	Does intersection sight distance need		
\Box Possible	to be increased?		
□ Not Applicable			
\Box Yes \Box No	Are there geometric issues that may	There is an existing half clover interchange at SR 32 and	
X Possible	affect traffic safety (including Full or	Eastgate that will be reconstructed as part of another	
\Box Not Applicable	Half-Clover Leaf Interchange, Slip	project.	
	Ramps, Weave Areas, and short acceleration/deceleration lanes).		
	Describe.		
\Box Yes \Box No	Are there any hazards in the clear	There is a narrow median along SR 32 that should be	
X Possible	zone? Specify treatment.	considered; possible barrier required.	
□ Not Applicable			

GEOMETRIC ISSUES:			
Indicate if the following geometric issues are present or should be considered during project development. Consider			
work on the mainline as well as any side roads or service roads. Provide additional comments as needed.			
\Box Yes \Box No	Does existing guardrail need to be		
X Possible	replaced (e.g., too low, poor		
□ Not Applicable	condition)?		
\Box Yes X No	Is the area for guardrail anchor	To be determined based on field visit.	
X Possible	assemblies insufficient? (E-98 or B-		
□ Not Applicable	98)? Consider proper grading around the anchor assembly.		
\Box Yes \Box No	Does the number of turn lanes or	Will be analyzed with traffic study.	
X Possible	through lanes need to be increased?		
□ Not Applicable			
X Yes \Box No	Are changes to access control	Will be analyzed with traffic study.	
\Box Possible	required?		
□ Not Applicable			
\Box Yes \Box No	Are there any drive locations that	There are drives near the potential overpass alternatives that	
X Possible	will require special attention during	may require realignment or closure.	
□ Not Applicable	design (e.g., very steep grades, high		
	volume commercial drives, drives		
\Box Yes \Box No	close to bridges or intersections)? Are new mailbox turnouts required?	Along side roads.	
\square Possible	Are new manoox turnouts required?	Along side toads.	
\Box Not Applicable			
\Box Yes X No	Is there any evidence of accidents		
\Box Possible	due to substandard vertical clearance		
\Box Not Applicable	on overpass structures?		
$XYes \square No$	Will an interchange be added or	Possible proposed interchange toward the middle of the	
\square Possible	modified?	study area along SR 32. Possible signalized access	
\Box Not Applicable		eliminated at Glen Este, Elick and old SR 74 (East).	
\Box Yes \Box No	Do the existing intersection radius	Truck movements will be analyzed with the traffic study.	
X Possible	returns need to be modified to		
\Box Not Applicable	accommodate larger truck turning		
	movements?		
$XYes \square No$	Does grading need to be upgraded?	Various side roads should have shoulder and grading	
\Box Possible	To what criteria (e.g., clear zone,	upgraded to current standards if there is an increase in	
□ Not Applicable	safety, standard)?	traffic volumes. Existing conditions have little to no shoulder width and steep ditch slopes.	
$XYes \square No$	Are there any other geometric issues?	With a potential increase in traffic along old SR 74 and	
□ Possible	Describe	Aicholtz, upgraded pavement and shoulders should be	
□ Not Applicable		considered.	

GEOTECHNICAL ISSUES

Based on the information compiled during this study indicate whether or not the following geotechnical issues are present or should be further considered during project development. Provide additional comments as needed.

	Design Issues	Comments
□Yes X No □ Possible □ Not Applicable	Is there evidence of soil drainage problems (e.g., wet or pumping subgrade, standing water, the presence of seeps, wetlands, swamps, bogs)?	None observed during B&N (geotech subconsultant) site visit.
□Yes X No □ Possible □ Not Applicable	Is the groundwater table anticipated to be affected by construction?	Does not appear that deep cuts will be needed for construction based on site topography.

GEOTECHNICAL ISSUES				
	Based on the information compiled during this study indicate whether or not the following geotechnical issues are present or should be further considered during project development. Provide additional comments as needed.			
□Yes X No □ Possible □ Not Applicable	Is there evidence of any embankment or foundation problems (e.g., differential settlement, sag, foundation failures, slope failures, scours, evidence of channel migrations)?	None observed during B&N (geotech subconsultant) site visit.		
□Yes X No □ Possible □ Not Applicable	Is there evidence of any slope instability (soil or rock)?	None observed during B&N (geotech subconsultant) site visit.Embankments and cuts are nominal in height.		
□Yes □ No x Possible □ Not Applicable	Is there evidence of unsuitable materials (e.g., presence of debris or man-made fills or waste pits containing these materials, indications from old soil borings)?	Area is highly developed and fill soils are anticipated to be encountered.		
X Yes 🗆 No 🗆 Possible 🗆 Not Applicable	Is there evidence of rock strata (e.g., presence of exposed bedrock, rock on the old borings)?	Bedrock is relatively shallow at the site based on existing geologic and subsurface information. Rock is exposed in the streambeds.		
□Yes X No □ Possible □ Not Applicable	Is there evidence of active, reclaimed or abandoned surface mines?	No mining is known to exist at the location.		
□Yes X No □ Possible □ Not Applicable	Is there information pertaining to the existence of underground mines?			
□Yes X No □ Possible □ Not Applicable	Is there Acid Mine Drainage present within the study area?			
□Yes □ No X Possible □ Not Applicable	Does subgrade stabilization or an undercut appear to be needed?	Possible based on review of existing subsurface explorations. The near surface native soils were typically wetter at the time the borings were drilled.		
□Yes X No □ Possible □ Not Applicable	Should the Office of Geotechnical Engineering be contacted to evaluate the project site?	Based on our review, any proposed improvements would appear to be routine from an ODOT perspective. Geotechnical coordination and consultation at the District level would appear to be sufficient.		
□Yes □ No □ Possible □ Not Applicable	Were there any significant items found during plan and specification review? <i>Specify</i> .			
□Yes X No □ Possible □ Not Applicable	Are there any other geotechnical issues? <i>Specify</i> .	Nothing significant to report at this stage.		

PAVEMENT ISSUES:				
Indicate if the following pavement issues are present or should be considered during project development. Side road and service road work should be considered in this assessment. Provide additional comments as needed.				
	Design Issue	Comments		
$XYes \Box No$	Are pavement cores needed to determine	The side roads will need evaluation of existing		
□ Possible	the existing pavement buildup and/or	pavement with the potential of increased volumes.		
□ Not Applicable	condition?			

Red Flag Summary	CLE-SR32-2.25 (PID 82370)
-------------------------	---------------------------

PAVEMENT ISSU	JES:	
		be considered during project development. Side road
and service road we	ork should be considered in this assessment.	
$X Yes \square No$	Is the proposed pavement buildup	Pavement design will be completed once geotechnical
\Box Possible	unknown? (For pavement preservation	and traffic work is complete.
□ Not Applicable	projects, pavement treatment, including	
	pavement type & thickness should be	
	specified in the design scope of services)	
\Box Yes \Box No	Do dynaflect tests indicate the existing	
□ Possible	pavement is in poor condition?	
X Not Applicable		
\Box Yes \Box No	Does the proposed pavement buildup	
X Possible	need to be approved by the Pavement Selection Committee?	
□ Not Applicable		
\Box Yes \Box No	Are joint repairs needed?	
□ Possible		
X Not Applicable		
\Box Yes \Box No	Are pressure relief joints needed?	
□ Possible		
X Not Applicable		
\Box Yes \Box No	Are pavement repairs needed?	Clepper between Glen Este and the east end of the
X Possible		roadway is deteriorated. Heitman Lane is deteriorated;
□ Not Applicable		spot full-depth failures are apparent.
\Box Yes \Box No	Does the maintenance of traffic scheme	Assumed part-width construction will be used along
X Possible	require additional permanent or	the side roads.
□ Not Applicable	temporary pavement?	
\Box Yes \Box No	Does curb need to be replaced due to	Most of the study area is a shoulder section. There are
X Possible	deteriorated condition or lack of curb	small sections of curbed sections that will be analyzed
□ Not Applicable	reveal?	to determine adequacy of existing curb reveal.
\Box Yes \Box No	Does sidewalk need to be replaced or	To be determined. Existing walk around mall and side
X Possible	installed?	roads.
□ Not Applicable		
\Box Yes \Box No	Are new curb ramps needed?	To be determined. Existing walk around mall and side
X Possible		roads. Ramps will be ADA compliant.
□ Not Applicable		
\Box Yes \Box No	Do truncated domes need to be installed?	To be determined. Existing walk around mall and side
X Possible		roads.
□ Not Applicable		
$XYes \square No$	Is there any work on side roads, service	A new interchange and overpasses will affect various
\Box Possible	roads, or ramps?	side roads.
□ Not Applicable		
$XYes \square No$	Are there any special drive treatments or	There are many commercial drives that should include
\Box Possible	preferences (e.g., concrete for all drive	a concrete option.
□ Not Applicable	aprons, curved aprons, etc.)?	
\Box Yes X No	Has the site received repeated	
\Box Possible	resurfacings in recent years?	
□ Not Applicable		
\Box Yes X No	Does pavement deterioration appear to be	
\Box Possible	caused by drainage or geotechnical	
□ Not Applicable	problems?	
\Box Yes X No	Are there any other pavement issues?	The majority of the pavement is in satisfactory
\Box Possible	Specify.	conditions except for Clepper east of Glen Este and
□ Not Applicable		Heitman lane. Any increase in volumes will require
		pavement work.

Indicate if the following structure issues are present or should be considered during project development. Provide		
<i>additional commen</i> Structure:	ats as needed. Provide a separate table for each Design Issue	<i>ch structure.</i> Comments
□Yes □ No	Is it impossible for the structure to be	For potential crossing for the Heitman extension if
x Possible	replaced with a prefabricated box culvert	included within the project.
□ Not Applicable	or 3-sided box?	
\Box Yes \Box No	Does the bridge (including foundation)	Unknown at this time.
X Possible	violate current design live loading?	
□ Not Applicable		
\Box Yes \Box No	Was the existing structure not built	Unknown at this time.
X Possible	according to plan?	
□ Not Applicable		
\Box Yes X No	Is deck coring needed?	
Possible		
□ Not Applicable		
\Box Yes X No	Is the deck delaminated? Specify.	
□ Possible		
□ Not Applicable		
\Box Yes X No	Is non-destructive testing needed to	
□ Possible	determine the amount of delamination?	
□ Not Applicable		
\Box Yes X No	Is the bridge deck in poor condition?	
□ Possible	Specify location and level of	
□ Not Applicable	deterioration.	
\Box Yes X No	Does a deck condition survey (see Bridge	
Possible	Design Manual) need to be performed?	
□ Not Applicable		
\Box Yes X No	Are there areas to be patched or repaired	
□ Possible	on the deck?	
□ Not Applicable		
□Yes X No	Is the bridge a poor candidate for an	
□ Possible	overlay? Specify type of overlay if know.	
□ Not Applicable		
□Yes X No	Does the bridge rail violate current	
Possible	standards?	
□ Not Applicable		
⊐Yes X No	Is fatigue analysis required?	
□ Possible		
□ Not Applicable		
□Yes X No	Should all fatigue prone details be	
Possible	retrofitted or replaced? Specify.	
□ Not Applicable		
□Yes X No	Is the abutment (including backwall,	
\Box Possible	beam seats, breastwall, wingwall, etc.) in	
□ Not Applicable	poor condition? Specify location and level	
□Yes X No	<i>of deterioration.</i> Is there any evidence of substructure	
	movement (e.g., settlement, rotation)?	
□ Possible	movement (e.g., settlement, totation)?	
□ Not Applicable		

STRUCTURAL IS	SUES:	
	wing structure issues are present or should t ts as needed. Provide a separate table for ea	be considered during project development. Provide ch structure.
□Yes X No	Are the piers in poor condition? Specify	
\Box Possible	location and level of deterioration.	
□ Not Applicable		
$XYes \square No$	Is there any evidence of existing beam	SR 32 bridge over Olive Branch has exposed steel
\Box Possible	deterioration/section loss, strands	along the north edge.
□ Not Applicable	exposed, shear joints leaking or longitudinal cracks?	
\Box Yes X No	Are the bearings in poor condition?	
\Box Possible		
□ Not Applicable		
\Box Yes \Box No	Is elimination of the deck joint	
□ Possible	impossible? What modifications are	
X Not Applicable	necessary?	
\Box Yes X No	Are new approach slabs needed?	
\Box Possible		
\Box Not Applicable		
\Box Yes \Box No	Is it impossible for the hinges to be	Unknown at this time.
X Possible	removed to make the members	
\Box Not Applicable	continuous?	
\Box Yes X No	Is the bridge on a curve, skew or	
\Box Possible	superelevation transition?	
	supercievation transition:	
\Box Not Applicable		
\Box Yes X No	Is there any evidence that the bridge does	
\Box Possible	not meet hydraulic capacity?	
□ Not Applicable	A no theme existing a idenually an en	
\Box Yes X No	Are there existing sidewalks on or adjacent to the bridge?	
\Box Possible	adjacent to the bridge?	
\Box Not Applicable XYes \Box No	Will the structure work require any	Construction of proposed bridges over SR 32 will
\square Possible	special maintenance of traffic (e.g.,	require closures of the mainline for beam erection.
\Box Not Applicable	closing of roadway for erection of beams,	require closures of the manimic for beam election.
	maintenance of waterway traffic, location	
	of cut line, etc.)? Specify.	
\Box Yes X No	Is there any erosion in the existing	
□ Possible	channel?	
□ Not Applicable		
□Yes X No	Is the foundation exposed due to scour?	
\Box Possible		
□ Not Applicable		
\Box Yes X No	Will there be more than 25' of channel	
\Box Possible	relocation?	
□ Not Applicable		
\Box Yes \Box No	Do no opportunities exist to construct the	If Heitman is extended, there is a potential for the use
X Possible	bridge faster (e.g., precast walls,	of a Conspan or box beam structure.
□ Not Applicable	segmental construction)?	
\Box Yes X No	Does the bridge need to accommodate	
\Box Possible	future roadway lanes or railroad tracks?	
□ Not Applicable		

STRUCTURAL ISSUES:			
Indicate if the following structure issues are present or should be considered during project development. Provide			
additional comment	additional comments as needed. Provide a separate table for each structure.		
\Box Yes \Box No	Will temporary shoring be required next		
□ Possible	to the railroad?		
X Not Applicable			
\Box Yes X No	Are there any problems with the existing		
\Box Possible	retaining walls?		
□ Not Applicable			
\Box Yes X No	Are there any other structures issues?	The existing major brides (Eastgate over SR 32, and	
□ Possible	Specify.	Olive Branch over stream near Lexington Run) are all	
□ Not Applicable		in satisfactory condition with no work being	
		anticipated.	

HYDRAULIC ISS	UES:	
		ıld be considered during project development. Side
road and service re	oad work should be considered in this as	sessment. Provide additional comments as needed.
	Design Issue	Comments
□Yes X No □ Possible □ Not Applicable	Based on visual evidence (height of debris, erosion or other markings left from high water) and approximate drainage areas, does the existing drainage system (culverts, storm sewers and/or ditches) appear to be inappropriately sized and not functioning properly? <i>Describe</i>	
□Yes X No □ Possible □ Not Applicable	<i>deficiencies.</i> Is there evidence of alignment or flow velocity problems (e.g., scour, bank erosions, silting) at culvert entrances or exits?	
□Yes X No □ Possible □ Not Applicable	Are there sinkholes or other deterioration in the pavement that would indicate separations in the existing pipes?	
□Yes □ No × Possible	Is ditch clean-out required?	
□Yes X No □ Possible □ Not Applicable	Should guardrail over culverts be eliminated with clear zone grading?	
□Yes □ No × Possible □ Not Applicable	Should the existing culverts be replaced?	Formal inspection should be completed.
□Yes □ No X Possible □ Not Applicable	Should the existing culverts be extended?	Depending on proposed pavement widening.
□Yes □ No X Possible □ Not Applicable	Will a new alignment concentrate flow (in culverts) that is currently overland flow?	
□Yes X No □ Possible □ Not Applicable	Will the maximum height of cover (100') be exceeded for any culvert?	

HYDRAULIC ISS	UES:	
		ıld be considered during project development. Side
road and service ro	ad work should be considered in this as	sessment. Provide additional comments as needed.
\Box Yes X No	Will bankfull design be used for any	
□ Possible	culverts?	
□ Not Applicable		
\Box Yes X No	Does the existing drainage system have	
\Box Possible	an odor that might indicate that it	
□ Not Applicable	includes septic connections?	
\Box Yes \Box No	Is the exposed curb height in existing	Most of the study area is a shoulder section. There are
X Possible	gutters inadequate to contain flow	small sections of curbed sections that will be analyzed to
□ Not Applicable	(include height of proposed	determine adequacy of existing curb reveal.
	resurfacing)?	
\Box Yes \Box No	Do the existing inlets or catch basins	
X Possible	need to be raised to meet proposed	
□ Not Applicable	grade?	
$XYes \square No$	Does the project affect a wetland or	Salt Run and Shayler Run.
\Box Possible	waterway (e.g., stream, river,	
□ Not Applicable	jurisdictional ditch)?	
\Box Yes X No	Is the existing and/or proposed channel	
\Box Possible	alignment incompatible with the	
□ Not Applicable	existing/proposed structure?	
\Box Yes \Box No	Will channel relocation be required?	A proposed Heitman Lane extension will include stream
X Possible		crossings.
□ Not Applicable		
\Box Yes \Box No	Will Municipal Separate Storm Sewer	
X Possible	System (MS4) requirements apply?	
□ Not Applicable		
$XYes \square No$	Will post construction flow	
\Box Possible	requirements be required?	
□ Not Applicable		
\Box Yes X No	Is there evidence of existing field tiles?	
\Box Possible		
□ Not Applicable		
\Box Yes \Box No	Are underdrain outlets not functioning	Along SR 32.
X Possible	properly?	
□ Not Applicable		
\Box Yes \Box No	Will a new storm sewer outfall be	
X Possible	required?	
□ Not Applicable		
\Box Yes X No	Does the drainage work warrant any	
\Box Possible	special maintenance of traffic	
□ Not Applicable	considerations?	
\Box Yes X No	Are there any other hydraulic issues?	
□ Possible	Describe.	
□ Not Applicable		

TRAFFIC CONTI	ROL ISSUES:	
	wing traffic control (signals, signing, pav project development. Provide additional co	ement markings, etc.) issues are present or should be omments as needed.
	Design Issue	Comments
□Yes X No □ Possible □ Not Applicable	Do the existing signs need to be replaced due to poor condition?	The existing signs appear to be in satisfactory condition. Recommend the existing signing along routes with major construction work be replaced.
□Yes X No □ Possible □ Not Applicable	Are there any obvious deviations from requirements of the Ohio Manual of Uniform Traffic Control Devices (OMUTCD)?	
□Yes □ No X Possible □ Not Applicable	Is a particular type of pavement marking desired (e.g., paint, epoxy, thermoplastic)?	
XYes □ No □ Possible □ Not Applicable	Will pavement planing affect loop detectors?	Most of the signalized intersections have loop detection and will be affected by milling.
□Yes □ No X Possible □ Not Applicable	Will pavement widening affect pole locations?	Along County and Township roads.
□Yes X No □ Possible □ Not Applicable	Will resurfacing affect signal height?	
□Yes □ No X Possible □ Not Applicable	Does it appear that any traffic control items will fall outside the existing right of way limits (e.g., large signs, strain poles)?	It appears that most/all of the signal poles and signing is within the existing right-of-way.
□Yes □ No X Possible □ Not Applicable	Are there any accidents that can be related to existing signal deficiencies (e.g., timing, lack of turn lanes)?	Most of the accidents are caused by back-ups and large volumes. Rear end due to excessive stacking and sideswipes due to high turning volumes.
□Yes □ No X Possible □ Not Applicable	Do turn lane lengths appear to have insufficient storage capacity?	Primarily thru-lane backup.
□Yes □ No X Possible □ Not Applicable	Does the controller need to be upgraded?	
□Yes □ No X Possible □ Not Applicable	Do proprietary materials need to be specified?	
□Yes □ No XPossible □ Not Applicable	Should signs or signal installations be supplemented with lighting?	
XYes □ No □ Possible □ Not Applicable	Are any TODS signs present?	Along exit ramps from I-275.
□Yes □ No X Possible □ Not Applicable	If traffic control at an intersection is being changed from stop control to signalization, does the stop condition road need to be upgraded to accommodate faster traffic?	Will depend on traffic study results.
□Yes X No □ Possible □ Not Applicable	Are there any other traffic control issues? <i>Specify</i> .	

Briefly describe the maintenance of traffic and any constraints. A list of considerations has been provided below.	
Maintenance of Traffic Considerations	
Limits on traffic detour (including local alternate detours) due to load limits, bridge width restrictions, shoulder condition, emergency vehicle impact Temporary pavement requirements Speed limit during construction Pedestrian Traffic Additional width at culverts Drive Access Stopping Sight Distance Construction Access	 Right of Way acquisition Permitted lane closures Cross-overs Short duration road closures Temporary structure requirements Additional signal heads (drives and/or side roads) Construction timeframe issues Innovative contracting Maintaining railroad traffic Turn movement restrictions

Maintenance of Traffic Description

There doesn't appear to be major MOT issues. SR 32 will remain open to traffic. One area to consider will be the Glen Este high school traffic. If a connector road between Aicholtz and the proposed interchange can be completed prior to the closure of SR 32 access from Glen Este, the transition will be smoother. In general, most of the roadways within the study area are heavily traveled and any disruption will cause delays. The key will be phasing the construction to get the proposed facilities open to traffic as efficiently as possible and minimize the delays and backups. The inability to close multiple intersections at a time may increase construction efficiency and therefore cost.

RIGHT OF WAY/SURVEY ISSUES:

Indicate if right of way or survey issues are present or should be considered during project development. Provide additional comments as needed.

	Design Issue	Comments
XYes □ No □ Possible □ Not Applicable	Will there be any work beyond the existing right of way limits?	At a minimum, a potential interchange and overpasses are being considered with grade separations. Side road work may require proposed right-of-way.
□Yes □ No × Possible □ Not Applicable	Will major real estate relocation acquisition be involved?	There are numerous commercial properties that could require relocation.
□Yes □ No X Possible □ Not Applicable	Will relocation of residences be involved?	A proposed interchange and new roadway alignment may require residential relocations.
□Yes □ No X Possible □ Not Applicable	Will relocation of businesses be involved?	There are numerous commercial properties that could require relocation.
□Yes □ No X Possible □ Not Applicable	Will the project cause relocation of parties that might be eligible for relocation assistance? If so, list the estimated number of residential and non-residential relocations?	
XYes □ No □ Possible □ Not Applicable	Will the project require modifying the access control to any properties? If so, list the estimated number and type of properties affected.	Properties near the proposed grade separations may require modified access, as well as some drives with direct access to SR 32.

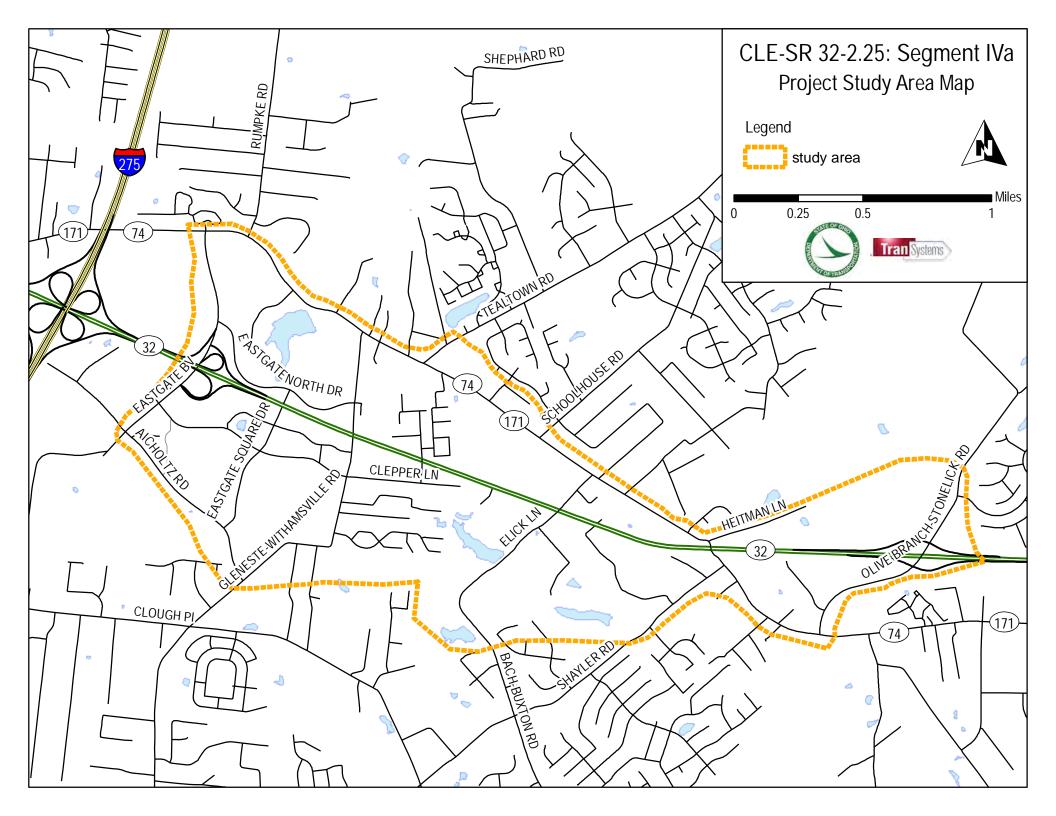
RIGHT OF WAY	SURVEY ISSUES:	
Indicate if right of v additional comment		considered during project development. Provide
□Yes □ No X Possible □ Not Applicable	Are there any objects within the existing right of way limits that may be considered an encroachment?	Possible along side roads.
□Yes □ No X Possible □ Not Applicable	Will it be difficult or impossible to determine the number of involved property owners? If not how many are involved?	A rough estimate can be taken based on conceptual construction limits and GIS property information.
XYes □ No □ Possible □ Not Applicable	Will temporary parcels be needed (e.g., for drive work)?	Various temporary parcels will be required for grading and drive work.
XYes □ No □ Possible □ Not Applicable	Will right of way need to be acquired for an agency other than ODOT (e.g., county, city)? <i>Specify</i> .	Various County and Township roads within the study area.
□Yes □ No X Possible □ Not Applicable	Will additional right of way be needed for utility relocations?	The extent of the proposed work will require utility relocations, which may include existing easements.
□Yes □ No X Possible □ Not Applicable	Will right of way need to be acquired for storm sewer outfalls?	
□Yes □ No X Possible □ Not Applicable	Do property owners need to be contacted for the locations of underground items such as leach fields, septic systems, or field tiles that might be affected by the proposed take?	Some of the residential properties may be utilizing septic systems.
□Yes □ No X Possible □ Not Applicable	Are there any mineral rights considerations?	
□Yes □ No X Possible □ Not Applicable	Are there any specific property owner concerns? If so, list property owners and concerns.	The possibility of substantial impacts to the Jeff Wyler auto dealer along with various other commercial properties.
□Yes X No □ Possible □ Not Applicable	Are work agreements prohibited for any reason?	
□Yes □ No X Possible □ Not Applicable	Are the centerline of right of way and centerline of construction different?	Where feasible, the centerline of right-of-way will be used on the centerline of construction.
□Yes □ No X Possible □ Not Applicable	Will right of way be acquired for wetland or stream mitigation?	
XYes □ No □ Possible □ Not Applicable	Are there any other right of way or survey issues? <i>Specify</i> .	Proposed grade separations will likely displace numerous commercial and residential properties.

UTILITY ISSUES:

Indicate if the following utility issues are present or should be considered during project development. Provide additional comments as needed.

	Design Issue	Comments
$XYes \square No$	Do existing utilities need to be relocated?	No specific utilities have been identified at this time.
□ Possible	If so, please identify.	It has been assumed that pole lines, sewers, and
□ Not Applicable		water lines that run along the anticipated work
FF FF		(specifically the overpasses) will be relocated.

UTILITY ISSUES:		
		isidered during project development. Provide
additional comments		
\Box Yes \Box No	Is it impossible to minimize utility	
X Possible	conflicts? (e.g., by careful placement of	
□ Not Applicable	storm sewer and underdrains)?	
\Box Yes X No	Would the project benefit from subsurface	
\Box Possible	utility engineering (SUE)?	
□ Not Applicable		
\Box Yes X No	Are there existing utilities on an existing	The existing structures are to remain.
\Box Possible	structure that need to be relocated?	
□ Not Applicable		
\Box Yes \Box No	Are there any specific utility requirements	
X Possible	or concerns? Specify.	
□ Not Applicable		
$XYes \square No$	Is additional right of way needed to	Any utilities within existing easements will require
\Box Possible	accommodate utility relocations?	new easements or payment.
□ Not Applicable		
\Box Yes \Box No	Are there water or sanitary lines that will	There are existing lines near the intersections of the
X Possible	be relocated as part of the ODOT contract?	proposed work.
□ Not Applicable		
\Box Yes X No	Are there any other utility issues? Specify.	
\Box Possible		
□ Not Applicable		


MISCELLANEOU	~ _~~ ·	d during project development Provide additional
Indicate if the following issues are present or should be considered during project development. Provide additional comments as needed.		
	Design Issue	Comments
\Box Yes X No	Will any of the construction activity take	
□ Possible	place over, under, or near railroad	
□ Not Applicable	property?	
$XYes \square No$	Could material with long lead times for	
□ Possible	delivery have an impact on the	
□ Not Applicable	construction schedule (e.g., strain poles,	
	large box culverts, steel beams, etc.)?	
$XYes \square No$	Will a value engineering study be required	
\Box Possible	due to project cost (total cost greater than	
□ Not Applicable	\$20 million) or project complexity?	
\Box Yes \Box No	Will warranties be used?	To be determined.
X Possible		
□ Not Applicable		
\Box Yes \Box No	Are there aesthetic concerns? Specify.	Overpasses, noise walls and interchange.
X Possible		
□ Not Applicable		
\Box Yes \Box No	Are there any concerns relating to noise	To be determined.
X Possible	walls?	
□ Not Applicable		
\Box Yes \Box No	Are there no areas available within the	To be determined.
X Possible	existing right of way for portable plants or	
□ Not Applicable	waste and borrow sites?	

MISCELLANEOUS ISSUES:					
\Box Yes \Box No	Are there any specific concerns related to	Project will need to consider pedestrian and bicycle			
X Possible	pedestrian or bicycle access?	access as well as ADA accessibility.			
□ Not Applicable					
\Box Yes \Box No	Are there any concerns related to				
X Possible	landscaping?				
□ Not Applicable					
$XYes \Box No$	Are there any concerns related to existing	Lighting at new interchange.			
\Box Possible	or proposed lighting (e.g., light trespass,				
□ Not Applicable	river navigation, airway clearance)?				
\Box Yes \Box No	Are there any other project concerns?				
\Box Possible	Specify				
□ Not Applicable					

PERMIT ISSUES:				
		onsidered during project development. Provide		
additional comments as needed.				
	Issue	Comments		
\Box Yes \Box No	Will an individual Corps of Engineers/	Will depend upon preferred alternative and		
X Possible	Environmental Protection Agency	calculation of impacts.		
□ Not Applicable	404/401 permit be required?			
\Box Yes \Box No	Does it appear that the project can be	To be determined upon calculation of impacts.		
X Possible	constructed under a nationwide 404/401			
□ Not Applicable	permit? If so, which permit and what			
	specific requirements apply?			
□Yes X No	Will a Coast Guard permit be required?			
□ Possible				
\Box Not Applicable				
$XYes \square No$	Is review by a local public agency or	Clermont County TID.		
\Box Possible	project sponsor required? Specify.			
\Box Not Applicable				
$XYes \square No$	Is Airway/Highway clearance analysis			
\Box Possible	required?			
□ Not Applicable				
\Box Yes \Box No	Is State Historic Preservation Office	Reconnaissance-level survey is required for		
X Possible	(SHPO) coordination for work involving	archaeology and history/architecture, to be		
□ Not Applicable	historic bridges or historic properties	coordinated with SHPO. Historic properties to be		
	required?	determined.		
\Box Yes X No	Is coordination with ODNR for work			
	involving State Scenic Rivers, State Wildlife Areas or State Recreational			
□ Not Applicable	Areas required?			
$XYes \square No$	Is coordination with any other agency	US Fish and Wildlife and Ohio Department of		
□ Possible	required (see Location and Design Manual	Natural Resources.		
□ Not Applicable	Volume 3)?			

SCOPE, SCHEDULE AND BUDGET CONSIDERATIONS: Based on the responses to the red flag questions, do any of the following need to be modified?					
\Box Yes X No	Conceptual scope				
\Box Possible					
□ Not Applicable					
\Box Yes X No	Work limits				
\Box Possible					
□ Not Applicable					
\Box Yes X No	Probable				
\Box Possible	environmental				
□ Not Applicable	document type				
\Box Yes X No	Major/Minor/Minimal				
\Box Possible	classification				
□ Not Applicable					
\Box Yes X No	Schedule				
\Box Possible					
□ Not Applicable					
\Box Yes X No	Budget				
\Box Possible					
□ Not Applicable					

FIGURES

APPENDIX A

Ecological Resources Literature Review

ECOLOGICAL RESOURCES LITERATURE SURVEY

Secondary Source Information

Secondary source information was examined to determine potential ecological concerns associated with the proposed project. Secondary sources included: U.S. Geological Survey (USGS) topographic maps, soil survey maps and soil data (National Resources Conservation Service (NRCS), National Wetlands Inventory (NWI) maps, Ohio Wetlands Inventory (OWI) maps (U.S. Fish and Wildlife Service (USFWS), study area aerial photographs.

Soils

The majority of soils occurring within the project study area are listed as hydric or non-hydric with hydric inclusions for Clermont County (see Hydric Soil Map Unit map).

Aquatic Ecology

Water Quality

The study area lies within East Fork Little Miami River watershed (HUC: 05090202130) (see Hydrologic Unit Code map). Aerial and topographic mapping indicate that the area is drained by several unnamed tributaries, as well as Salt Run and Shayler Run, which have warmwater habitat (WWH) life us designations, agriculture and industry water supply use designations, and primary contact recreation uses. Salt Run-East Fork Little Miami River is listed on the 303(d) List of Prioritized Impaired Waters (Ohio EPA, 2010) (see 303(d) attachment). No state or federal scenic rivers are located within the project study area.

Ponds/Lakes

Available mapping identifies several open water/ponds as occurring within the project study area limits (See USGS Topographic map, Hydric Soils Map Units map, NWI and OWI maps).

<u>FEMA</u>

No special flood hazard areas were identified as occurring within the project study area (see FIRMette).

Wetland Resources

National Wetlands Inventory maps

NWI and OWI maps identify numerous wetland and open water habitat systems within the project study area (see NWI and OWI maps). The NWI and OWI maps are developed using high altitude aerial imagery and are not ground truthed, therefore they can sometimes map wetlands that no longer exist due to development, farming, etc. as well as wetlands that never existed (errors).

Endangered Species Resources

The USFWS lists seven (7) federally threatened, endangered, proposed, and/or candidate species for Clermont County (USFWS, 2010) (see attachment). The seven species include the endangered Indiana bat (*Myotis sodalis*), running buffalo clover (*Trifolium stoloniferum*), pink mucket pearly mussel (*Lampsilis orbiculata*), and fanshell (*Cyprogenia stegaria*) and the candidate rayed bean (*Villosa fabalis*) and sheepnose (*Plethobasus cyphyus*) mussels and the snuffbox (*Epioblama triquetra*) mussel a species of concern (see USFWS attachment).

The Ohio Department of Natural Resources (ODNR) Division of Natural Areas and Preserves (DNAP) was contacted for records of occurrences of endangered, threatened, or potentially threatened species and geological features within the study area as well as a one mile radius of the proposed project. In addition, all known Indiana bat hibernacula locations within a 10-mile radius and Indiana bat capture locations within a 5-mile radius of the proposed study area were requested. Coordination with ODNR-DNAP did not reveal the presence of any threatened, endangered, or potentially threatened species within the project study area, including a one mile radius (see DNAP attachment letter).

Ohio Department of Natural Resources

TED STRICKLAND, GOVERNOR

SEAN D. LOGAN, DIRECTOR

Division of Natural Areas and Preserves Anthony J. Celebreeze, III, Acting Chief 2045 Morse Rd., Bldg. F-1 Columbus, OH 43229-6693 Phone: (614) 265-6453; Fax: (614) 267-3096

May 5, 2010

Jennifer Arp TranSystems 55 Public Square, Suite 1900 Cleveland, OH 44113

Dear Ms. Arp:

After reviewing our Natural Heritage maps and files, I find the Division of Natural Areas and Preserves has no records of rare or endangered species in the CLE-SR32-2.25 (PID 82330) Segment IVa project area, including a one mile radius, in Union Township, Clermont County, and on the Withamsville Quad (P403100004). We also have no records for Indiana Bat (*Myotis sodalis*, state endangered, federal endangered) capture sites within a five mile radius or hibernacula within a ten mile radius of the project site.

There are no dedicated state nature preserves or scenic rivers at the project site. We are also unaware of any unique ecological sites, geologic features, animal assemblages, state parks, state forests or state wildlife areas within a one mile radius of the project area.

Our inventory program has not completely surveyed Ohio and relies on information supplied by many individuals and organizations. Therefore, a lack of records for any particular area is not a statement that rare species or unique features are absent from that area. Although we inventory all types of plant communities, we only maintain records on the highest quality areas.

Please contact me at 614-265-6818 if I can be of further assistance.

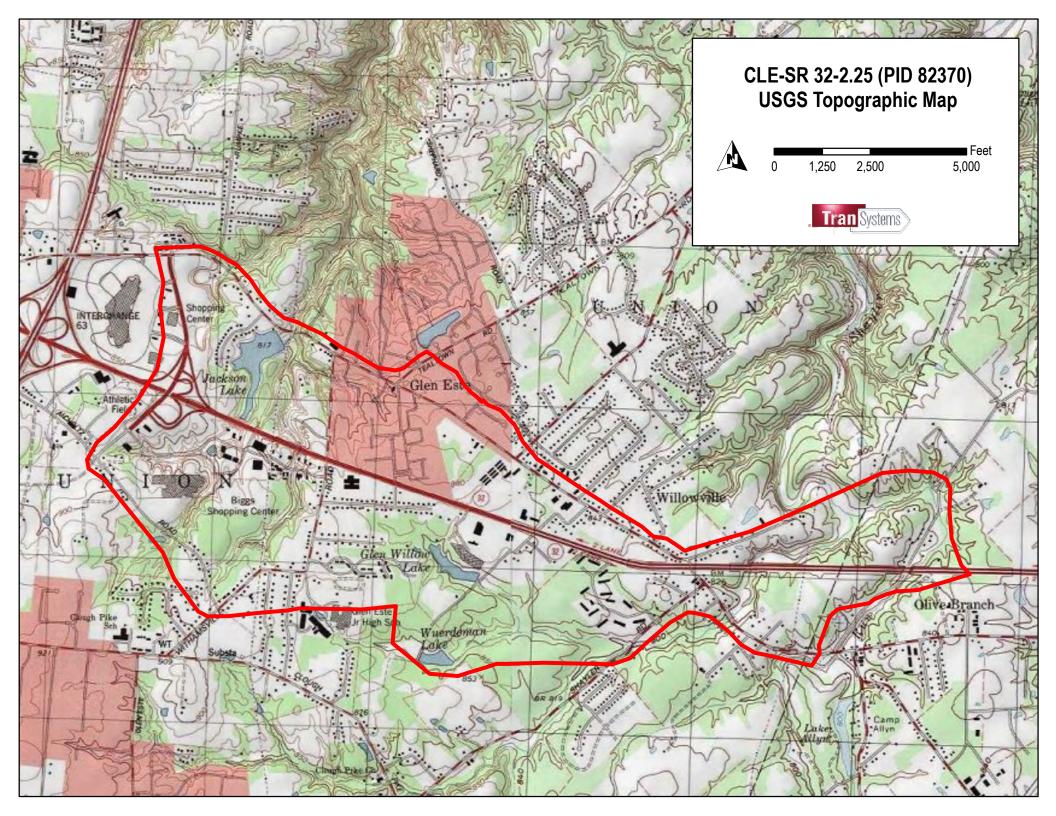
Sincerely,

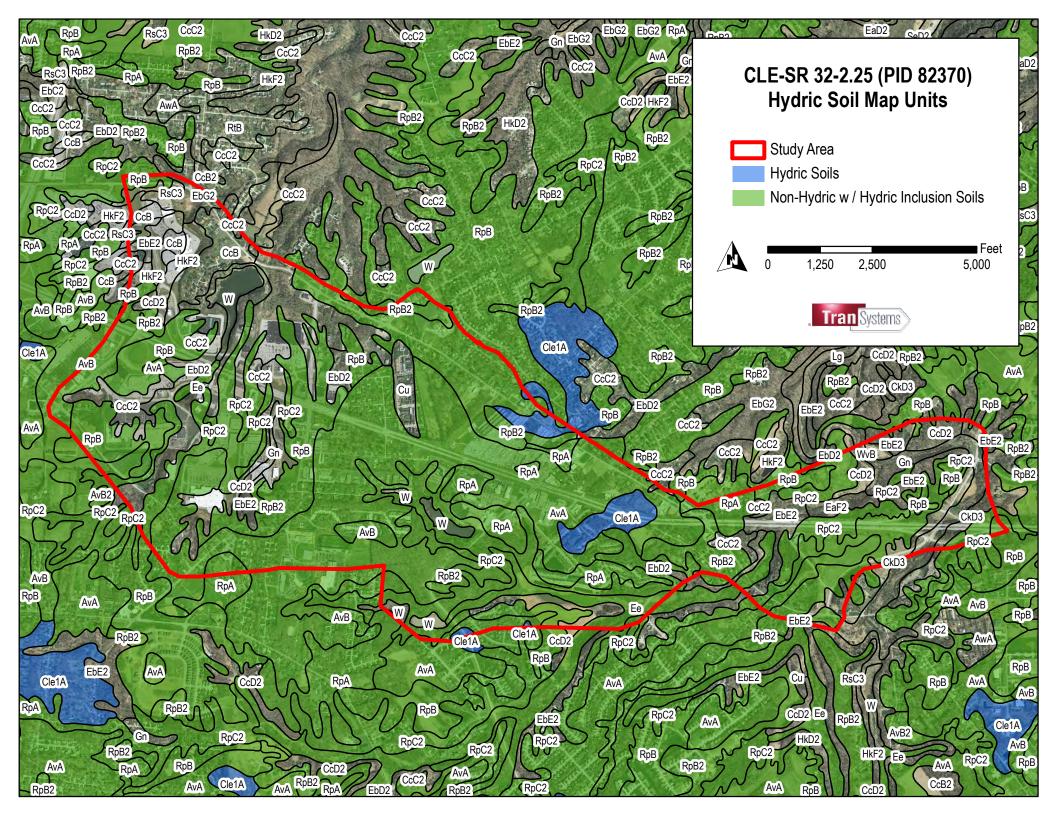
Mille

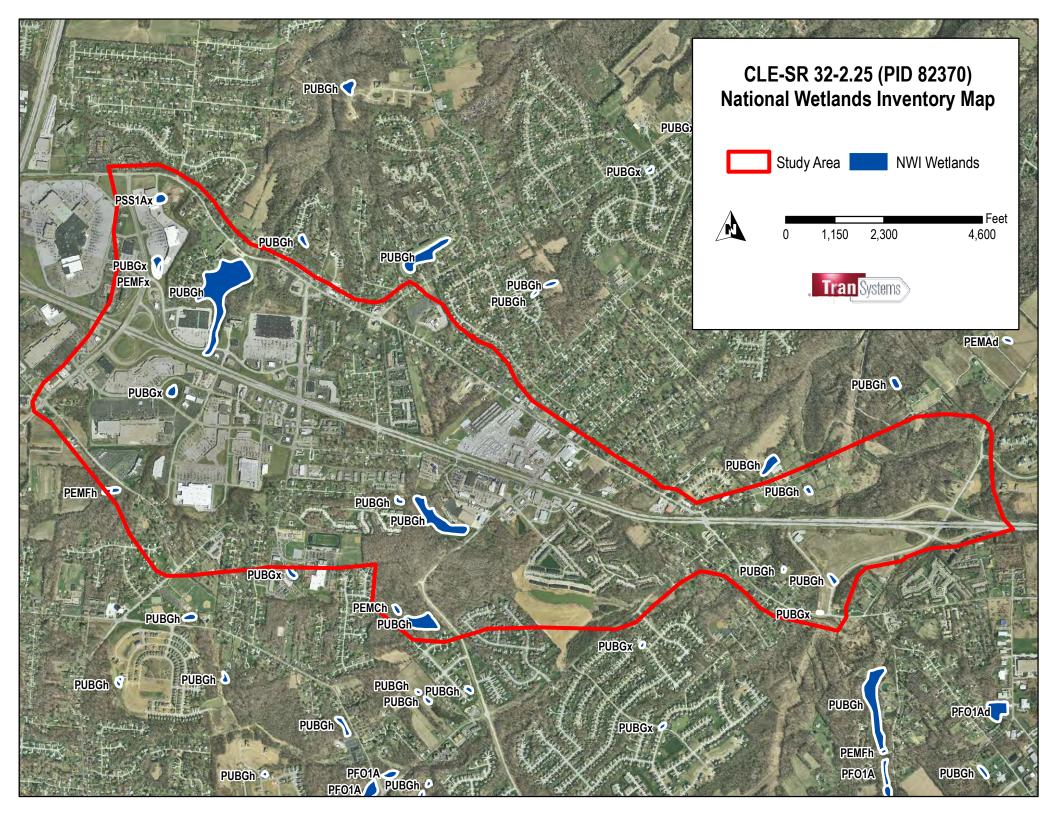
Debbie Woischke, Ecological Analyst Natural Heritage Program

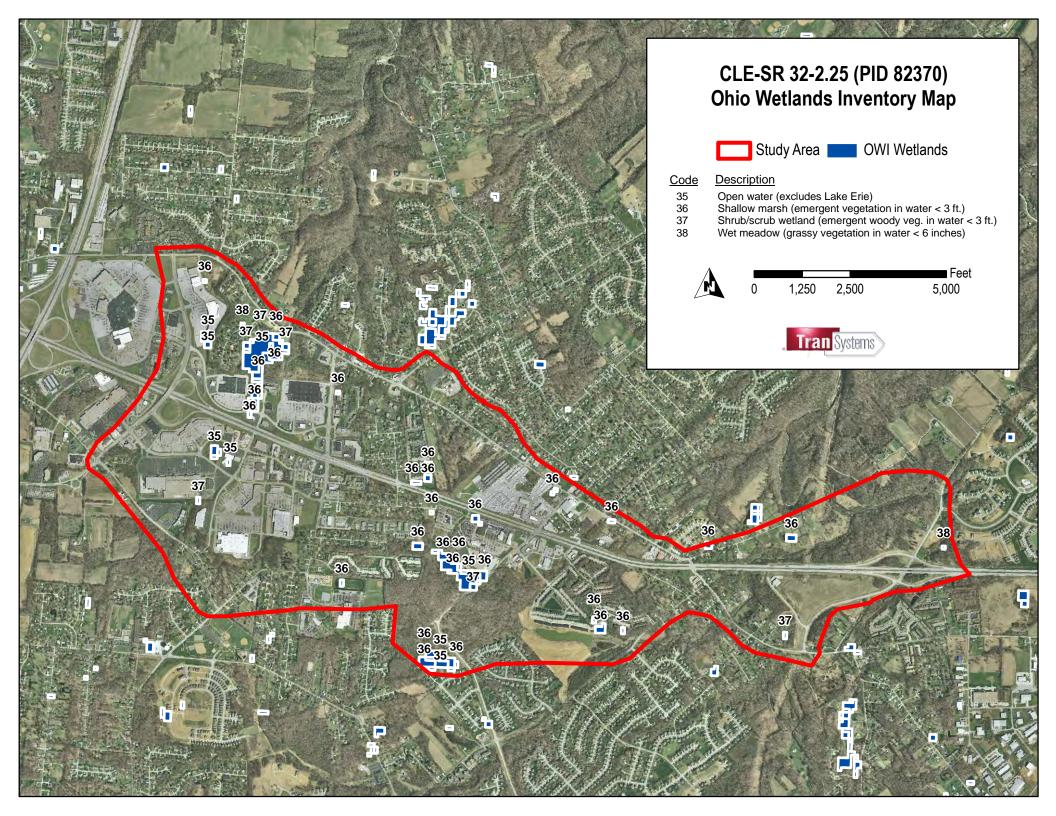
MAY 10 2010

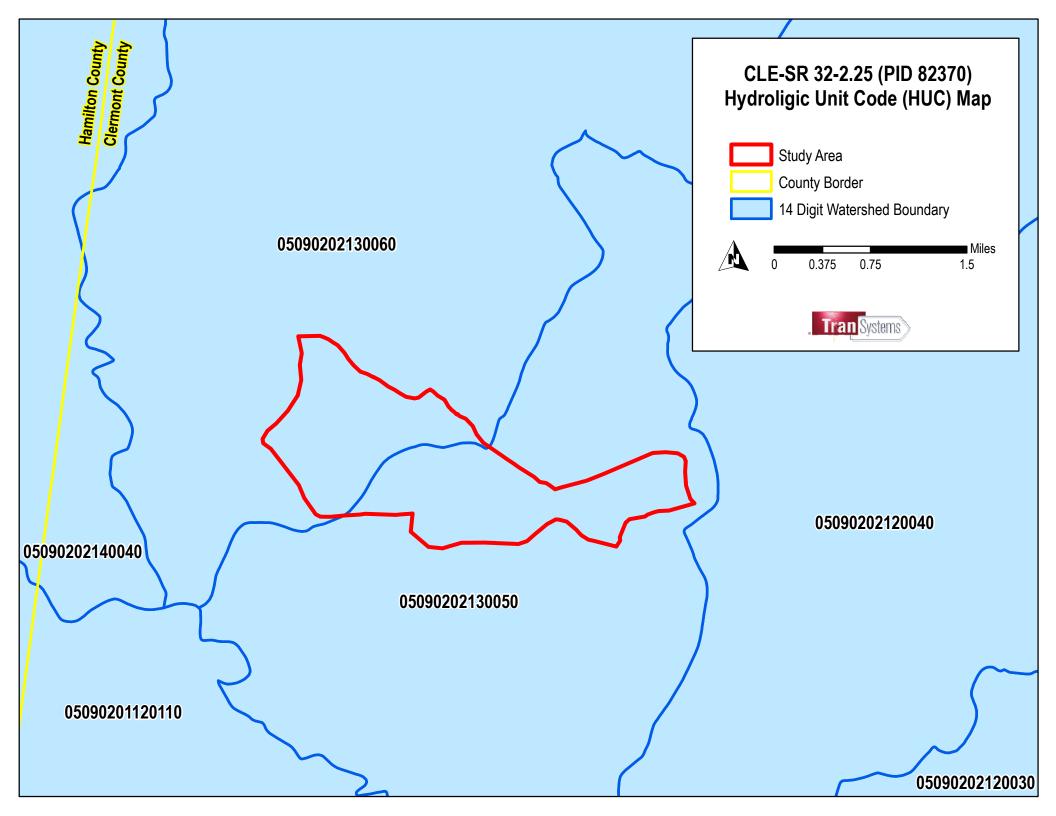
ohiodnr.com


United States Department of the Interior


FISH AND WILDLIFE SERVICE


Ecological Services 4625 Morse Road, Suite 104 Columbus, Ohio 43230 (614) 416-8993 / FAX (614) 416-8994


Federally-Listed Species by Ohio Counties May 2010


COUNTY	SPECIES	E = Endangered $CH = Critical HabitatT = Threatened SC = Species of ConcernC = Candidate$					
ADAMS	Indiana bat (E), running buffalo clover (E), sheepnose (C), snuffbox (SC), timber rattles	pink mucket pearly mussel (E), fanshell (E), make (SC)					
ALLEN	Indiana bat (E), bald eagle (SC)						
ASHLAND	Indiana bat (E), bald eagle (SC), eastern hellbender (SC)						
ASHTABULA	Indiana bat (E), clubshell (E), piping plover (E), eastern massasauga (C), bald eagle (SC), snuffbox (SC)						
ATHENS	Indiana bat (E), American burying beetle (E), pink mucket pearly mussel (E), fanshell (E), sheepnose (C), snuffbox (SC), timber rattlesnake (SC)						
AUGLAIZE	Indiana bat (E)						
BELMONT	Indiana bat (E), sheepnose (C), snuffbox (SC), bald eagle (SC), eastern hellbender (SC)						
BROWN	Indiana bat (E), running buffalo clover (E), pink mucket pcarly mussel (E), fanshell (E), rayed bean (C), sheepnose (C), bald eagle (SC), snuffbox (SC)						
BUTLER	Indiana bat (E), bald eagle (SC)						
CARROLL	Indiana bat (E)						
CHAMPAIGN	Indiana bat (E), clubshell (E), eastern massasauga (C), rayed bean (C), rabbitsfoot (C), snuffbox (SC)						
CLARK	Indiana bat (E), eastern prairie fringed orchid (T), eastern massasauga (C)						
CLERMONT	Indiana bat (E), running buffalo clover (E), pink mucket pearly mussel (E), fanshell (E), rayed bean (C), sheepnose (C), snuffbox (SC)						
CLINTON	Indiana bat (E), eastern massasauga (C)						
COLUMBIANA	Indiana bat (E), eastern massasauga (C), sheepnose (C), snuffbox (SC), bald eagle (SC), eastern hellbender (SC)						
COSHOCTON	Indiana bat (E), clubshell (E), fanshell (E), purple cat's paw pearly mussel(E), rayed bean(C), sheepnose (C), rabbitsfoot (C), bald eagle (SC), snuffbox (SC), eastern hellbender (SC)						

APPENDIX B

Cultural Resources Literature Review

(Township of)

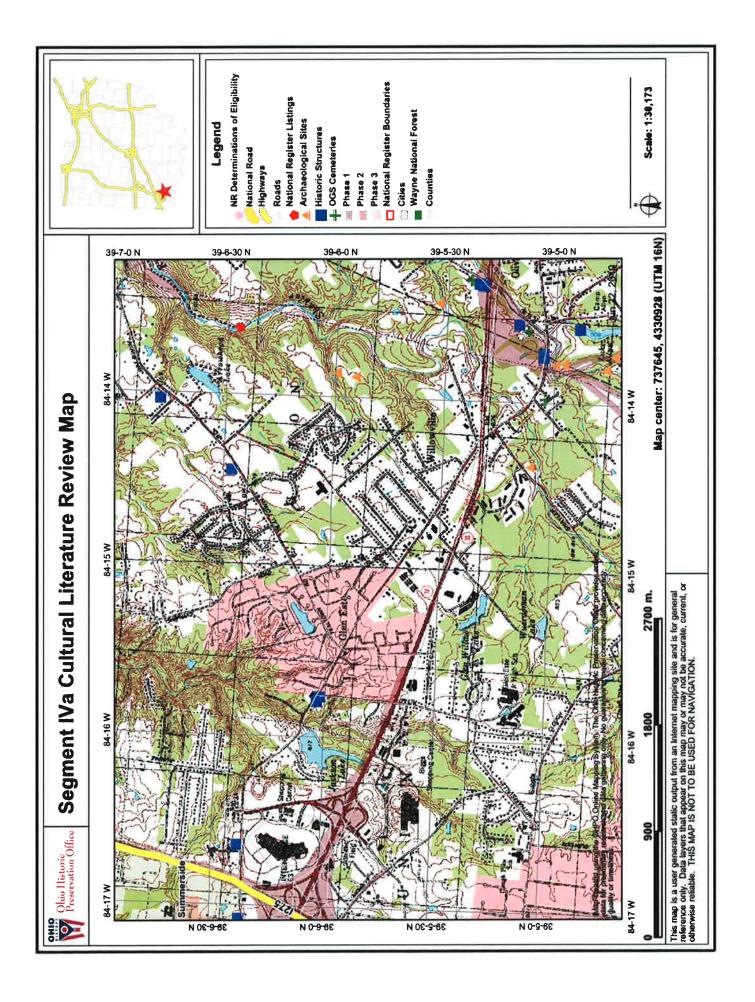
null

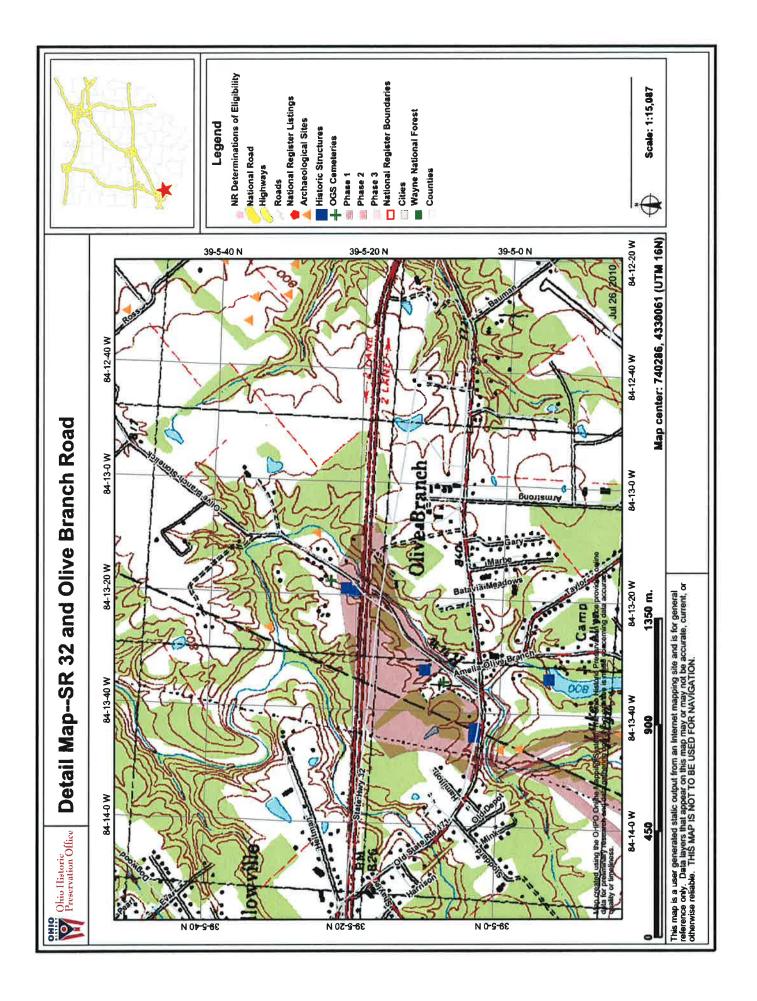
Use

Historic Struc	tures within Stu	udy Area					
ОНІ	Present Name	Former Name	Address	City/Township	Style	Use	Date
CLE0053006	Rose House	A Conklin House	947 Old SR 74	Glen Este	Vernacular	Single Dwelling	1865
CLE0052906	William Jones Bldg	null	951 Old SR 74	Glen Este	Vernacular	Unknown Use	1860
CLE0067606	null	West Property	1378 Old SR 174	Union (Township of)	Vernacular	Single Dwelling	1945
CLE0067807	Hunt Property	Darby Property	Stonelick-Olive Branch Rd	Batavia (Township of)	Vernacular	Barn	1840
CLE0067907	Potrafke Property	Hunt Property	4409 Stonelick-Olive Branch Rd	Batavia (Township of)	Vernacular	Single Dwelling	1865
CLE0068007	Hunt Property	Darby Property Lake for CG	Stonelick-Olive Branch Rd	Batavia (Township of)	Vernacular	Single Dwelling	1945
	Lake Allyn of	& P Power		Batavia		Other	

Archaeological Sites within Study Area

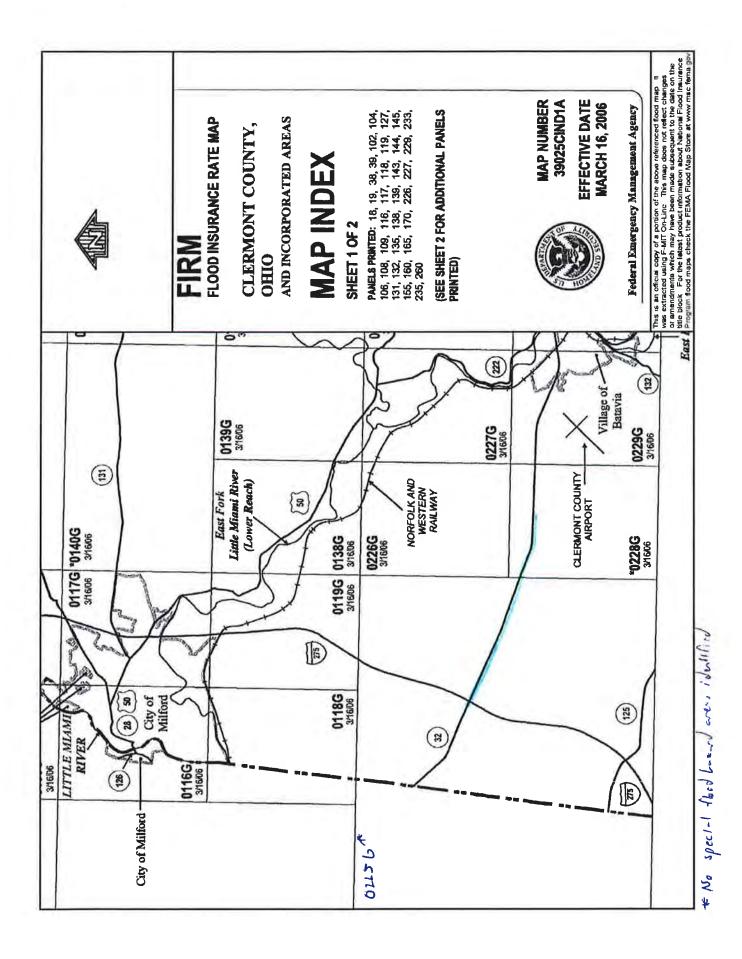
Camp Allyn


Plant


CLE0057907

OAI No.	Name	Township	Time Period	Туре	UTM		
CT0596		Batavia	Prehistoric	Open Site	16	740510	4330290
CT0597		Batavia	Prehistoric	Open Site	16	740100	4330470
CT0547		Batavia	Prehistoric	Open Site	16	739650	4329380
CT0548		Batavia	Historic	Open Site	16	739640	4329460
CT0581	Wiederhold Mound / Pfarr	Batavia	Prehistoric	Open Site	16	738760	4329620
CT0170	Site	Batavia	Prehistoric	Open Site	16	739460	4331300
CT0172	Wiederhold Site	Batavia	Prehistoric	Open Site	16	739435	4331138

Amelia-Olive Branch Rd


UTM

APPENDIX C

Floodplain Insurance Map Non-Attainment Area Map ODOT MS4 Regulated Map Sole Source Acquifer Map Total Maximum Daily Load Rating

Non-Attainment Area Maps - Air Quality - Environment - FHWA - Cincinnati-Hamilton, ... Page 1 of 2

Environment	Previous	Home	FHWA > HEP > Environment > Air Quality > Conformity > PM2 5
Sub-Department of Transportation Federal Highway Administration			FHWA Home Feedback

Cincinnati-Hamilton, OH-KY-IN PM2.5 Nonattainment Area Map

"This map shows the boundaries of the designated Cincinnati-Hamilton, OH-KY-IN PM2.5 nonattainment area. It includes the boundaries of associated 8-hour ozone nonattainment areas, as well as any associated MPOs. The map is intended to depict the extent of PM2.5 nonattainment in this area, and how the boundaries of the PM2.5 area, 8-hour area, and the MPO planning area relate to each other."

Cincinnati-Hamilton, OH-KY-IN PM2.5 Nonattainment Area o INDIANA E Dearborn Co (P) o KENTUCKY Boone Co

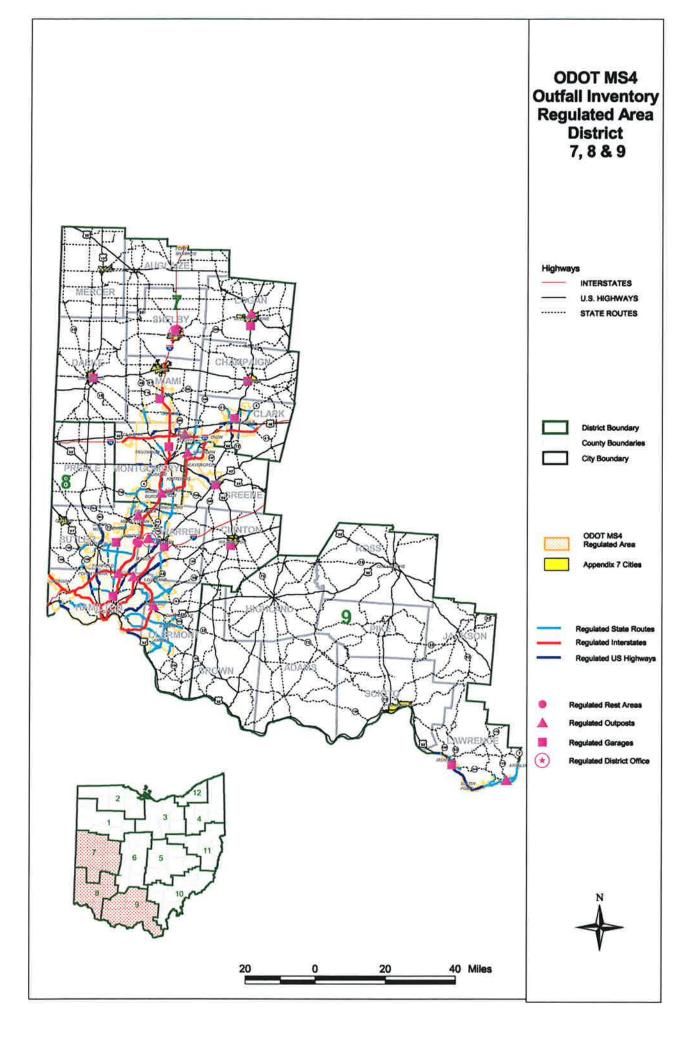
- Campbell Co
- Kenton Co

o OHIO

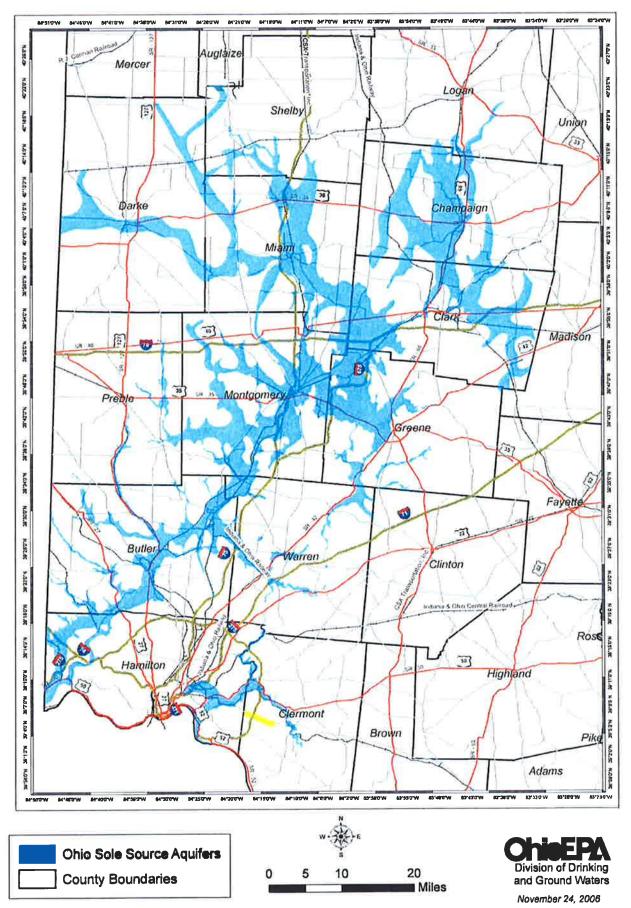
- Butler Co
- Clermont Co
- Hamilton Co
 Warren Co
- Cincinnati-Hamilton, QH-KY-IN 8-hour Ozone Nonattainment Area

o INDIANA

- Dearborn Co (P)
- o KENTUCKY
 - Boone Co


- Campbell Co
- = Kenton Co
- o OHIO
 - Butler Co
 - Clermont Co Clinton Co
 - Hamilton Co
 - Warren Co
- Ohio-Kentucky-Indiana Regional COG
 - o INDIANA
 - Dearborn Co
 - Ohio Co
 KENTUCKY
 - - Boone Co
 - Campbell Co Kenton Co
 - o OHIO
 - - Butler Co Clermont Co
 - Hamilton Co
 - Warren Co

This page last modified on September 30, 2005


O FHWA

FHWA Home | HEP Home | Feedback

United States Department of Transportation - Federal Highway Administration

Greater Miami Sole Source Aquifer

		Sq. Mi.	Human	Recre-	Aquatic	PDW	Priority	Next Field	Projected
Assessment Unit	Assessment Unit Assessment Unit Name	in Ohio	Health	ation	Life	Supply	Points	Monitoring	TMDL
05090202 13 05	Salt Run-East Fork Little Miami River	42.5	4t	S	5hx	0	2	2012	2015
04100001 03 04	Headwaters Tenmile Creek	39.9	อา	ო	5x	3	4	2014	2017
04100003 04 02	Headwaters Fish Creek	7.8	ო	ო	5x	0	4	2012	2015
04100003 04 05	Town of Alvarado-Fish Creek	2.7	ი	ო	5x	0	4	2012	2015
04100003 04 06	Cornell Ditch-Fish Creek	6.2	ო	ო	5x	٥	4	2012	2015
04100005 02 01	Zuber Cutoff	29.9	ი	ო	5hx	0	4	2016	2019
04100005 02 02	North Chaney Ditch-Maumee River	14.4	3i	ო	5hx	0	4	2016	2019
04100005 02 03	Marie DeLarme Creek	23.1	ო	ო	5hx	0	4	2016	2019
04100005 02 04	Gordon Creek	42.9	ო	ო	5hx	0	4	2016	2019
04100005 02 05	Sixmile Cutoff-Maumee River	15.7	ი	ო	5hx	0	4	2016	2019
04100005 02 06	Platter Creek	21.7	ო	ო	5hx	0	4	2016	2019
04100005 02 07	Sulphur Creek-Maumee River	18.2	ი	ო	5hx	0	4	2016	2019
04100005 02 08	Snooks Run-Maumee River	24.9	3	ო	Shx	0	4	2016	2019
04100006 03 01	Bates Creek-Tiffin River	29.3	5h	ო	5hx	3	4	2011	2014
04100006 03 03	Flat Run-Tiffin River	33.2	Sh	e)	5hx	ю Ю	4	2011	2014
04100006 05 02	Brush Creek	66.0	Sh	ო	5hx	ଞ	4	2011	2014
04100007 04 03	Honey Run	13.3	<mark>ጉ</mark>	ო	5hx	Э.	4	2010	2013
04100009 02 02	Benien Creek	24.0	ო	ო	ΣX	0	4	2016	2019
04100009 02 04	Garret Creek	28.6	ო	ი	δX	0	4	2016	2019
04100009 02 05	Oberhaus Creek	24.0	ი	ო	5x	0	4	2016	2019
04100009 02 06	Vittage of Napoleon-Maumee River	21.3	3i	ო	δX	0	4	2016	2019
04100009 04 03	Dry Creek-Maumee River	27.4	ы	ო	5hx	0	4	2016	2019
04100009 09 01	Grassy Creek Diversion	24.8	ო	ŝ	3	0	4	2023	2011
04100010 01 02	Needles Creek	31.4	ი	S	5	0	4	2023	2011
04100010 02 05	Cessna Ditch-Middle Branch Portage River	25.4	3i	ŝ	•	0	4	2023	2011
04100010 07 03	Cedar Creek-Frontal Lake Erie	58.0	ო	ъ	ŝ	0	4	2023	2011
04100010 07 04	Wolf Creek-Frontal Lake Erie	15.2	ი	ŝ	3	0	4	2023	2011
04100010 07 06	Otter Creek-Frontal Lake Erie	18.1	<u>3</u>	ŝ	ŝ	0	4	2023	2011
04100011 01 03	Mills Creek	42.2	ო	ო	Shx	31	4	2009	2012
04100011 06 05	Mouth Tymochtee Creek	26.1	-	S	4AX	0	4	2019	2022
04100011 08 06	Lower Honey Creek	35.6	ო	ŝ	4Ax	0	4	2019	2022
04100012 03 04	Old Woman Creek	26.5	ო	ŝ	4Ax	0	4	2021	2024
04110001 01 06	Cossett Creek-West Branch Rocky River	41.4	-	ო	5X	0	4	2021	2024

104

Ohio 2010 Integrated Report

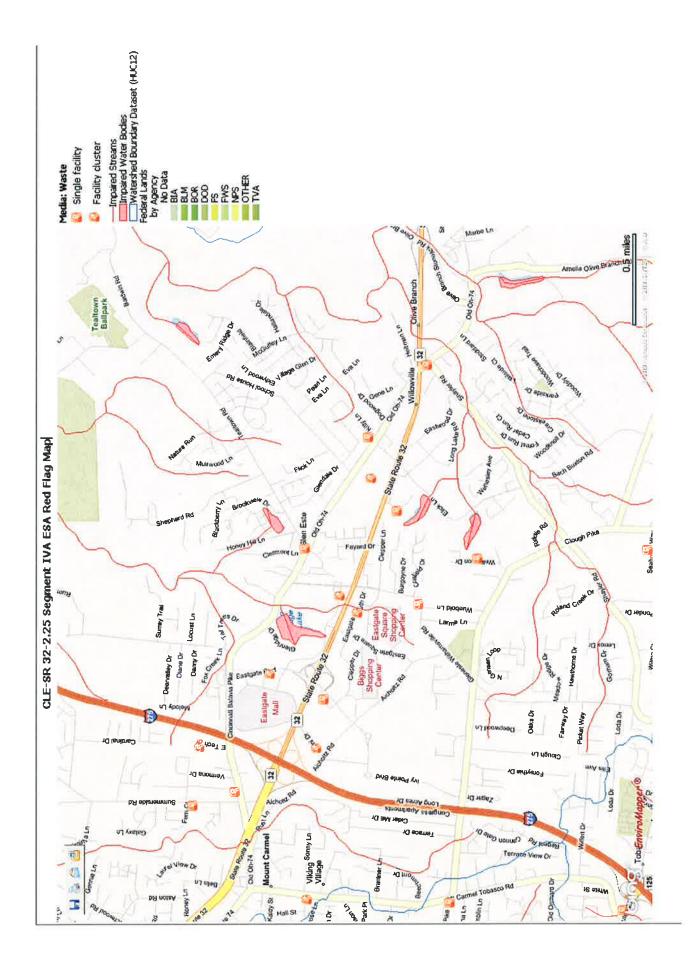
L4 - 10

Draft Report for Public Review

APPENDIX D

ESA Hazardous Materials Literature Review

Segment IV A contains (but is not limited to) the following hazardous wastes sites of concern:


- <u>View</u>	<u>View</u>	■ Ectro View View View	View	<u>View</u> Report	View	<u>View</u> <u>Report</u>	View	<u>View</u> <u>Report</u>	View	<u>View</u>	<u>View View View</u> Report Report Report	<u>View</u> <u>Report</u>	<u>View</u>	<u>View</u> <u>Report</u>	<u>View</u>
CIVACON A DOVER RESOURCES CO CIVACON A DOVER RESOURCES CO 4595 E TECH DR CINCINNATI, OH 45245	CUSTOM COLORS AUTO SERVICE CIRTURE COLORS AUTO SERVICE 1124A OLD ROUTE 74 BATAVIA, OH 45103	DYNAMICS CORP OF AMERICA ELLIS & WATTS DIV CORPORT 4400 GLEN WILLOW LAKE LANE BATAVIA, OH 451030000	EASTGATE MOTORS INC STRIPPING CONCURATION 45245	ENVIRONMENTAL CHEMICAL CORP	FIRESTONE THIS CECHO 4625 EASTGATE BLVD CINCINNATI, OH 45245	HEMPLEMAN S AUTO BODY Cress Concord 4413 KITTY LN BATAVIA, OH 45103	HOLMAN MOTORS INC PHAS CHECHEC 4387 ELICK LN BATAVIA, OH 45103	JEFF WYLER BUICK PONTIAC THERE CONTINUE 1117 STATE ROUTE 32 BATAVIA, OH 45103	JERRY S AUTOBODY CARSTAR INC FIRS UF CHC 4425 AICHOLTZ RD CINCINNATI, OH 45201	KROGER #902 Ters Clacks 4530 EASTGATE BLVD CINCINNATI, OH 45245	LUCAS AUTOMOTIVE SEFENS CENCE 3241 OMNI DR. CINCINNATI, OH 45245	MEIJER #148 GAS STATION THIS COLONIC AND SAFT SASTGATE NORTH ROAD CINCINNATI, OH 45245	MEIJER STORE NO 148 CINCINNATI, OH 45245 4445 GLEN-ESTE WITHAMSVILLE RD CINCINNATI, OH 45245	MIDWEST AUTO EXCHANGE CIRCINO 4584 SUMMERSIDE RD CINCINNATI, OH 45244	PEP BOYS THE NO 260 CIRS UPCHO 4436 GLENESTE-WITHAMSVILLE CINCINNATI, OH 45245

View Report View Report	View Report		<u>riew</u> <u>Report</u>	<u>Keport</u>	<u>View View</u> <u>Report Report</u>	View Report	View Report	View Report
э ж	190	Ē	ŝ	ſ	•	X	x	ä
SAMS CLUB NO 6528 HIS DEDIC 815 CLEPPER LANE CINCINNATI, OH 45245 SEARS # 1810 FRS LECHO 4595 FASTGATE BI VD CINCINNATI, OH 45245	SUMMERS BODY AND PAINT THE STORES SUMMERS BODY AND PAINT THE STORE TO AND ST RTE 74 BATAVIA, OH 45103	1006 CINCINNATI BATAVIA PIKE BATAVIA, OH 45103	4440 GLEN ESTE-WITHAMSVILLE RD CINCINNATI, OH 45245	TRENTEC INC TREATS CONTRACTION 4600 E TECH DR CINCINNATI, OH 45245	VIVI-COLOR INC * WITH STAVIA PIKE CINCINNATI, OH 45245	WAL-MART NO 1443 CIFES SECTION 4370 EASTGATE SQUARE DR CINCINNATI, OH 45201	WEST CLERMONT The State Circles 342 GLEN ESTE WITHAMSVILLE RD CINCINNATI, OH 45245	WYLER JEFF NISSAN INC THIS SECHO 861 WYLER PARK DR CINCINNATI, OH 45245

Segment IV A also contains (but is not limited to) the following UST/LUST sites of concern:

Facility Id	Facility Name	Address	City
13000126	SUNOCO #0043-8820	1006 CINCINNATI-BATAVIA PIKE	BATAVIA
13010072	TEALTOWN EXXON	1006 OLD STATE RTE 74	BATAVIA
13004027	SAULS CONSTRUCTION CO., INC.	1077 CINCINNATI-BATAVIA PIKE	BATAVIA
13000113	GLENESTE MARATHON	1098 CINCINNATI-BATAVIA PIKE	BATAVIA

BATAVIA	BATAVIA	BATAVIA	BATAVIA	BATAVIA	
1117 ST RT 32	1147 MARIAN DR	1155 Old State Route 74	1269 OLD ST RT 74	957-961 CINCINNATI-BATAVIA PIKE	
JEFF WYLER AUTO CENTER	BIG MIKES GAS-N-GO	CLERMONT DISTRIBUTING CO	SPEEDWAY #9674	UNITED DAIRY FARMERS #139	
13000010	<u>13010103</u>	13000026	13002579	13002615	

APPENDIX E

Geotechnical Red Flag Report

RED FLAG SUMMARY

GEOTECHNICAL INFORMATION, SITE VISIT & ISSUES STATE ROUTE 32 & BACH BUXTON ROAD CLERMONT COUNTY, OHIO

Prepared For:

TranSystems 1105 Schrock Road, Suite 400 Columbus Ohio 43229

Prepared By:

Burgess & Niple, Inc. 312 Plum Street 12th Floor Cincinnati, Ohio 45202-2678

May 24, 2010

RED FLAG SUMMARY

(Form Revised April 2005)

The purpose of this Red Flag Summary is to identify concerns that could cause revisions to the anticipated design and construction scope of work, the proposed project development schedule, the estimated project budget, or the potential impacts of the project on the surrounding area.

Date Red Flag Summary Completed: June 4, 2010 District: District 8 Project Name (County, Route and Section): CLE-32-2.25 City, Township or Village Names(s): Batavia, Union Township PID: 82370 Prepared by: Burgess & Niple, Inc. ODOT Project Manager: Jay Hamilton

EXISTING GEOTECHNICAL INFORMATION:

Review of information from ODOT:

[x]Original construction plans including plan views, profiles, and cross-sections

[] Construction diaries and inspection reports for original construction

[] Compile information on changes to the plans during construction activities (e.g., slope, spring drains)

[] Interview people knowledgeable with the previous projects

[] Maintenance records

[x] Boring log on file with the Office of Geotechnical Engineering

[] History and occurrence of landslides

[] History and occurrence of rockfalls

[] Other

Review of information from ODNR:

From the Division of Geological Survey

[] Boring logs on file

[] Measured geologic sections

[x] Bedrock Geologic Maps

[x] Bedrock Topography Maps

[x] Bedrock Structure Maps

[x] Geologic Map of Ohio

[x] Quaternary Geology of Ohio

[x] Known and Probable Karst in Ohio

[] Bulletins

[] Information Circulars

[] Report of Investigations

[x] Location and information on underground mines

[] Location and characteristics of karst features

[] Landslide maps

[] Other____

From the Division of Mineral Resource Management

- [] Applications and permits files for surface mines (coal & industrial mineral)
- [] Active, reclaimed or abandoned surface mines
- [] Abandoned Mine Land (AML) sites
- [] Emergency Projects
- [] Other___

From the Division of Soil & Water

[x] Water well logs

[x] Soil Surveys

[x] Ohio Wetland Inventory Maps

- [x] National Wetland Inventory Maps
- [| Presence of lake bed sediments, organic soils or peat deposits
- [] Other

Other Sources:

- [] Aerial photographs
- [] Satellite imagery
- [x] USGS quadrangles
- [] USGS publications and files
- [] City and County Engineers
- [] Academia with engineering or geology programs
- [] USGS Open File Map Series #78-1057 "Landslides and Related Features"
- [] Other_____

SITE VISIT:

Date(s) of site visit: May 24, 2010

GEOTECHNICAL ISSUES:

GEOLOGY

Glacial Geology

Clermont County is located in the Illinoian Till Plain of the Interior Till Plains. The glaciated and nonglaciated regions of Ohio comprise five physiographic sections, based on distinct geological profile and plant and animal communities. The study area is within the Illinoian Till Plain of the Central Lowland Till Plains. This area is characterized by broad, level to rolling uplands dissected by steep-sided stream valleys. The topography in the upland areas primarily reflects the bedrock surface due to the thin glacial cover in these areas.

Both the Illinoian and Wisconsinian glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial till, kame deposits, lacustrine deposits, and outwash terraces. The Illinoian glaciers covered all of Clermont County with each glacial advance depositing variable thicknesses of glacial till across the county. The rolling ground moraine of older till within the Illinoian Till Plain section generally lacks glacial features such as moraines, kames, and eskers. Till across Clermont County is highly weathered, particularly where the till thinly covers the underlying bedrock. The majority of upland areas in Clermont County are covered by variable thicknesses of loess which is fine, silt-sized particles picked up from floodplains and deposited by wind.

According to the Ohio Department of Natural Resources (ODNR) Surficial Geology of the Ohio Portion of the Cincinnati and Falmouth 30 X 60 Minute Quadrangle Map (Map) the majority of the study area consists of Illinoian-age loam-till generally overlain by up to 3.5 feet of loess, but loess may be 10 feet thick along bluffs bordering major rivers. Additionally, landsliding may occur in oversteepend, wet areas. The Map identifies areas of Holocene-age alluvium near the eastern portion of the study area along an unnamed tributary and Shayler Run. The Map categorizes alluvium to be found within modern streams consisting of a wide variety of textural classes from silt to boulders which are generally not compact and rarely greater than 20 feet thick. According to the Map, alluvium deposits along Shayler Run within the study area are up to 20 feet thick. Additionally, the Map shows the area east of Jackson Lake along unnamed tributaries to consist of Ordivician-age shale-dominant bedrock and clay-rich bedrock-derived colluvium which is prone to landsliding.

Bedrock Geology

Based on the ODNR Bedrock Geology Map of Ohio (ODNR, 2006), bedrock within the study area, west of the eastern edge of Jackson Lake, consists of the undivided Grant Lake Formation, Miamitown Shale, and the Fairview Formation which consist of undivided Upper Ordivician limestone and shale which are interbedded. The Grant Lake Formation consists of shale (50 to 80 percent) and limestone (30 to 50 percent) that is gray to bluish gray and contains thin to medium, wavy, planar, and nodular bedding. The Fairview Formation in this area consists of limestone (50 percent) and shale (50 percent) that is gray to bluish gray, and contains thin to thick, planar to irregular bedding. This unit also contains sparse to abundant fossils. It is noted that the Miamitown Shale has been associated with bedrock slope failures (landslides in the form of rotational slopes and earthflows) in areas where thick colluvium has developed and excessive hydrostatic pressure builds up (ODNR, Geofacts No. 8).

The bedrock east of Jackson Lake within the study area consists of undivided Grant Lake Limestone and Fairview Formation which are comprised of Upper Ordivician limestone and shale. The Grant Lake Limestone is gray to bluish gray, contains thin to thick, wavy to irregular to nodular bedding and is interbedded with shale (20 to 50 percent). The Fairview Formation in this area consists of limestone

(50 percent) and shale (50 percent) that is gray to bluish gray, contains thin to thick, planar to irregular bedding, with sparse to abundant fossils.

The ODNR bedrock topography 7.5 minute Quadrangle maps for Withamsville, Ohio-Kentucky and Batavia, Ohio show bedrock topography is generally higher in the western portion of the study area and lower in the eastern portion of the study area. Near the western edge of the study area along State Route (SR) 32 a bedrock elevation of 850 feet above mean sea level (amsl) was recorded with 10 feet of overburden. Observed bedrock elevations near the eastern edge of the study area range between 755 and 768 feet amsl along SR 32 with 8 to 20 feet of overburden. Appendix 5 contains the ODNR bedrock maps discussed.

Soil Conservation Service Soil Description

Twenty-two different soil types are identified within the study area according to the Clermont County Soil Survey. The majority of these soils consist of nearly level to gently sloping silt loams. Based on the Soil Survey of Clermont County, the soil types within the study area are described below in Table 1. Appendix 4 contains the USDA soil map of the study area.

Groundwater

Based on the ODNR map for *Ground-Water Resources of Clermont County*, Ohio (Walker, 1986) located in Appendix 6 and the *Ground Water Pollution Potential of Clermont County* (ODNR, 1993) report, the study area is a poor source for groundwater. Bedrock consists of interbedded shale and thin limestone layers and if water is present in the rock it usually occurs in the upper few feet where the bedrock may be weathered and fractured. Wells installed in the bedrock seldom produce more than 3 gallons per minute (gpm). According to ODNR, reports of dry holes are not uncommon. The overlying glacial overburden is thin and mostly consists of fine-grained tills. Rare lenses of sand and gravel found within the till may supply limited yields.

An ODNR groundwater well log search for the study area generated four monitoring wells and three groundwater well logs. Copies of the well logs and the locations of these wells are shown on a map located in Appendix 6. Each of the four monitoring wells is located at the same address, near the center of the study area with bottom depths ranging between 13 and 14 feet below ground surface (bgs). The monitoring wells are screened in unconsolidated clay and gravel and have shallow static water levels. All three water wells are screened in shale or shale/limestone bedrock and range in total depth from 40 to 90 feet bgs. Bedrock was observed at 32 feet bgs, 21 feet bgs, and 21 feet bgs for ODNR well logs 100474, 100504, and 107858, respectively.

The Ground Water Pollution Potential of Clermont County (ODNR, 1993) map indicates the study area has a low vulnerability to contamination. The pollution potential is low due to several factors including the lack of groundwater within the interbedded shale and limestone bedrock which is covered by varying amounts of glacial till.

Wetlands and Streams

A review of the Soil Survey of Clermont County, Ohio (1975) and the U. S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) web soil survey indicated that multiple map units identified within the project corridor are considered hydric soils within Clermont County. A review of National Wetlands Inventory (NWI) mapping for the site was also reviewed. Multiple features, most of which appear to be open water areas/ponds, are depicted within the limits of the project corridor. NWI

mapping also depicted Shayler Run and its tributaries, along with other stream channels in the project area.

The following NWI wetland designations occur within the project corridor or along the edge of the corridor:

- PFO1C, Palustrine forested wetland with a seasonally flooded water regime
- R3UBH, Upper perennial riverine system with a permanently flooded water regime
- PUBGh, Palustrine system that is intermittently exposed and diked/impounded
- PUBGx, Palustrine system that is intermittently exposed and has been excavated
- PEMFx, Palustrine emergent wetland with a semipermanently flooded water regime, excavated.

TABLE 1. SOILS WITHIN THE RED FLAG STUDY AREA

Soil Type	Soil Occurr	ence and Area	Soil Description	Potential Red Flag	Probable USC
Sou type	Acres	Percent		Soil	Classification
Avonburg silt loam (AvA)	230 0	23 1%	Slopes are 0-2 percent Cousists of loess over till on till plains and is poorly drained Found on uplands and sloping areas		ML/CL
Avonburg silt loam (AvB)	2 0	0.2%	Slopes are 2-6 percent Consists of loess over till on till plains and is poorly drained Found on uplands, along and commonly at the heads of small drainageways		ML/CL
Cincinnati silt Ioam (CcB)	11.4	1.1%	Slopes are 2 to 6 percent Consists of loess over till on till plains and is well drained Found on relatively high ridgetops on uplands between deeply entrenched tributaries of major drainage systems		ML/CL
Cincinnati silt loam (CcC2)	32 5	3 3%	Slopes are 6 to 12 percent Consists of loess over till on till plains and is well drained Found on sides of smaller waterways and next to the steeper upland soils on valley walls		ML/CL
Cincinnati silt loam (CcD2)	21 4	2 1%	Slopes are 12 to 18 percent and are moderately croded Consists of loess over till on till plains and is well drained. Found on side slopes of smaller waterways and adjacent to steeper soils on valley walls in upland areas		ML/CL
Cincinnati and Hickory soils (CkD3)	25 3	2 5%	Slopes are 12 to 25 percent and severely eroded. Consists of locss over till on till plains and are well drained Mostly found on valley walls of entrenched steam.		ML/CL
Clermont silt loam (CleIA)	35 4	3 6%	Slopes are 0 to 1 percent, Consists of locss and underlying Illinoian till Soils are poorly drained, not flooded, but frequently ponded This soil meets hydric criteria. Found on uplands between drainageways and at the heads of low-gradient waterways where runoff water tends to pool.	x	ML/CL
Cut and fill land (Cu)	13 4	1 3%	The cut and fill land is generally small and associated with excavated or cut soil material for fill or grading associated with urban land complexes		N/A
Eden flaggy silty clay loam (EaF2)	8 2	0 8%	Slopes are 25 to 50 percent and are found on moderately eroded hills Consists of 20 to 40 inches of well drained silty clay loam over bedrock (liduc)	х	CL/CI//MH
Edenton loam (EbD2)	53 2	5 3%	Slopes are 12 to 18 percent and are moderately eroded Consists of well drained till over limestone and shale on till plains.		CL/ML
Edenton loam EbE2)	28 6	2 9%	Slopes are 18 to 25 percent and are moderately croded. Consists of till over limestone and shale on till plains. Erosion scars are readily visible and bedrock may be exposed in ravines and gullies.		CL/ML
Edenton loam (EbG2)	39 9	4 0%	Slopes are 25 to 50 percent and are moderately eroded. Consists of well drained till over limestone and shale on till plauss Bedrock is commonly exposed in ravines or gullies		CL/ML
Eel silt Ioam (Ee)	10 9	11%	Slopes are 0 to 2 percent Consists of moderately well drained altuvium on flood plains This soil is occasionally flooded and not ponded This soil does not meed hydric criteria		CL/ML
Fairmont very laggy silty clay oam (FaG2)	19	0 2%	Slopes are 25 to 50 percent and are moderately croded Consists of well drained residuum weathered from limestone and shale on hills Bedrock (lithic) is approximately 10 to 20 inches below grade Found on uplands along the rims of the sides fo hills that border streams	x	СІЈСН/МН
Genesee silt loam (Gn)	33 8	3 4%	Slopes are 0 to 2 percent Consists of deep loamy alluvium on flood plains that is well drained This soil is occasionally flooded, not ponded, and does not meet hydric criteria		MI/SM
lickory Ioam IIkF2)	98	1 0%	Slopes are 18 to 35 percent and are moderately eroded Consists of well drained loess over till on till plains Found on uplands in irregular shaped wooded areas		CL/ML
Lanier sandy loam Lg)	i 8	0 2%	Slopes are 0 to 2 percent Consists of loamy alluvium over outwash on floodplains It is well dramed, occasionally flooded, but not ponded This soil does not meed hydric criteria		CL/ML
tossmoyne silt barn (RpA)	56 6	5 7%	Slopes are 0, to 2 percent Consists of moderately well drained loess over till on till plains		ML/CL
lossmoyne silt pam (RpB)	190 2	19 1%	Slopes are 2 to 6 percent Consists of loess over till on till plains and is moderately well drained Found on ridges of the uplands		ML/CL
ossmoyne silt pam (RpB2)	817	8 2%	Slopes are 2 to 6 percent and are moderately eroded Consists of loess over till on till plains and is moderately well drained		ML/CL
ossmoyne silt oam (RpC2)	96 1	9 6%	Slopes are 6 to 12 percent and are moderately eroded Consists of moderately well drained loess over till on till plains Found in areas near the heads of draunageways and alongside the steeper soils on uplands		ML/CL
/ater (W)	10.6	1.1%	Water		N/A
Villiamsburg and Aartinsville silt Dams (WvB)	2 5	0 2%	Slopes are 2 to 6 percent The Williamsburg component makes up 55 percent of the map unit and consists of loess over alluvium over glacial outwash and is well drained. The Marinsville component makes ups 45 percent of the map unit and consists of well drained loess over glacial outwash. This map unit is locatated on stream terraces		ML/CL/SM/SC

EXISTING SOIL PROFILE REVIEW

There are three Soil Profile plans sets available which provide subsurface information for the Red Flag Study Area. These are CLE-74-(4.39-7.64) which was developed in 1957 for a portion of SR-32 from a point near Heitman Lane to Stonelick-Olive Branch Road. CLE-74-0.01 developed in 1958 which investigated the portion of SR-32 from the Eastgate Boulevard Interchange to Heitman Lane and CLE-CR3-0.00 (circa 1981) which was the Eastgate interchange project. The subsurface results indicate a relatively thin layer of cohesive overburden soils exist above bedrock. The overburden soils are comprised primarily of A-6 and A-7-6 soils with lesser amounts of A-4 soils. A-4b soils were evidenced in a small percentage of the soils tested. The plans indicate a few locations where fill depths were approximately 30 feet high and cut depths were on the order of 15 feet deep. Based on a review of the soil test data the water contents of the soils at the time of testing were generally slightly higher than the plastic limit of the soil except for the near surface soils where the moisture content was noticeably higher. An approximate 100-foot section of the southern portion of Jackson Lake was filled in the late 1950's to construct roadway embankment for SR 32. There were no test borings located within the lake to investigate the potential for soft soil conditions.

	Profession and Profession	0 amountable
Yea XNo Possible N/A	Design issue is there evidence of soil drainage problems (e.g., we'r or pumping subgrade, standing water, the presence of seeps, wetlande, swamps, bogs)?	Commenta None observed during site visit
Yes XNO Possible N/A	is the groundwater table anticipated to be affected by construction?	Does not appear that deep cuts will be needed for construction based on site topography
Yes XNo Possible N/A	Is there evidence of any embanisment or foundation problems (e.g., differential suttlement, sag, foundation feitures, slope feitures, scours, evidence of channel migrations)?	None observed during site visit
Yes X No Possible N/A	is there evidence of any slope instability (soll or rock)?	None observed during site visit. Embankments and cuts are nominal in height
Yee No X Possible N/A	is there evidence of unsuitable materials (e.g., presence of debrie or man-mede fills or waste pills containing these materials, indications from old soil borings)?	Area is highly developed and fill soils are anticipated to be encountered.
X Yes No Possible N/A	is there evidence of rock strats (e.g., presence of apposed bedrock, rock on the old borings)?	Bedrock is relatively shallow at the site based on exisiting geologic and subsurface information Rock is exposed in the streambeds
Yes XN0 Possible NVA	Is there evidence of active, reclaimed or abandoned surface mines?	No mining is known to exist at the location of the site
Yes XNo Possible N/A	Is there information pertaining to the addlence of underground mines?	
Yes X No Possible N/A	Is there Acid Mine Orainage present within the study area?	
Yes No X Possible N/A	Does an undercul or subgrade stabilization appear to be needed?	Possible based on review of existing subsurface explorations. The near surface native soils we lypically wetter at the time the borings were driffled
Yes X No Possible N/A	Should the Office of Geotechnical Engineering be contacted to evaluate the project site?	Based on our review any proposed improvements would appear to be routine from an ODOT perspective. Geotechnical coordination and consultation at the District level would appear to be sufficient.
Yes Possible N/A	Were there any significant items found during plan and specification review? Specify.	
Yes XNo Possible N/A	Are There any other geotschnicel issues? Specify.	Nothing significant to report at this stage

FIELD REVIEW

B&N performed a site visit on 5/24/10 to make site observations within the Red Flag Study Area relative to geotechnical implications for the project. Because of the size of the study area the observations were made by travelling the roadways in a vehicle. From the Eastgate Boulevard Interchange extending east along SR 32 to Old SR 74 the area is heavily developed with commercial and residential properties. Beyond Old SR-74 along SR 32 and extending east to Olive-Branch Stonelick Road the corridor becomes less developed and contains more heavily wooded areas and pastureland. In general the travelled roads were in fair to good condition with no obvious large areas distress. There are many creeks, streams and ditches in the area and in general surface drainage appeared reasonable good. Due to the large number of structures located in the area no specific observations were made relative to their condition. The bridges at the Eastgate Boulevard Interchange and Olive-Branch Stonelick Road which are located near the beginning and end of the corridor appeared in good condition. No areas of significant geotechnical concern were observed during the site visit.

REFERENCES

Brockman, Scott. Physiographic Regions of Ohio. Ohio Department of Natural Resources. April 1998.

- Hansen, Michael C. Geofacts Number 8. Ohio Department of Natural Resources, Division of Geological Survey. September 1995.
- Ohio Department of Natural Resource, Division of Geological Survey. Surficial Geology of the Ohio Portions of the Cincinnati and Falmouth 30 X 60 Minute Quadrangle. 2004.
- Ohio Department of Natural Resources, Division of Geological Survey. Bedrock Topography of the Batavia, Ohio 7¹/₂ Minute Quadrangle. Revised July 1998.
- Ohio Department of Natural Resources, Division of Geological Survey. Bedrock Topography of the Withamsville, Ohio-Kentucky 7¹/₂ Minute Quadrangle (Ohio Portion). Revised July 1998.
- Ohio Department of Natural Resources, Division of Water. Ground Water Pollution Potential of Clermont County. 1993.
- United States Department of Agriculture Soil Conservation Service In Cooperation With Ohio Ohio Department of Natural Resources, Division of Lands and Soil and Ohio Agricultural Research and Development Center. Soil Survey of Clermont County, Ohio. September 1975.
- Walker, A.C. Ground-Water Resources of Clermont County. Ohio Department of Natural Resources, Division of Water. 1985.

APPENDICES

- Appendix 1 Geotechnical Red Flag Study Area
- Appendix 2 Site Photos
- Appendix 3 List of References
- Appendix 4 USDA Soil Maps
- Appendix 5 Bedrock Topography Maps
- Appendix 6 ODNR Groundwater Resources Map and Water Well Logs
- Appendix 7 ODNR Geologic Maps
- Appendix 8 FEMA Flood Insurance Map
- Appendix 9 Ohio Mineral Industries

Appendix 1 Geotechnical Red Flag Study Area

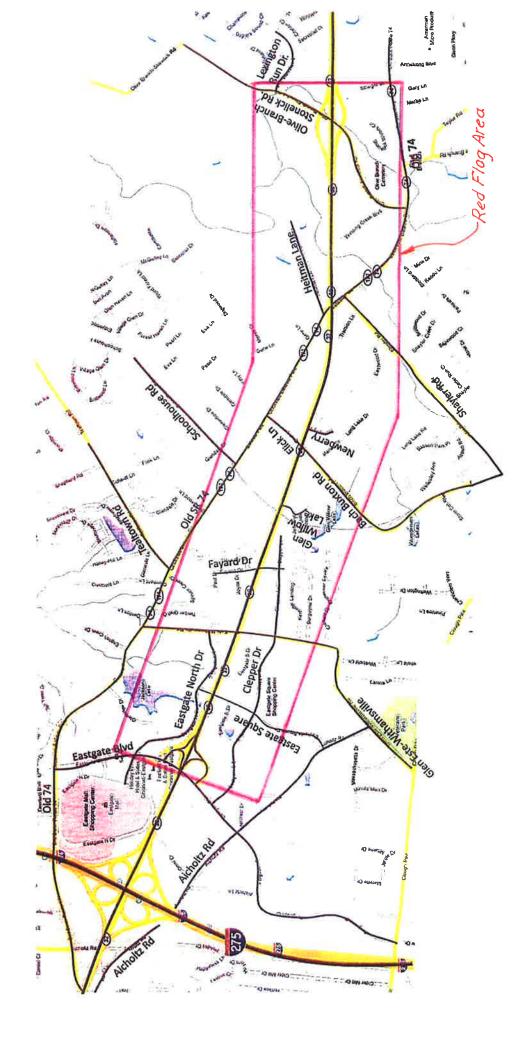


Figure 3. Location of Clermont County in Ohio.

GENERAL INFORMATION ABOUT CLERMONT COUNTY

Clermont County is located in the southwestern part of Ohio and occupies a total land area of 459 square miles (Lerch, et al., 1975). It is bordered to the north by Warren and Clinton Counties, to the South by the Ohio River, to the East by Brown County, and to the West by Hamilton County (Figure 3).

Climate

The climate of Clermont County is moderate and humid. The county's annual mean temperature over a 30 year period (1961 - 1990) at the Milford station in the north was 51.7 degrees Fahrenheit and at the Chilo station in the south was 53.3 degrees Fahrenheit (U.S. Department of Commerce, 1992). Annual average precipitation for the same time period at the same stations were 43.21 inches at Milford and 42.57 inches at Chilo (U.S. Department of Commerce, 1992).

Physiography

Clermont County is located in the Till Plains Section of the Central lowlands province (Fenneman, 1938). This area is characterized by broad, level to rolling uplands dissected by steep-sided stream valleys (Hunt, 1974). The topography in the upland areas primarily reflects the bedrock surface (i.e. "bedrock-controlled") due to the thin glacial cover in these areas.

Modern Drainage

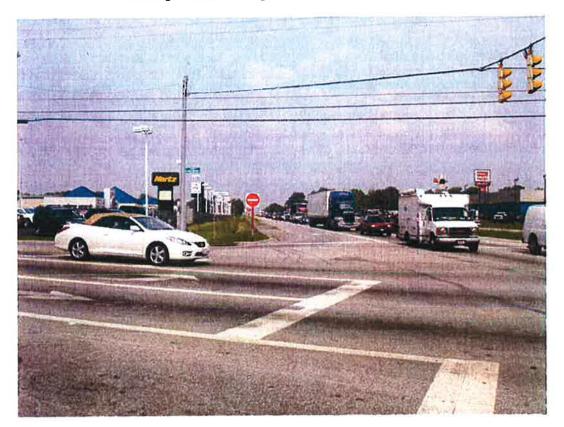
Clermont County lies within the Ohio River Drainage Basin. Indian Creek, located in southern Clermont County, drains directly into the Ohio River. Most of the central and southern portion of the county drains into the East Fork Little Miami River. Stonelick Creek is the largest tributary and drains north central Clermont County. The East Fork Little Miami River empties into the Little Miami River in Hamilton County. O'Bannon Creek, which drains the far northern portion of the county, empties into the Little Miami River near the Warren County boundary.

Appendix 2 Site Photos

ě.

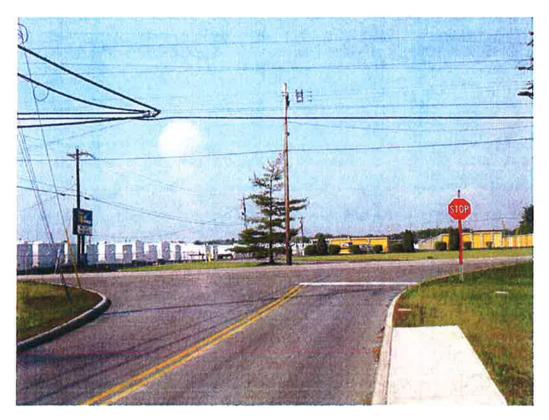
Looking west along SR 32 from Gleneste-Withamsville Road

Looking east along SR 32 from Gleneste-withamsville Road

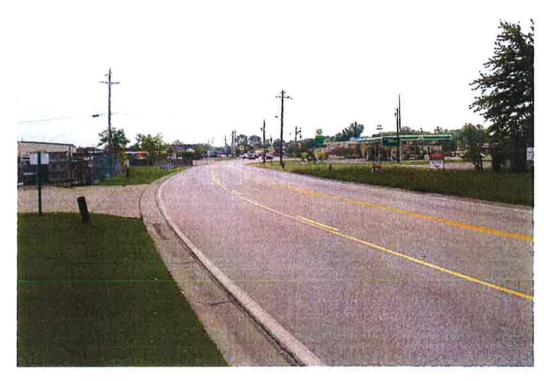

Looking west along north side of SR 32 from Elick Lane

Looking west along SR 32 from Elick Lane

Looking southwest along SR 32 from Bach Buxton Road


Looking west along south side of SR 32 from Bach Buxton Road

Looking east along SR 32 from Bach Buxton Road

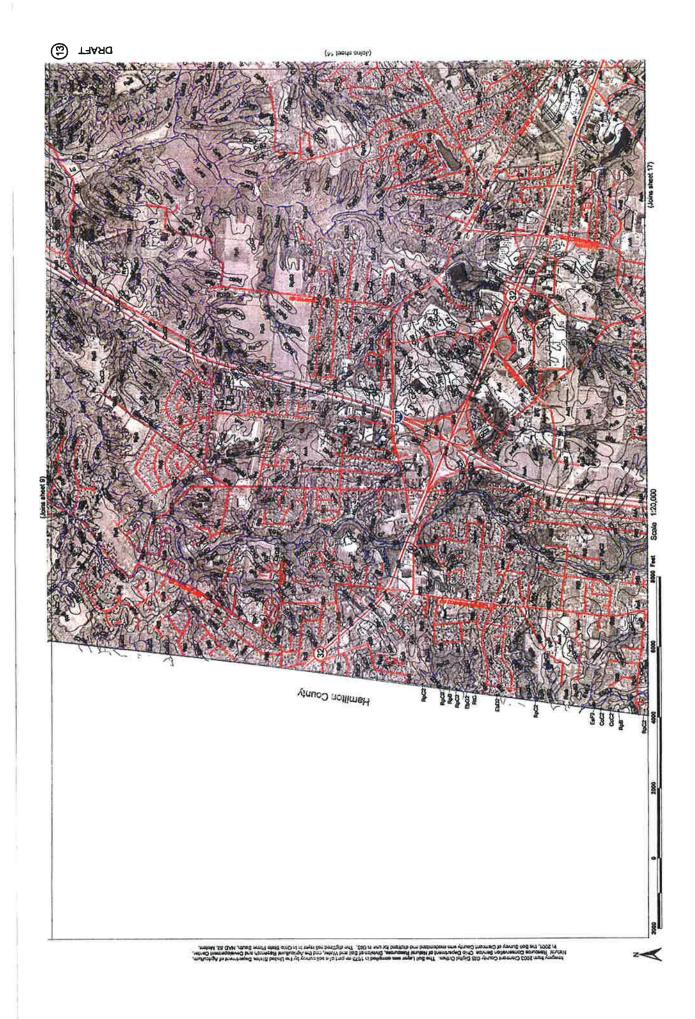

Looking east along north side of Old SR 74 east of Schoolhouse Road

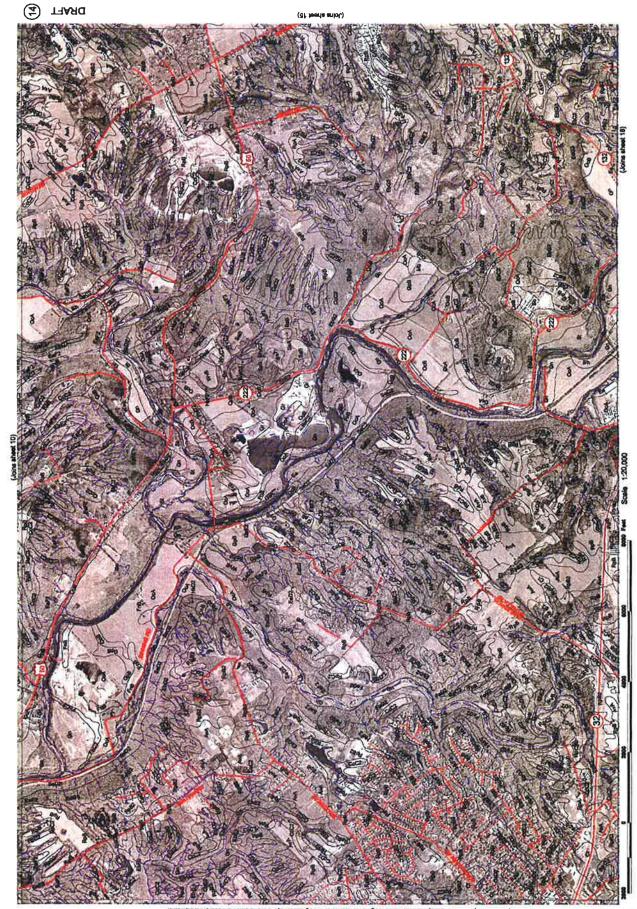
Looking south along Schoolhouse Road toward Old SR 74

Looking west along Old SR 74 from Schoolhouse Road

Looking north along Bach Buxton Road toward Marian Drive

Looking south along Bach Buxton Road

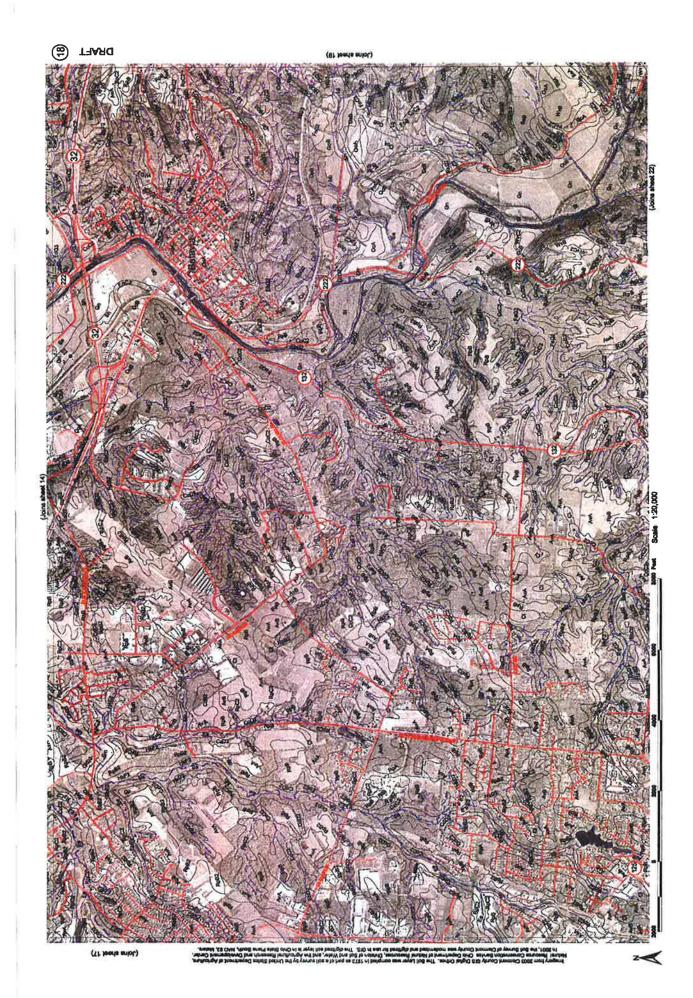

Appendix 3 List of References


Source	ID Description	Reference
Department of Transportation	Original construction plans including plan views, profiles and cross sections	Previous projects sent to B&N on CD by ODOT
Department of Transportation	Construction diaries and inspection reports for original construction	Not Available
Department of Transportation	Compile information on changes to plans during construction activities	Not Available
Department of Transportation	Interview people knowledgeable with previous projects	
Department of Transportation	Maintenance records	
Department of Transportation	Boring log on file with the Office of Geotechnical Engineering	Boring logs part of previous project plans
Department of Transportation	History and occurrences of landsides	None
Department of Transportation	Mistory and occurrences of Rock falls	None
Division of Geological survey	Boring Logs on file	
Division of Geological survey	Measured geological sections	
Division of Geological survey	Bedrock Geological Maps	Bedrock Geological Map of Ohlo
Division of Geological survey	Bedrock Topography Maps	Shaded Bedrock -Topography Map of Ohio
Division of Geological survey	Bedrock Structure Maps	
Division of Geological survey		
Division of Geological survey		
Division of Geological survey		
Division of Geological survey		
Division of Geological survey	Geolopical Maos	Cross Section Map of Ohio's Geologic Systems
Division of Geological survey	Ouaternary Geology of Ohio	
Division of Geological survey	Known and Probable Karst in Ohn	Known and Probable Karst in Oho Map-ODNR-Department of Natural Recourses
Division of Geological survey	Rudlatine	Geology of Cincinnati and Vicinity (Bulletin #19)
Division of Geological survey	DUTCING	Minerals of Ohio by Ernest Carlson
Division of Geological survey	Information Circulars	
Division of Geological survey	Report of Investigations	Reviewed Sand & Gravel Reports for Clermont County, Ohio
Division of Geological survey	Location and information of underground mines	
Division of Geological survey		
Division of Geological survey	Location and characteristics of Karst features	
Division of Geological survey		
Division of Geological survey	Other	Physiographic Regions of Ohio
Division of Geological survey		Glacial Map of Ohio
Division of Geological survey		Geological Map and Cross Section of Ohio
Division of Geological survey		Shaded Elevation Map of Ohio
Division of Geological survey		Oil and Gas Pipelines in Ohio 1989
Division of Geological survey		Shaded Drift Thickness Map of Ohio
Division of Geological survey		Ground Water Resources Map of Clermont Co.
Division of Geological survey		
Division of Mineral Resource Management	Applications and permits files for surface mines (coal & industrial mineral)	No mining permits issued by ODNR on record for Union Township
	Active, reclaimed or abandoned surface mines	Reviewed Mines, Quarries and Prep Plants ODNR Map-No Mines
	Abandoned Mine Land (AML) sites	Reviewed Abandoned Underground Mines ODNR Map-No Mines
	Emergency Projects	Not available
	Other	2007 Report on Ohio mineral industries
Division of Soil & Water	Water Well Loss	ODNR Well Logs
	Sold Survey Brok	Clermont County Soil Survey
	Ohio Wetland Inventory Maps	Reviewed online

	Presence of lake bed sediments, organic soils or peat deposits	
	Other	
Other Sources	Aerial Photographs	Reviewed Aerial photography online at Google.com
	Satellite imagery	Reviewed Satellite imagery online at Google.com
	USGS quadranties	Withamsville Quadrangle-Ohio-Ky 1983 USGS
	USGS oundramples	Batavia Quadrangle-Ohio-Clermont Co. 1982 USGS
	USGS publications and files	Maps and other printed material
	County Engineers	
	Academia with engineering or geology programs	Not found
	USGS Open File Map Series	
	Other	Cincinnati Fossils

Appendix 4 USDA Soil Maps

20



Province Committee and the province of the set of th

z

United States Department of

Map

OH025 - Clermont County, Ohio **Clermont County** Ohio

Logon/Register Help

In order to view any report, popup blocking must be disabled. In order to view a report in PDF format (the default format), your browser must be configured to use a PDF viewer (such as Adobe@ Reader@ software).

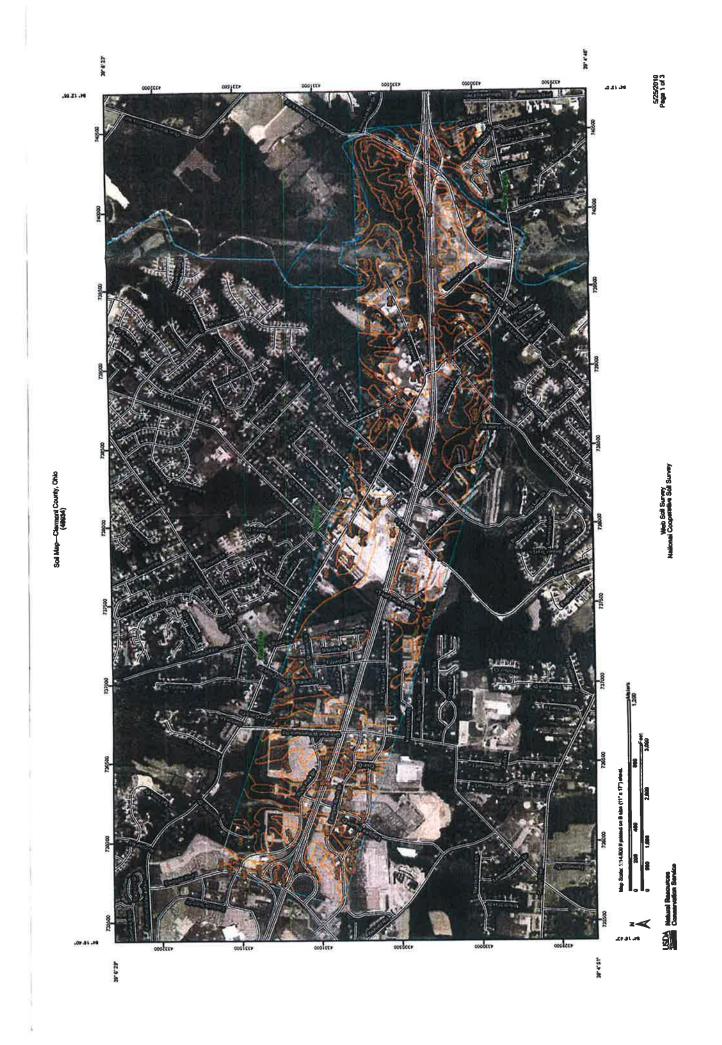
Natural Res

Conservatio

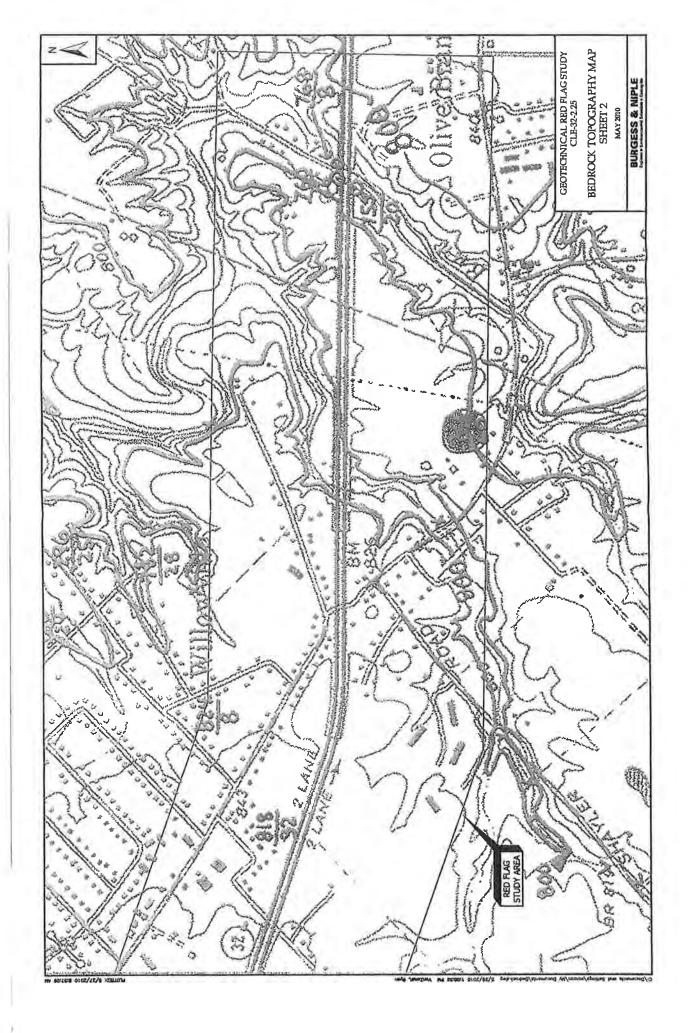
Commonly Used Soil Properties by Report (//K) This report lists some of the more commonly used soll properties, and the report(s) in which each soil property is displayed.

Please select the map units that you would like to report on:

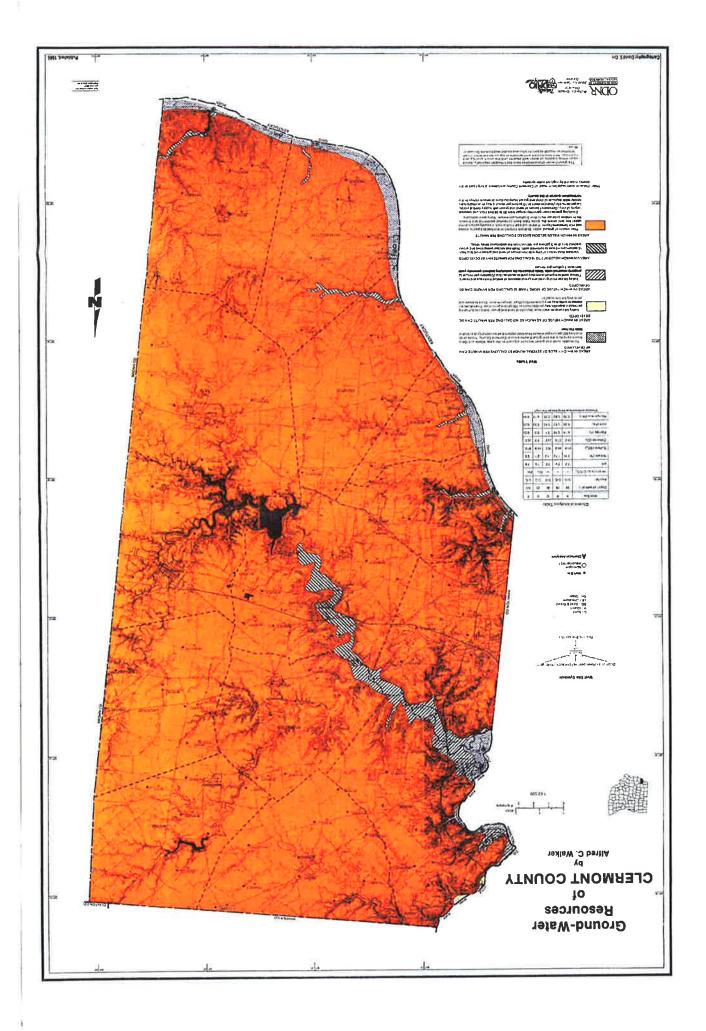
House Select State State Contacts Template Databases SSURGO Metadata Status Man US General Soll

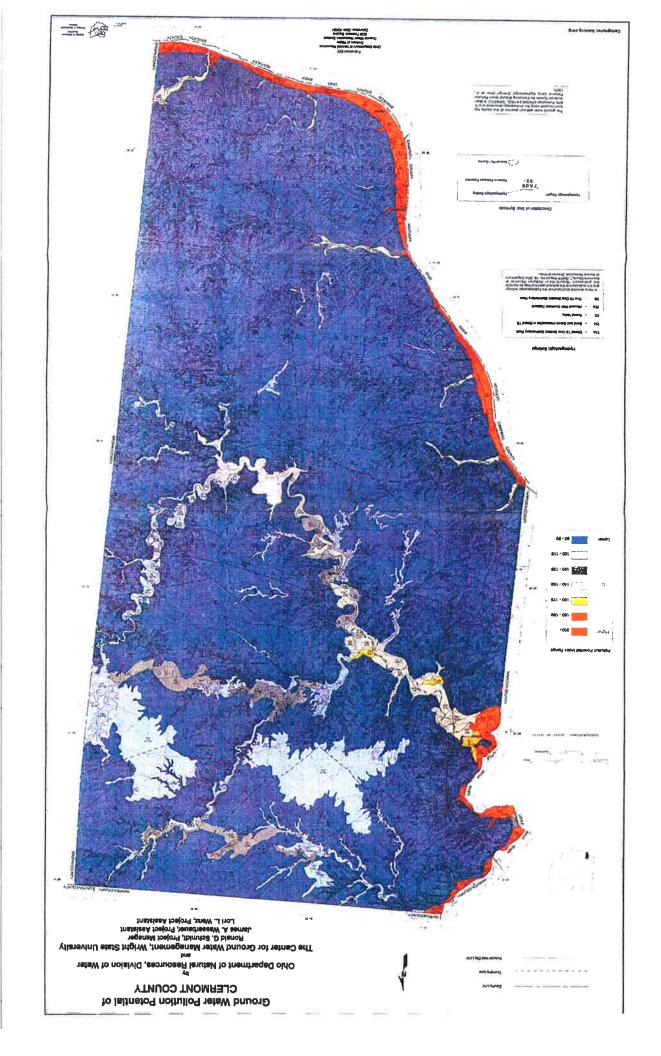

	Ma	p.Unit/Symbol.
Brass 1	AdC	Alluvial land; sloping
	AVA	Avonburg silt loam, 0 to 2 percent slopes
取時間	AVB	Avonburg silt loam, 2 to 6 percent slopes
國際	AVB2	Avonburg silt loam, 2 to 6 percent slopes, moderately eroded
而感。	AWA	Avonburg-Urban land complex, nearly level
國國	BoD2	Bonnell silt loam, 15 to 25 percent slopes, eroded
國調 法	BOE	Bonnell silt loam, 25 to 40 percent slopes
翻翻目的	BoF	Bonnell silt loam, 40 to 60 percent slopes
新教	BrD3	Bonnell silty clay loam, 15 to 25 percent slopes, severely eroded
「「「「「「」」	CcB	Cincinnati silt loam, 2 to 6 percent slopes
1280 C	Cc82	Cincinnati silt loam, 2 to 6 percent slopes, moderately eroded
1988 倍	CcC2	Cincinnati silt loam, 6 to 12 percent slopes, moderately eroded
RYP. A	CcD2	Cincinnati silt loam, 12 to 18 percent slopes, moderately eroded
國語	CkD3	Cincinnati and Hickory soils, 12 to 25 percent slopes, severely eroded
	Cle1A	Clermont silt loam, 0 to 1 percent slopes
Degi in	CnC2	Cincinnati silt Ioam, 6 to 12 percent slopes, eroded
開發品	CU AUX	Cut and fill land
Constant of the	EaD2	Eden flaggy silty clay loam, 12 to 18 percent slopes, moderately eroded
	EaE	Eden flaggy silt loam, 25 to 40 percent slopes.
1212	EaE2	Eden flaggy silty clay loam, 18 to 25 percent slopes, moderately croded
133692	EUF	Eden flaggy silt loam, 40 to 70 percent slopes
	EaF2	Eden flaggy slity clay loam, 25 to 50 percent slopes, moderately eroded
	EbC2	Edenton loam, 6 to 12 percent slopes, moderately eroded
	EbD2	Edenton loam, 12 to 18 percent slopes, moderately eroded
伊朗	EbE2	Edenton loam, 18 to 25 percent slopes, moderately eroded
100000	EbG2	Edenton loam, 25 to 50 percent slopes, moderately eroded
	EcE3	Edention clay loam, 12 to 25 percent slopes, severely eroded
10000 N	EdG3	Edenton and Fairmount soils, 25 to 50 percent slopes, severely eroded Eel silt loam
14. 12. 14. 5. 214.10771 (Ee	The second second second second second second second second second second second second second second second s
Million P	EkB	Elkinsville silt loam, 2 to 6 percent slopes Fairmount very flaggy silty clay loam, 18 to 25 percent slopes, moderately croded
200100 (7) 200373 (**	FaE2 FaG2	Fairmount very haggy sitty clay loam, 15 to 50 percent slopes, moderately eroded.
ALCONT.	FdD2	Faywood silt loam, 15 to 25 percent slopes, eroded
1000000	and the second state of the second state of the	Fox silt loam, 2 to 6 percent slopes
1000275	FnB FnC2	Fox silt loam, 6 to 12 percent slopes, moderately eroded
DICTION FLO	FuB	Fox-Urban land complex, gently sloping
CRIMES	Gn	Genesee silt loam
DISTON STATE	/Cnn	Clanfort sit loam 2 to 6 remain dones

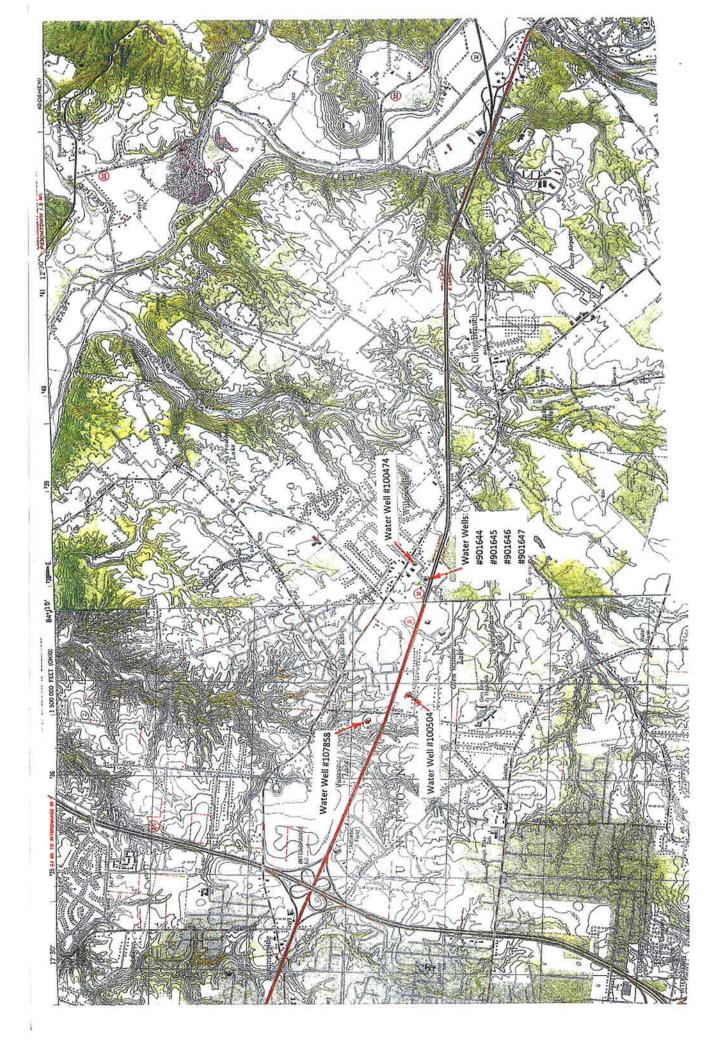

101 St. 10 St. 10 St. 10 St. 10	
GpC2	Glenford silt loam, G to 12 percent slopes, moderately eroded
GpE2	Glenford silt loam, 18 to 25 percent slopes, moderately eroded
Gr	Gravel plts
HKD2	Hickory loam, 12 to 18 percent slopes, moderately eroded
HkF2	Hickory loam, 18 to 35 percent slopes, moderately eroded
HIG3	Hickory clay loam, 25 to 50 percent slopes, severely eroded.
Ru	Huntington silt loam
JeC2	Jessup silt loam, 8 to 15 percent slopes, eroded
الد وا	Lanler sandy loam
i a in in i	Lundside silt loam
Mb	Mahalasville silty clay loam
MdB	Markland silt loam, 2 to 6 percent slopes
MgA	McGary silt loam, 0 to 2 percent slopes
Mb	Medway silt loam, overwash
Ne	Newark silt loam
NO .	Nolin silt loam, occasionally flooded
OcA	Ockley silt loam, 0 to 2 percent slopes
OcB	Ockley sit loam, 2 to 6 percent slopes
OdA	Ockley-Urban land complex, nearly level
Card an and a strike a strike a strike a	Pate silty clay, 15 to 25 percent slopes, eroded
PbD2	这个人,我们还没有一种原则不是我们的人们还是我们不是我们不是我们也是你是你的你的。""你你,我们是你们的你是没有你的你们是你们的你的人,你们是你们是你们的你?""你你你说道
Rh	Riverwash
RkD2	Rodman and Casco loams, 12 to 18 percent slopes, moderately eroded
RKE2	Rodman and Casco loams, 18 to 25 percent slopes, moderately eroded
Rn.	Ross silt loam
RpA	Rossnoyne silt loam, 0 to 2 percent slopes
RpB	Rossmoyne silt loam, 2 to 6 percent slopes
RpB2	Rossmoyne silt loam, 2 to 6 percent slopes, moderately eroded
RpC2	Rossmoyne silt loam, 6 to 12 percent slopes, moderately eroded
8 RrB	Rossmoyne silt loam, 1 to 6 percent slopes.
RsC3	Rossmoyne silty clay loam, 6 to 12 percent slopes, severely eroded
RtB	Rossmoyne-Urban land complex, gently sloping
RIC	Rossmoyne-Urban land complex, sloping
RwC3	Rossmoyne-Bonnell complex, 6 to 12 percent slopes, severely eraded
SaA	Sardinia silt loam, 0 to 2 percent slopes
SaB	Sardinia silt loam, 2 to 6 percent slopes
ScA	Sciotoville slit Joam, 0 to 2 percent slopes
SeC2	Sees silty clay loam, 4 to 12 percent slopes, moderately eroded
SeD2	Sees silty day loam, 12 to 18 percent slopes, moderately eroded
Sg	Shoals silt loam, frequently flooded
Sh.	Shoals slit loam
St	Stonelick sandy loam
A local a second of the second second	Udorthents
Ud	Water
and and a second produce of the second	
WCA	Westboro-Schaffer silt loams, 0 to 2 percent slopes
WvB	Williamsburg and Martinsville silt loams, 2 to 6 percent slopes
WVC2	Williamsburg and Martinsville slit loams, 6 to 12 percent slopes, moderately eroded
WvD2	Williamsburg and Martinsville silt loams, 12 to 18 percent slopes, moderately eroded
r spirit ser er siner	The second second second second second second second second second second second second second second second s
	Select All Clear Selections
	e report that you would like to generate:
Acreage and I	Proportionate Extent of the Soils


Г Include Minor ۲ Include

Rich Text


Appendix 5 Bedrock Topography Maps





Appendix 6 ODNR Groundwater Resources Map and Water Well Logs

Water Well Log Glen Este-Withamsville Road

Control and the set

Select a Well Log from the list below.

Address, Original Owners Name, Well Log Number

GLEN ESTE-WITHAMSVILLE, HARRIS, 102931 OUTSIDE project limits GLEN ESTE-WITHAMSVILLE, WALTER CLIPPER, 107858

Well Log Number: 102931

.

ORIGINAL OWNER AND LOCATION					
Original Owner Name: HARRIS	Township: (1)(0)	C a abi	na Musahan		
County: CLERMONT Township: UNION Address: GLEN ESTE-WITHAMSVILLE RD		Section Number:			
			Lot Number:		
City:	State: OH	Zip C			
Location Number: 81	Location Map Year: 1984	Locat	lon Area:		
	Longitude:				
CONSTRUCTION DETAILS					
Borehole Diameter: 1:	Borehole Depth: 1: 50 ft.		Depth to Bedrock:		
2:	2:				
Casing Diameter: 1: 6 In.	Casing Length: 1: 12 ft.		Casing Thickness: 1:		
2:	2:		2:		
Casing Height Above Ground:	Aquifer Type: LIMESTONE AND SHALE				
Date of Completion: 4/8/1953	Total Depth: 50 ft.		Well Use:		
Driller's Name:					
Screen Diameter:	Slot Size:		Screen Length:		
Туре:	Material:				
Set Between:					
Gravel Pack Material/Size:	Vol/Wt Used:				
Method of Installation:	Placed:				
Grout Material/Size:	Vol/Wt Used:				
Method of Installation:	Placed				
WELL TEST DETAILS					
Static Water Level: 12 ft.	Test Rate:		Associated Reports		
Drawdown:	Test Duration:		NONE		
COMMENTS: NONE					
	WELL LOG				
Formations	Fro	m To)		
YELLOW CLAY		0 12	2		
TOP SOIL		12 12	2		
LIMESTONE & SHALE		12 50)		
		Viev	v Image of Original Well Lo		
Well Log Number: 107858					

ORIGINAL OWNER AND LOCATION

Original Owner Name: WALTER CLIPPER

ORIGINAL WELL LOG AND DRILLING REPORT X=1,499,200 16 State of Ohio DEPARTMENT OF NATURAL RESOURCES Nº 107858 4=401,800 \$ Division of Water Columbus, Ohio Section of Township . or Lot Number..... Township, County. pur Address Owner 20 Location of property ... PUMPING TEST CONSTRUCTION DETAILS 20 Length of casing. Type of screen. Length of screen Drawdown......ft. Date..... Developed capacity Type of pump_____ Capacity of pump Pump installed by Depth of pump setting SKETCH SHOWING LOCATION WELL LOG Formations Locate in reference to numbered From To Sandstone, shale, limestone, State Highway's, St. Intersection's, County roads, etc. gravel and clay N. 0 Feet - 15 Sand + your 6 151 0 61 21 15 40' Shale + Line Stone # 0 Water at 20' E. W. - S.414. ς See reverse side for instructions Gles Este mell derilling 954 Date marc Drilling Firm dil) Address Balann 10 Signed

Water Well Log Elick Lane

Select a Well Log from the list below.

Address, Original Owners Name, Well Log Number

4382 ELICK, SHELL, 901644 4382 ELICK, SHELL, 901645 4382 ELICK, SHELL, 901646 4382 ELICK, SHELL, 901647 ELICK, A THOMPSON, 100474

Well Log Number: 901644

View Image of Original Well Log

ORIGINAL OWNER AND LOCATIO	ON	
Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN	Township: BATAVIA	Section Number: Lot Number:
City: BATAVIA Location Number: Latitude:	State: OH Location Map Year: Longitude:	Zip Code: 451031504 Location Area:
CONSTRUCTION DETAILS		
Borehole Dlameter: 1: 8 in. 2:	Borshole Depth: 1: 16 ft. 2:	Depth to Bedrock:
Casing Dlameter: 1: 2 in. 2:	Casing Length: 1:6 ft. 2:	Casing Thickness: 1: 0.4 in. 2:
Casing Height Above Ground: Date of Completion: 3/22/2000 Driller's Name: ATC ASSOCIATES	Aquifer Type: CLAY AND GRAVEL Total Depth: 14 ft.	Well Use: MONITOR
Screen Diameter: Type: Set Between:	Slot Size: Material:	Screen Length:
Gravel Pack Material/Size: Method of Installation:	Vol/Wt Used: Placed:	
Grout Material/Size: Method of Installation:	Vol/Wt Used: Placed	
WELL TEST DETAILS		
Static Water Level: 11.5 ft. Drawdown:	Test Rate: Test Duration:	Associated Reports
COMMENTS: NONE		
	WELL LOG	
		From To

Formations

From To

GRAY SILTY CLAY CONCRETE GRAY SILTY CLAY OLIVE SILTY CLAY & GRAVEL 5 2 0 5 2 14 14 16 View Image of Original Well Log

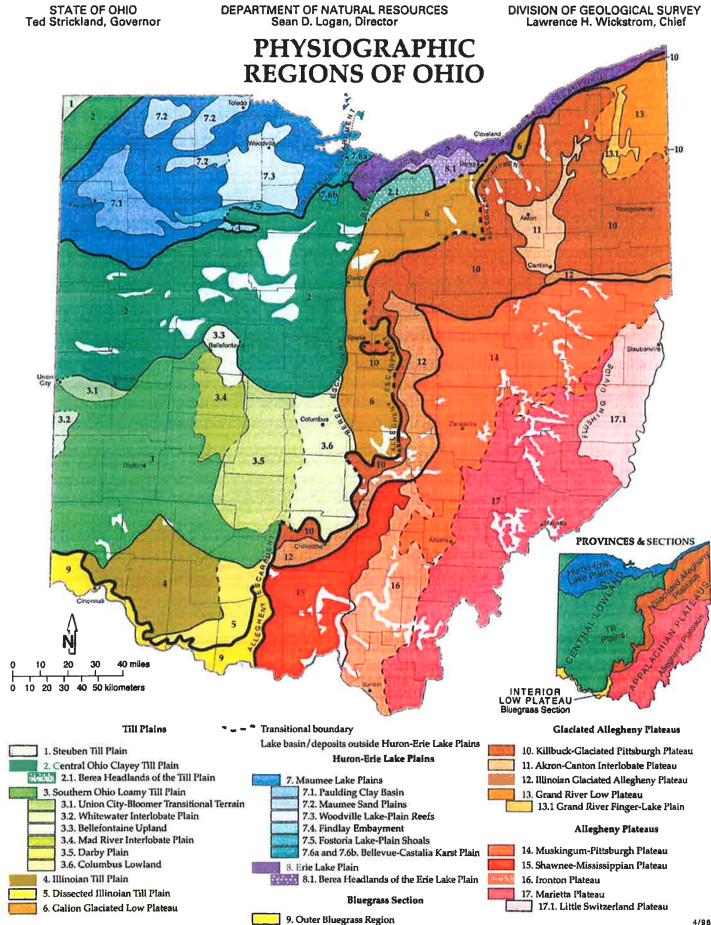
Weil Log Number: 901645

DRIGINAL OWNER AND LOCATION Driginal Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN	Township: BATAVIA	Section N Lot Numb	er:		
City: BATAVIA Location Number: Latitude:	State: OH Location Map Year: Longitude:	Zip Code: 451031504 Location Area:			
CONSTRUCTION DETAILS			lanth	to Bedrock	
Borehole Diameter: 1: 8 in. 2: Casing Diameter: 1: 2 in. 2:	Borehole Depth: 1: <i>14 ft.</i> 2: Casing Length: 1: <i>4 ft.</i> 2:		•	to Bedrock: g Thickness:	1: 0.4 in 2:
Casing Height Above Ground: Date of Completion: 3/22/2000 Driller's Name: <u>ATC ASSOCIATES</u>	Aquifer Type: CLAY AND GRAVEL Total Depth: 14 ft.	Well Use: MONITOR			
Screen Dlameter: Type: Set Between:	Slot Size: Material:		SGING	n Lengui.	
Gravel Pack Material/Size: Method of Installation:	Vol/Wt Used: Placed:				
Grout Material/Size: Method of Installation:	Vol/Wt Used: Placed		_		
WELL TEST DETAILS			Acen	ciated Report	s
Static Water Level: 1 ft. Drawdown:	Test Rate: Test Duration:		NONE		2
COMMENTS: NONE					
	WELL LOG	From	To		
Formations		0	5		
CONCRETE		5	8		
GRAY SILTY CLAY BROWN SILTY CLAY & GRAVEL		8	10		
BROWN SILTY CLAY & GRAVEL		10	14		
BROWNSICH OCA			View	Image of Origin	al Well L.c

Weil Log Number: 901646

ORIGINAL OWNER AND LOCAT	ION	
Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN	Township: BATAVIA	Section Number: Lot Number:
City: BATAVIA Location Number: Latitude:	State: OH Location Map Year: Longitude:	Zip Code: 451031504 Location Area:

Borehole Diameter: 1: 8 in.	Borehole Depth: 1: 23 ft.		Depth to Bedrock:
	2:		
	Casing Length: 1: 3 ft.		Casing Thickness: 1: 0.4 in.
Casing Diameter: 1: 2 in.			2:
2:			4:
Casing Height Above Ground:	Aquifer Type: CLAY AND GRAVEL		Well Use: MONITOR
Date of Completion: 3/23/2000	Total Depth: 13 ft.		
Driller's Name: ATC ASSOCIATES	Slot Size:		Screen Length:
Screen Diameter:	Material:		
Type: Set Between:			
Gravel Pack Material/Size:	Vol/Wt Used:		
Method of Installation:	Placed:		
Grout Material/Size:	Vol/Wt Used:		
Method of Installation:	Placed		
WELL TEST DETAILS			
Static Water Level: 2 fl.	Test Rate:		Associated Reports
Drawdown:	Test Duration:		NONE
COMMENTS: NONE			
and the second second second second second	WELL LOG		
Formations		From	То
CONCRETE		0	5
GRAY SILTY CLAY		5	12
BROWN SILTY CLAY & GRAVEL		12	16
BROWN SILTY CLAY & GRAVEL		16	21
			,
Well Log Number: 901647	DN		<u>,</u>
ORIGINAL OWNER AND LOCATIO)N		
	DN Township: BATAVIA	Sectio Lot Nu	n Number: imber:
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT		Lot Nu	
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN	Township: BATAVIA	Lot Nu Zip Co	mber:
ORIGINAL OWNER AND LOCATIC Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA	Township: BATAVIA State: OH	Lot Nu Zip Co	mber: de: 451031504
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number:	Township: BATAVIA State: OH Location Map Year:	Lot Nu Zip Co	mber: ide: 451031804 on Area:
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude:	Township: BATAVIA State: OH Location Map Year:	Lot Nu Zip Co	mber: de: 451031504
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS	Township: BATAVIA State: OH Location Map Year: Longitude:	Lot Nu Zip Co	mber: ide: 451031804 on Area:
ORIGINAL OWNER AND LOCATIC Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 In. 2;	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 ft. 2:	Lot Nu Zip Co	mber: ide: 451031804 on Area:
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 In. 2: Casing Diameter: 1: 2 In.	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 R.	Lot Nu Zip Co	on Area: Depth to Bedrock:
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 In. 2: Casing Diameter: 1: 2 In. 2:	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 R. 2: Casing Length: 1: 3 R. 2:	Lot Nu Zip Co	Depth to Bedrock: Casing Thickness: 1: 0.4 /
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 In. 2: Casing Diameter: 1: 2 In. 2: Casing Height Above Ground: 0	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 R. 2: Casing Length: 1: 3 R. 2: Aquifer Type: CLAY AND GRAVEL	Lot Nu Zip Co	Depth to Bedrock: Casing Thickness: 1: 0.4 /
ORIGINAL OWNER AND LOCATIC Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 in. 2: Casing Diameter: 1: 2 in. 2: Casing Height Above Ground: 0 Date of Completion: 3/23/2000	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 R. 2: Casing Length: 1: 3 R. 2:	Lot Nu Zip Co	Depth to Bedrock: Casing Thickness: 1: 0.4 / 2:
ORIGINAL OWNER AND LOCATIO Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 In. 2: Casing Diameter: 1: 2 In. 2: Casing Height Above Ground: 0	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 R. 2: Casing Length: 1: 3 R. 2: Aquifer Type: CLAY AND GRAVEL	Lot Nu Zip Co	Depth to Bedrock: Casing Thickness: 1: 0.4 / 2:
ORIGINAL OWNER AND LOCATIC Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 In. 2: Casing Diameter: 1: 2 In. 2: Casing Height Above Ground: 0 Date of Completion: 3/23/2000 Driller's Name: ATC ASSOCIATES Screen Diameter:	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 ft. 2: Casing Length: 1: 3 ft. 2: Aquifer Type: CLAY AND GRAVEL Total Depth: 13 ft.	Lot Nu Zip Co	mber: ide: 451031504 on Area: Depth to Bedrock: Casing Thickness: 1: 0.4 i 2: Well Use: MONITOR
ORIGINAL OWNER AND LOCATIC Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 in. 2: Casing Diameter: 1: 2 in. 2: Casing Height Above Ground: 0 Date of Completion: 3/23/2000 Driller's Name: ATC ASSOCIATES	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 ft. 2: Casing Length: 1: 3 ft. 2: Aquifer Type: CLAY AND GRAVEL Total Depth: 13 ft. Slot Size:	Lot Nu Zip Co	mber: ide: 451031504 on Area: Depth to Bedrock: Casing Thickness: 1: 0.4 i 2: Well Use: MONITOR
ORIGINAL OWNER AND LOCATIC Original Owner Name: SHELL County: CLERMONT Address: 4382 ELICK LN City: BATAVIA Location Number: Latitude: CONSTRUCTION DETAILS Borehole Diameter: 1: 8 In. 2: Casing Diameter: 1: 2 In. 2: Casing Height Above Ground: 0 Date of Completion: 3/23/2000 Driller's Name: ATC ASSOC/ATES Screen Diameter: Type:	Township: BATAVIA State: OH Location Map Year: Longitude: Borehole Depth: 1: 14 ft. 2: Casing Length: 1: 3 ft. 2: Aquifer Type: CLAY AND GRAVEL Total Depth: 13 ft. Slot Size:	Lot Nu Zip Co	mber: ide: 451031504 on Area: Depth to Bedrock: Casing Thickness: 1: 0.4 i 2: Well Use: MONITOR


ARRENT CONTRACTOR AND ADDRESS ORIGINAL JTELL LOG AND DRILLING REPORT 1=1,503,100 g=403,2005 34 State of Ohio DEPARTMENT OF NATURAL RESOURCES **N**⁹ 100474 Division of Water Coumbus, Ohio County Comis A Section of Township thron or Lot Number..... Township..... Address Ja 14 Paristen *Q*., Owner Q 9 M MAX Location of property... PUMPING TEST CONSTRUCTION DETAILS Drawdown......ft. Date..... Type of screen.....Length of screen..... Developed capacity Type of pump..... Capacity of pump Pump installed by Depth of pump setting SKETCH SHOWING LOCATION WELL LOG Formations Locate in reference to numbered From To Sandstone, shale, limestone, State Highways, St. Intersections, County roads, etc. gravel and clay N. 0 Feet bra wis to I point A clay / is the is a suball 32 32 90 Routy W. E.

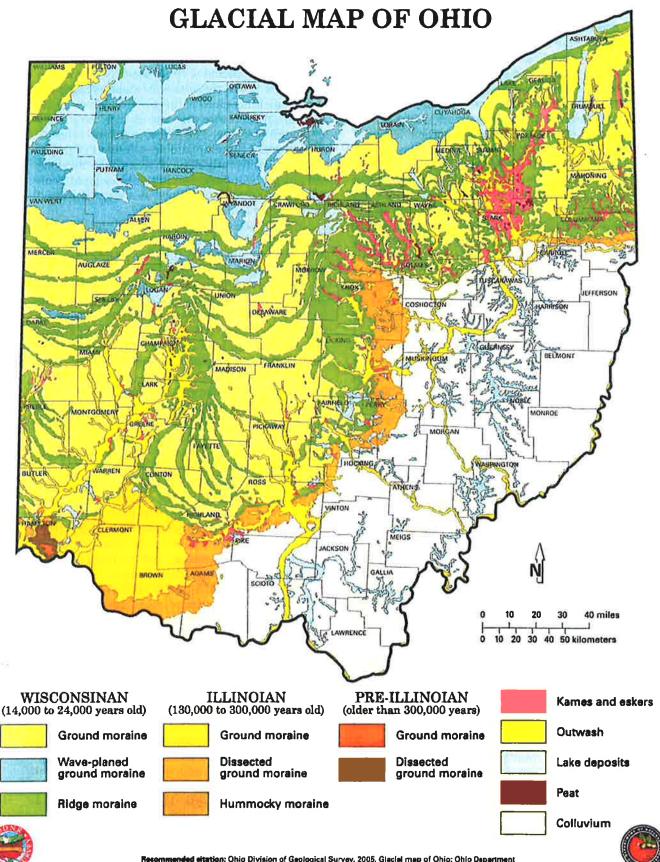
Method of Installation:	Placed		
WELL TEST DETAILS	and the second sec		
Static Water Level: 3 ft.	Test Rate:	As	sociated Reports
Drawdown:	Test Duration:	NC	DNE
COMMENTS: NONE		A	
	WELL LOG		
Formations		From	То
CONCRETE		0	5
GRAY SILTY CLAY		5	8
BROWN SILTY CLAY & GRAVEL		8	13
Well Log Number: 100474		Ŷ	ew. Image of Original Well Log
ORIGINAL OWNER AND LOCATION			
Original Owner Name: A THOMPSON			
County: CLERMONT	Township: UNION	Sec	tion Number:
Address: ELICK LN		Lot	Number:
City:	State: OH	Zip	Code:
Location Number: 58	Location Map Year: 1984	Loc	ation Area:
Latitude:	Longitude:		
CONSTRUCTION DETAILS	Market -		
Borehole Diameter: 1:	Borehole Depth: 1: 90 ft.		Depth to Bedrock:
2:	2:		
Casing Diameter: 1: 6 in.	Casing Length: 1: 32 ft.		Casing Thickness: 1:
2:	2:		2
_,	Aquiler Type: SHALE		
Casing Height Above Ground: Date of Completion: 6/26/1952	Total Depth: 90 ft.		Well Use:
Driller's Name:	total papers 30 %.		
Screen Diameter:	Slot Size:		Screen Length:
Type:	Material:		
Set Between:			
Gravel Pack Material/Size:	Vol/Wt Used:		
Method of Installation:	Placed:		
Grout Material/Size:	Vol/Wt Used:		
Method of Installation:	Placed		
WELL TEST DETAILS			
Static Water Level:	Test Rate: 2 gpm		Associated Reports
Drawdown:	Test Duration:		NONE
COMMENTS: NONE			
	WELL LOG		
Formations		From	То
CLAY & BOULDERS	÷	0	32
SOIL		32	32
SHALE		32	90
LIMESTONE		90	90

CONSTRUCTION DETAIL	11	Address M. R. 5 Batania O. Clepper Lane		
CONSTRUCTION DETAIL				
	LS	PUMPING TEST		
ing diameter	sing 21	Pumping rate		
be of screenLength of sc		Developed capacity 259 bH		
e of pump				
acity of pump				
WELL LOG		SKETCH SHOWING LOCATION		
Formations Sandstone, shale, limestone, Fro gravel and clay	om To	Locate in reference to numbered State Highways, St. Intersections, County roads, etc.		
0 F		N		
pait day	21			
	50			
pait day limit & play 21				
1		1 10 to 7/1		
	1	W March 14		
E		"		
		The fit		
5. L		et p		
		"		
		Cupper pr		
		land		
	1 C			

in law

Appendix 7 ODNR Geologic Maps

Recommended eltation: Ohio Division of Geological Survey, 1998, Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey, page-aiza map with text, 2 p., scala 1:2,100,00.


4/96

PHYSIOGRAPHIC REGIONS OF OHIO

Г	T	T	PHYSIOGRAPHIC REG DISTINGUISHING CHARACTERISTICS OF REGIONS & DISTRICTS	GEOLOGY	BOUNDARIES
ſ	T	T.	L _a Steuben Till Platin. Hommusch, terzan wale rolling hills meropesisch flus and closed depressions, weilands, few sregans, Reznijsch dizanzge, only a small part of the region is ne Ohno, clevation 950–1100°, moder nely low relief (60.)	&isconsuan age (latest ice Sge) loanty till bom a northern sunre (Sagnaw glacial lobe) over Mississippian age Coldwater Shale	Southeast edge of Wabash Moraune
l vi			2. Contrast (thus (Taxes, 101.49 ate, Surface of claver off-well defined moranes with intervening that hing ground morane and	Chives high line Wisconsinan age till from a northeastern source (Erre glaeral Johe), and lacustrine materials over Tower Paleozoe-age	North Take Plana, northeast funit of Berea Sandstone, Berea Escarpinent south Powell and Union Cuv/Blou
Provinces		Sections	incrimination and nations in a connect receive and a grant converse treatment of the second second second second a applice index; few farge streams, limited sind & grant converse treatment (0), 1150, moderate relief (100).	carbonate rocks and, in the east strates, bress than to absent	Moranies: northern segment boundaries: Wabash Morani Take plani
Pro			2.1. Berea Headlands of the THI Plain. Genth rolling to flat tercain of thin drift descending to take Energ punctuated by more than 20 streamlined "whilebacks" of Berea Surdstone 0.5 to 2.5 miles long. 30" 60" high, somewhat powde dramed, elevation 8007-1000, how relief (20").	thra - clayej, medioor lone Wisconstrandage till over resistant Missis- sippian age Berea Sandstone	South: Innu of Derea Studstone, elsewhere, Berea Everup and/or margin of Jughest Pleastocene Else
		- D	5. Southern Ohio Loamy HII Plain, Surface of baony rill, and and receivenual nonannes, commonly resonance wate booksets boly, between released that blue ground instruction, can by steep sallised large streams, stream vallers filled with ourscale and	frame, high huie Wisconsinan-age till, ontwaste, and foess over fower Palenzoiciage carbonate rocks and, in the east, shales	East Berea and Alleghens Excirptions: north Powell Union City/Bloomer Moraines, south limit of Wisconsina till
		Ì	Central Ohio Klaves (iff Plain to the north, leans till with locus cap like Southern Ohio Lizaw) Till Plain to the south, elevation	toamy, high fune Wisconsman-age till with thin foess cap orer Silmnan-age dolonaiter	North Bloomer Morane and Inait of Joany all, south: I Cay Muraine
		s	920 1075, modesately four relief (30.) 5.2. Whitewater futerholstic Plant, An option browen two converging glucial tolies with homomorely nonconverse complexes, knows builder holts, and horsd non-wash transreduins, contains highest elevations in holisma (1257.) and in an aligneric tobic courses (1210.); elevation in Obio 9807-1240, isocherate relief (150.)	Frany, high-line Wisconsinan-age till and saud and gravel ontwash over resistant Silurian-age carbonate rocks (north) and less resistant Ordovician age shales and lineariones (south)	North: limit of Knightsiown/Parmersville Min times and fields east lingh dissected hills draining to Whitewater
		ll Plains	6.5. Bellefootates Upland, Moderards high relief (250) dissected inpography with incraine complexes, boulder helts, high- gradient maps streams, cases and sinkholes, few glacial depressions/ketiles compared to sucrounding areas, election 1160- 15197, includes lightest elevation in Ohio (Campbell 100, 15597)	trenty, lighthine Wisconstran-age fill over generally deeple buried Silurian- to Desonian age carbonate rocks and Olito Shale	Sorth: areas with influops above 1200°, elsewhere Influops about 1300
12			First include anguest circulation vision (Complexion internet) (2017) and a second se second sec	Loanty, loga line Wysconstaat, age till and sand and gravel outwash over Silturian, to Desonian age carbonate rocks and Ohio Sleale	East and north (rear edge of table Moraine Complex outwash to Glitton (forge, west) western edge of Mad Outwash
LWO		ł	3.5. Darby Plain, Moderately low relief (25.), broadly homotocky ground norme with several broad, universe teneration and an encode provide dramed swales which held wet protect/measlows in proceedings, low large areas elementor 750–1100.	Founty, high-line Wroconstitun-age fill and sparse onlinash over Silurian and Desonian age carbonate rocks and Ohio Shale in the sonikeast	South and west front of Reewith and war of Cable Min north Powell Minaine: east increasing eastward slop § 6)
CENTRAL YOWLAND	TRAL		Streams, clearation 750–7608 3.6. Columbus Lumbard. Los land surrounded in all iffrections by relative uplearts, having a broad regional slope free ard the Screte Valley, many larger streams, elecation 660(2850–0950) near Provell Movanie), inciderately low relief (25.)	Lution, logit line (west) to medium-line (rest) Wisconsnan-age (ii) and extensive outwash in Scotto Villey over deep Devonan- to Mississippian-age carbonate tocks, shales, and substones	North Powell Moraine, east and south: Berea and/or All Escarpments, west, flatter and lingher Darby Plain
CENTRO			1 Illineitan Till Pidin, Rolling ground non-me of ulder till generally factors we constructional features such as teorganes, leaves, and eskers; many buried valleys, modern valleys alternating between broad flendplants and bedruck gorges, elevation 660° (100°, moderately law (elel (50°)).	Sile from a logic line: Illinoize oge till with loess cap; soils leached several feet; underfain by Orilovician- and Silurian age carbonate rocks and calcareous shales.	Morannes), elsewhere, front of common tall covered hil
			 Dissected Illiantan 111 Plain. Infly former till plan in «lack glackal deposis have been ensded from many valler søles; relatively ligh stre in density, elevation (60%) (40°, moderate relial (2003) 	Hilkops of high lime Illinovan-age till with boss cap; slopes of bedrock- and till derived colloyium and Ordovician- and Silwian age carbonate rocks and calcareous shades	
			6. Gallon Glaciated Low Plateau, Rolling uptand transitional between the genite rolling Till Plain and the hilly Glaciated Allegheny Placau, manifed with thin to thick drift; elevation 800 +1400, moderate refet (100.)	Medium to fow home Wisconsman-age till over Mississippian age shales and sandstones	and east. Alleghener Escarpniert
L	t	-	(i) a construction with num to make this declaration with beach ridges, hars, dones, deless, and chay fluits, contained the future 7. Mathemet Lake Platins, Hardyling LesAre lake hasto with beach ridges, hars, dones, deless, and chay fluits, contained the future flack Sociary, slightly dissocied by modern streams, elevation 570-800, very low relief (5.).	Plennocene age sitt, clay, and wave-planed clayey till over Silutian- and Decontan-age carbocute rocks and shales	Northeast Take Eric; elsewhere: margin of highest Plei Take
	1	Plains	2.1. Paulifing Clay Basin, Nemb II. a honomine plano, most clayer of all take rilam subregions; low-geadeent, highly strander-	Pleistocene age facustring clay over clay till and Solution-age dolomites	Sortheast subdoed ("drovened") returnant of Defeaters's elsewhere, bruit of lacustrine clay
		Lake Pla	ing streams, varidy pointed totic clearum 709-725; vereasely low relief (leverhon 5') 7/4. Mannee Sand Hatos, fresoreae plans manifed by sand, includes low dones, later donal pans, beach edges, and sand sheets of glacial lakestiones, well to poorly drained; elevation 600-800, very low relief (10.)	tate Wisconsman age stud over elay till and lacustrine deposity Silterian, and Decomm age carbonate rocks and shales borried deeply	Innit of sandy deposits and/or low dunes
		Huron-Erie La	7.3. Wordstille Lake-Plain Reefs, Vervion relief (10) lacustine plan wild low dunes and lake margin features punctuated by more than 75 an usen bedrock tyefs ming (D) in 10. above the level of the plain and ranging in area from 0.1 to 311 quare index, the reliong reefs are think draged with theft elevation 660, 775.	Yhin to absent Wisconsinun-age wave-planed clay till, lacostron deposits, and sand over Silurian-age reefal Tockport Dolontie	kmut of (long wantled Fockport Dolounte (Bowling Gre to the west and the Defiance Morane to the south)
1		-uo.	mines for complex consistences of the second sec	Siliy to gravelly Wisconsinan-age Licustrine deposits and wave-planer Llaves till over Siliurian age Lockport Dolamite	West 775' heach ridge; north: Definince Moraine, south of highest Pleistocene lake level
		Hur	7.4. Fostoria Lake-Plain Sheals. Futurino of the Defance Movelan hebity croded by shallow Lake Mannee wild low north south trenching hillocks and shallow, closed depressions, many sandy areas, cleanton 750° 845°, how celled, decreasing weat	Silly to gravely Wisconsummage lacustrine deposite and wave-planed glar fill over deeply covered Silurian age dofininte	d South and east: nonrodified Defrance Moraine, elsewho low relief lake plata
-	S	e	-auX (10:15) 7.6a, and 7.6b, Bellevne-Castalia Kurst Plath. Hummorky plan of exck knobs and numerons unkholes, large solution features, and cases; large spring; thinly marnked by drift, region steaddles both take Plan (7.6a) and fill Plan (7.6b), 7.6a has greates relief of any take Plan region (25.); clevation 570-825	Columbus and Delaware timestones overlain by thin clay till in 2-66 and thin sole with randy Witconsinan age his rotrine deposits and scare planed clay till in 2-68	 much is numbed in the next by the Columbus Excapity
	EA	Section	R. Erie Lake Plain, Edge of very low-reflet (10) tee-Age Like basin separated from modern take Erie by skoreline chilo, major streams in deep porget; elevation 570–800	Pleastocene-age lacustrine sand, silt, clay, and wave-planed till ove Devonum- and Mississippian age shaler and sandstones	 North: Lake Fore; south margin of highest Pleistocene
- 11-2	X PLATEAUS	2	Streams in usery paysor, exchange 20 and	Thin lacustrione deposits over thin, wave planed, etayoy, medium-lim Wisconsinan-age fill; underlain by resistant Burea Sandstone	e North partion of take Plan underlain by solt shale margin of highest Pleistocene lake
	INT. LOW	Bluegr	 Outer (fluegrass Region, Moderately high relief (300.) dissected plateau of carbonate rocks, in east, cares and other kars features relatively common; in vest, thin, early drut caps norrow ridges; elevation 155–1120. 	Ordinarian- and Sdurfan age dolomites, Innestones, and extence shales; thin pre-Wisconsinan drift on ridges in west, sift-fou collisioni	is fasteen segment waximum glacial wargin and high in rulges capped by numarlianate rocks, connected by 0 bluffs to western segment which is bounded by none infl plain.
t	-	sam	 Killback-Glaciated Pittsburgh Plateau. Rojes and Ila optimols generalizations (2007) covered wale skin drift and dissecte by steep sallers, valley segments alternate between broad drift fulled and narrow (ock-walled ceaches; cleanton 600) (303) 	Hun to thick Wisconsonanage clay to foam till over Mississippia and Pennsylvanian-age sludes, sandstones, conglonierates and coal	 West and north resist on sandstones of the Allegreor and Escarpments south and east Wisconsinan glacial and
		Allegheny V York) Plate	noderate relief (2003) 11, Akron-Canton Interlobate Plateau. Humanicky area hyperen 14-6 converging glacial lohes identificated by kames, kaun terrates, eskers, keities, keitie lakes, and hogofiens, deranged dramage with many instituti lakes; elevation 900 (2005, moderal relief (2005)	 Seedy Westonsinan age and older duft over Deconary to Pennsylvania age sandstones, conglomerates and shales 	as finite of common sindy reacontact features and dep
		o'A Mi	Failed vector 7 12. Illimidan Glaciateri Allegheny Plateau, Dissected, ingged hills, loess and older rivit on inlgstops, but above on believe dopes, dissection annular to suggestated regions of the Allegheny Plateau, elevators 600–1000, moderate relief (200.)	k Collimation and Illinoistic age till over Desonian- to Pennsylvanan-ag skalet, silistones and stadistions.	29 North and west Wisconsonan gluerid margin; south a Illinoian (maximum) glacial margin
		Glaciated theen New	enges, invector roman to ingenerative region and end incraise having thin to thek drift, pointly drained areas in Sector Myrer Low Plateau. Secult colling ground and end incraise having thin to thek drift, pointly drained areas in webrands relatively common; elevation 760–1200, law relief (20) except near Grant River Valles (200).	4 Uspey, Inv. Jime Wisconstrum age till over deeply burred, solt Devona age shales and meanstrulate Mississippinan-age sandstones and shall	es southeast: mercasing relief from proximity of burten varian age sandstones
	AUS	(Sout	13.1. Grand River Huger-Lake Plain, Very low riflet (10.) Like deposits in steep-sidel troughs (200° relief) within it Grand River Low Plateau, out by glacial and stream crossion, extensive wetlands, elevation 800 (900°).	 Nucleual lacustrine clay and drift over deeply burned, soft Deconix age shales 	 Margins of steeply sloping troughts containing the for- ind parts of Bock and Musquito Greeks
APPALACHIAN HIGHLANDS APPALACHIAN PLATFAUS	I PLAT	9	14. Muskingano-Pittsburgh Plateau, Melerarch high to high relief (300-6607) dissected plateau having bread major valle that contain mysash terrares, and tribuijnes with lacustime terrares, mediani graned belinest sequences consection three.	a contribution of the cost of the cost of the cost of the contribution and the safe	nd North and west accounting david morgin; continuest d to finer granned hedrock; continuest transition le granned bedreck.
	ACHIAD	Plateaus	deration 650-11007 15. Shawnee-Mississippian Plateau, fligh (elic) (3007-8007), highly dissected plateau of coarse and line grained (ock sequence nost rugged area in Ohio; remnants of ancient lacustrine clay-filled Tenys drainage visiten are extensive in lowlands, absent updands, destation 690-1340	s; Devonian- and Mississippian-age shales, siltsiones, and locally thi	ek North: Maximum glacial margin; west: carbonatebedr ge hmit of Mixiissippran age hedroek
	APPAL	(Kanawha)	 Irontun Platemi. Moderately high relief (3007) dissected plateau, craiser graned coal-hearing rock sequences no common them in other regions of the Alleghern Plateau common facisitine clap-filled Teasy Villey remnants; elevation 515-106 	e Pennsylvanian-age (Polisyille, Allegheny and Coocmangh Group	in) east gradation to finer rock sequences
		Allegheny (Kar	 Marietta Plateau, Dostendo, high selief (generally 350°, to 600 near Olun Uiver) plateau; mostly fine-grained rucks, it shales and red solis relatively common. Landsliftes common, remnants of uncient lacustime clay filled Teays dramage syste common, rls attor 515° 1100 	collission d. Pennsylvanian-age Upper Contenaugh Group through Pernititi a	ige North and west transition to stellumograme es, Conemangh tecks; cast Hushing Diside
		Alle	17.1. Little Switzerhund Plateam, highly dissected, high relief (generally 150° to 750° along thro River) plateau; mos fine grained rocks; red studes and red wils relatively common, landstides common; high gradient shale boronard streat subject in flash flooding; no remnants of ancient leave dramage system; elevation 5 it? 1400	by Similar to Mariana Platean but lackung Pleistocene (Teavs) age Muffet Ukay	ord South: transition to medium graned rocks, west a Husting Divide, rast. Olito River

STATE OF OHIO Ted Strickland, Governor

DEPARTMENT OF NATURAL RESOURCES Sean D. Logan, Director DIVISION OF GEOLOGICAL SURVEY Lawrence H. Wickstrom, Chief

Recommended situation: Ohio Division of Geological Survey, 2005, Giacial map of Ohio: Ohio Department of Natural Resources, Division of Geological Survey, page-size map with text, 2 p., scale 1:2,000,000.

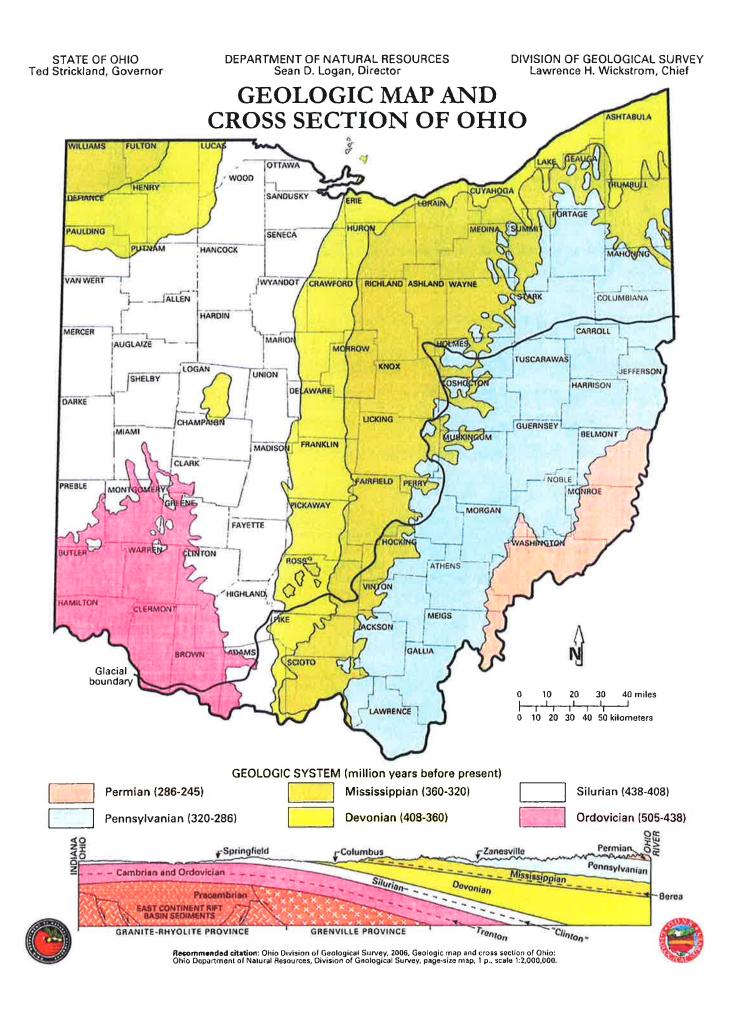
GLACIAL DEPOSITS OF OHIO

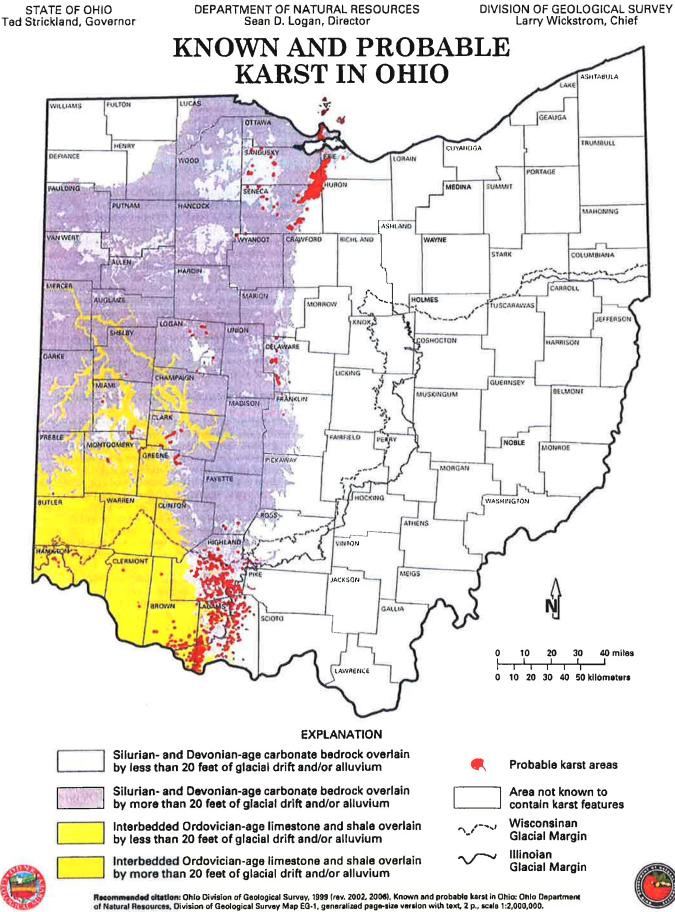
Although difficult to imagine, Ohio has at various times in the recent geologic past (within the last 1.6 million years) had three-quarters of its surface covered by vast sheets of ice perhaps as much as 1 mile thick. This period of geologic history is referred to as the Pleistocene Epoch or, more commonly, the Ice Age, although there is abundant evidence that Earth has experienced numerous other "ice ages" throughout its 4.6 billion years of existence.

Ice Age glaciers invading Ohio formed in central Canada in response to climatic conditions that allowed massive buildups of ice. Because of their great thickness, these ice masses flowed under their own weight and ultimately moved south as far as northern Kentucky. Oxygen-isotope analysis of deep-sea sediments indicates that more than a dozen glaciations occurred during the Pleistocene. Portions of Ohio were covered by the last two glaciations, known as the Wisconsinan (the most recent) and the Illinoian (older), and by an undetermined number of pre-Illinoian glaciations.

Because each major advance covered deposits left by the previous ice sheets, pre-Illinoian deposits are exposed only in extreme southwestern Ohio in the vicinity of Cincinnati. Although the Illinoian ice sheet covered the largest area of Ohio, its deposits are at the surface only in a narrow band from Cincinnati northeast to the Ohio-Pennsylvania border. Most features shown on the map of glacial deposits of Ohio are the result of the most recent or Wisconsinan-age glaciers.

The material left by the ice sheets consists of mixtures of clay, sand, gravel, and boulders in various types of deposits of different modes of origin. Rock debris carried along by the glacier was deposited in two principal fashions, either directly by the ice or by meltwater from the glacier. Some material reaching the ice front was carried away by streams of meltwater to form outwash deposits. Material deposited by water on and under the surface of the glacier itself formed features called kames and eskers, which are recognized by characteristic shapes and composition. A distinctive characteristic of glacial sediments that have been deposited by water is that the material was sorted by the water that carried it. Thus, outwash, kame, and esker deposits normally consist of sand and gravel. The large boulder-size particles were left behind and the smaller clay-size particles were carried far away, leaving the intermediate graveland sand-size material along the stream courses.


Material deposited directly from the ice was not sorted and ranges from clay to boulders. Some of the debris was deposited as ridges parallel to the edge of the glacier, forming terminal or end moraines, which mark the position of the ice when it paused for a period of time, possibly a few hundred years. When the entire ice sheet receded because of melting, much of the ground-up rock material still held in the ice was deposited on the surface as ground moraine. The oldest morainic deposits in Ohio are of Illinoian and pre-Illinoian age. Erosion has significantly reduced these deposits along the glacial boundary, leaving only isolated remnants that have been mapped as dissected ground moraine and hummocky moraine.


Many glacial lakes were formed in Ohio during the Ice Age. Lake deposits are primarily fine-grained clay- and silt-size sediments. The most extensive area of lake deposits is in northern Ohio bordering Lake Erie. These deposits, and adjacent areas of wave-planed ground moraine, are the result of sedimentation and erosion by large lakes that occupied the Erie basin as Wisconsinan-age ice retreated into Canada. Other lake deposits accumulated in stream valleys whose outlets were temporarily dammed by ice or outwash. Many outwash-dammed lake deposits are present in southeastern Ohio far beyond the glacial boundary. Peat deposits are associated with many lake deposits and formed through the accumulation of partially decayed aquatic vegetation in oxygen-depleted, stagnant water.

The term glacial drift commonly is used to refer to any material deposited directly (e.g., ground moraine) or indirectly (e.g., outwash) by a glacier. Because the ice that invaded Ohio came from Canada, it carried in many rock types not found in Ohio. Pebbles, cobbles, and boulders of these foreign rock types are called erratics. Rock collecting in areas of glacial drift may yield granite, gneiss, trace quantities of gold, and very rarely, diamonds. Most rocks found in glacial deposits, however, are types native to Ohio.

Certain deposits left behind by the ice are of economic importance, particularly sand and gravel, clay, and peat. Sand and gravel that have been sorted by meltwater generally occur as kames or eskers or as outwash along major drainageways. Sand and gravel are vital to Ohio's construction industry. Futhermore, outwash deposits are among the state's most productive sources of ground water.

Glacial clay is used in cement and for common clay products (particularly brick). The minor quantities of peat produced in the state are used mainly for mulch and soil conditioning.

OHIO KARST AREAS

Karst is a landform that develops on or in limestone, dolomite, or gypsum by dissolution and that is characterized by the presence of characteristic features such as sinkholes, underground (or internal) drainage through solution-enlarged fractures (joints), and caves. While karst landforms and features are commonly striking in appearance and host to some of Ohio's rarest fauna, they also can be a significant geologic hazard. Sudden collapse of an underground cavern or opening of a sinkhole can cause surface subsidence that can severely damage or destroy any overlying structure such as a building, bridge, or highway. Improperly backfilled sinkholes are prone to both gradual and sudden subsidence, and similarly threaten overlying structures. Sewage, animal wastes, and agricultural, industrial, and ice-control chemicals entering sinkholes as surface drainage are conducted directly and quickly into the ground-water system, thereby posing a severe threat to potable water supplies. Because of such risks, many of the nation's state geological surveys, and the U.S. Geological Survey, are actively mapping and characterizing the nation's karst regions.

The five most significant Ohio karst regions are described below.

BELLEVUE-CASTALIA KARST PLAIN

The Bellevue-Castalia Karst Plain occupies portions of northeastern Seneca County, northwestern Huron County, southeastern Sandusky County, and western Erie County. Adjacent karst terrain in portions of Ottawa County, including the Marblehead Poninsula, Catawba Island, and the Bass Islands, is related in geologic origin to the Bellevue-Castalin Karst Plain. The area is underlain by up to 175 feet of Devonian carbonates (Delaware Limestone, Columbus Limestone, Lucas Dolomite, and Amherstburg Dolomite) overlying Silurian dolomite, anhydrite, and gypsum of the Bass Islands Dolomite and Salina Group.

The Bellevue-Castalia Karst Plain is believed to contain more sinkholes than any of Ohio's other karst regions. Huge, irregularly shaped, closed depressions up to 270 acres in size and commonly enclosing smaller, circular-closed depressions 5 to 80 feet in diameter pockmark the land between the village of Flat Rock in northeastern Seneca County and Castalia in western Erie County. Surface drainage on the plain is very limited, and many of the streams which are present disappear into sinkholes called swallow holes.

Karst in the Bellevue-Castalia and Lake Erie islands region is due to collapse of overlying carbonate rocks into voids created by the dissolution and removal of underlying gypsum beds. According to Verber and Stansbery (1953, Ohio Journal of Science), ground water is introduced into Salina Group anhydrite (CaSO₄) through pores and fractures in the overlying carbonates. The anhydrite chemically reacts with the water to form gypsum (CaSO₄·2H₂O), undergoing a 33 to 62 percent increase in volume in the process. This swelling lifts overlying strata, thereby opening fractures and creating massive passageways for conduction of greater volumes of ground water through the Silurian Bass Islands Dolomite and into underlying Salina Group strata. Gypsum, being readily soluble in water, is dissolved, creating huge voids. Overlying carbonates then collapse or break down, leaving surface depressions similar to those resulting from roof failure of an underground mine.

DISSECTED NIAGARA ESCARPMENT

The dissected Niagara Escarpment of southwestern Ohio includes the largest single area of karst terrain in the state and the greatest number of surveyed caves. It also is estimated to include the second-largest number of sinkholes in the state. The area is underlain by Silurian rocks of the Peebles Dolomite, Lilley Formation, Bisher Formation, Estill Shale, and Noland Formation in Adams, Highland, and Clinton Counties and the Cedarville Dolomite, Springfield Dolomite, Euphemia Dolomite, Massie Shale, Laurel Dolomite, Osgood Shale, and Dayton Formation in Greene, Clark, Miami, Montgomery, and Preble Counties. The Peebles-Lilley-Bisher sequence and the Cedarville-Springfield-Euphemia sequence constitute the Lockport Group.

Most karst leatures along the Niagara Escarpment in southwestern Ohio are developed in Lockport Group strata. More than 100 sinkholes and caves developed in the Lockport have been documented in the field, and more than 1,000 probable sinkholes in the Lockport have been identified on aerial photographs, soils maps, and topographic maps. As with most karst terrain, sinkholes developed on the Niagara Escarpment commonly show linear orientations aligned with prevailing joint trends in the area. The groatpest concentration of sinkholes on the escarpment is south of the Wisconsinan glacial border in southern Highland and Adams Counties, where highly dissocted ridges capped by Silurian carbonate rocks rise 150 to 200 feet above surrounding drainage. Illinoian till in these areas is thin to absent, and soils are completely leached with respect to calcium and calcium-magnesium carbonate. Such geologic settings are ideal for active karst processes, as downward-percolating, naturally acidic rain water is not buffered until it has dissolved some of the underlying carbonate bodrock. Other significant karst features of the Niagara Escarpment include small caves in escarpment re-entrants created by the valleys of the Great Miami and Stillwater Rivers in Miami County.

BELLEFONTAINE OUTLIER

The Bellefontaine Outlier in Logan and northern Champaign Counties is an erosionally resistant "island" of Devonian carbonates capped by Ohio Shale and surrounded by a "sea" of Silurian strata. Though completely glaciated, the outlier was such an impediment to Ice Age glaciers that it repeatedly separated advancing ice sheets into two glacial lobes—the Miami Lobe on the west and the Scioto Lobe on the east. Most Ohioans recognize the outlier as the location of Campbell Hill—the highest point in the state at an elevation of 1,549 feet above mean sea level.

Although it is not known for having an especially well-developed karst torrain, the outlier is the location of Ohio's largest known cave, Ohio Caverns. The greatest sinkhole concentrations are present in McArthur and Rushcreek Townships of Logan County, where the density of sinkholes in some areas approaches 30 per square mile. Sinkholes here typically occur in upland areas of Devonian Lucas Dolomite or Columbus Limestone that are 30 to 50 feet or more above surrounding drainage and are covered by less than 20 feet of glacial drift and/or Ohio Shale.

SCIOTO AND OLENTANGY RIVER GORGES

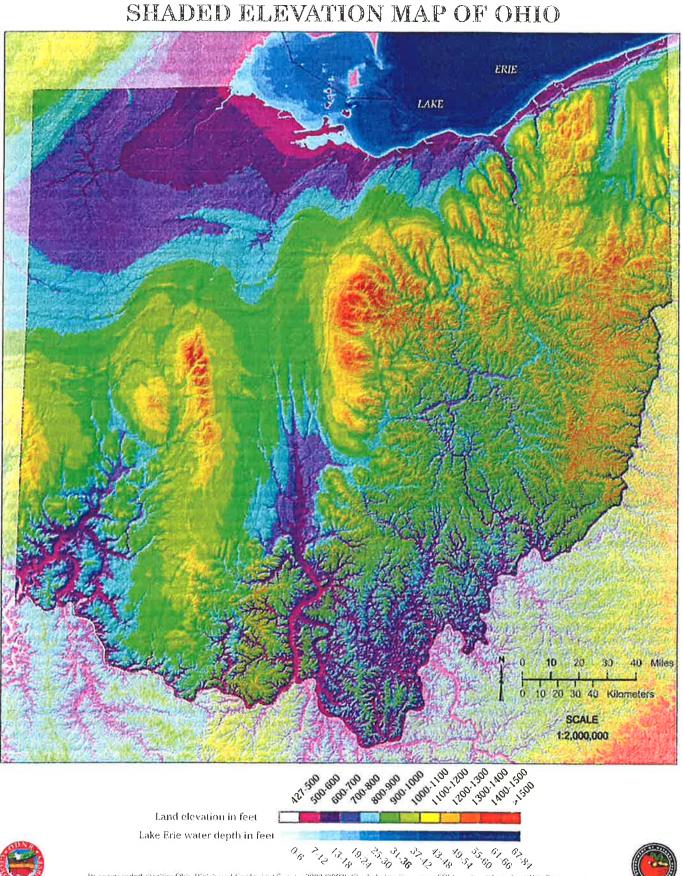
The uplands adjacent to the gorges of the Scioto and Olentangy Rivers in northern Franklin and southern Delaware Counties include areas of welldeveloped, active karst terrain. These uplands also are among the most rapidly developing areas of the state, which means karst should be a consideration in site assessments for commercial and residential construction projects.

The Scioto River in this area has been incised to a depth of 50 to 100 feet into underlying bedrock, creating a shallow gorge. The floor, walls, and adjacent uplands of the gorge consist of Devonian Delaware and Columbus Limestones mantled by up to 20 feet of Wisconsinan till. Sinkhole concentrations up to 1 sinkhole per acre are not uncommon in Concord, Scioto, and Radnor Townships of Delaware County. The sinkholes range in diameter from about 10 to 100 feet and commonly are aligned linearly along major joint systems.

The Olentangy River is approximately 5 miles east of the Scioto River in southern Delaware County and occupies a gorge that is narrower and up to 50 feet deeper than the Scioto River gorge. The floor and the lower half of the walls along the Olentangy gorge are composed of Delaware and Columbus Limostones, the upper half of the walls is composed of Devonian Ohio and Olentangy Shales mantled by a thin veneer of glacial drift. Karst terrain has developed along portions of the gorge in a manner similar to karst terrain along the Scioto River.

ORDOVICIAN UPLANDS

The Ordovician uplands of southwestern Ohio are the location of surprisingly well-developed karst terrain despite the large component of shale in local bedrock. Numerous sinkholes are present in Ordovician rocks of Adams, Brown, Clermont, and Hamilton Counties.

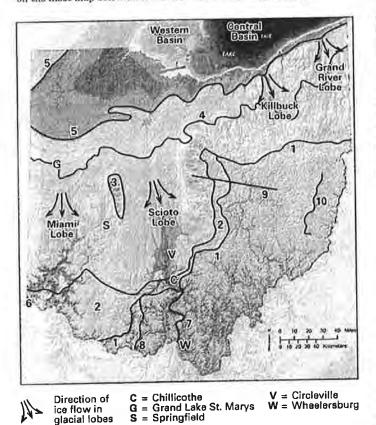

The carbonate-rich members of the Grant Lake Formation (Bellevue and Mount Auburn), Grant Lake Limestone (Bellevue and Straight Creek), and the upper portion of the Arnheim formation are the Ordovician units most prone to karstification; however, the shale-rich (70 percent shale, 30 percent limestone) Waynesville Formation also has been subjected to a surprising amount of karst development in southeastern Brown and southwestern Adams Counties, just north of the Ohio River.

ACKNOWLEDGMENT

The Division of Geological Survey gratefully acknowledges the Ohio Low-Level Radioactive-Waste Facility Development Authority for its financial support for mapping Ohio karst terrain. STATE OF OHIO Ted Strickland, Governor

DEPARTMENT OF NATURAL RESOURCES Sean D. Logan, Director

DIVISION OF GEOLOGICAL SURVEY Lawrence H, Wickstrom, Chief



Control (2003), Shaded elevation with text, 2 p. scale 12,000,000

SHADED ELEVATION MAP

This map depicts the topographic relief of Ohio's landscape using color to represent elevation intervals. The colorized topography has been digitally shaded from the northwest slightly above the horizon to give the appearance of a three-dimensional surface. The map is based on elevation data from the U.S. Geological Survey's National Elevation Dataset; the grid spacing for the data is 30 meters. Lake Erie water depths are derived from National Oceanic and Atmospheric Administration data. This digitally derived map shows details of Ohio's topography unlike any map of the past. Some of Ohio's more striking topographic features are outlined on the inset map below and described in the following paragraphs.

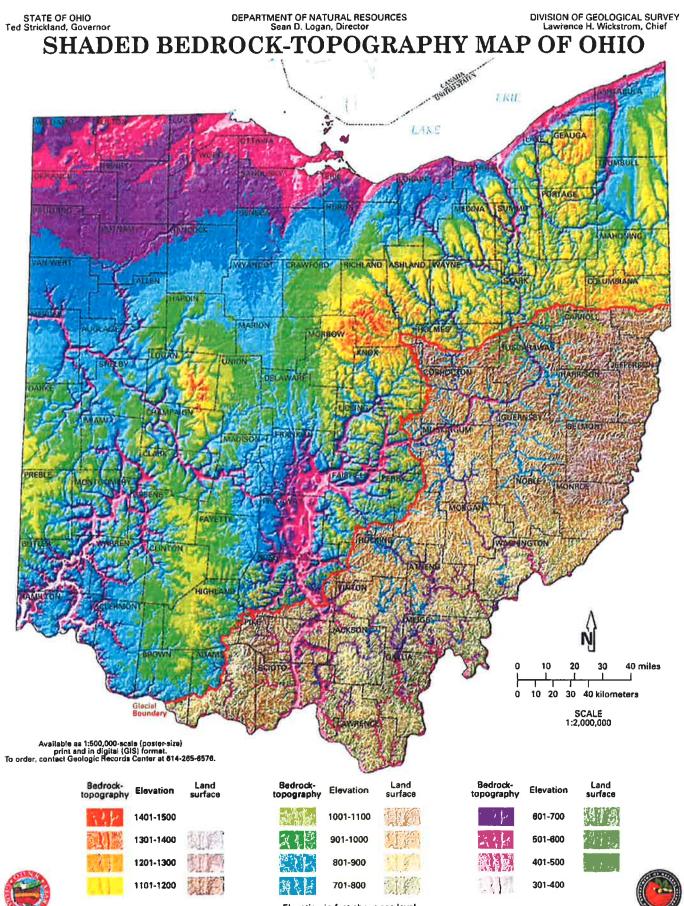
1 Glacial boundary—Continental ice sheets several thousand feet thick sculpted about two-thirds of Ohio's landscape and, upon melting, deposited material formerly incorporated in or beneath the ice. This boundary marks the southernmost known extent of glacial ice in Ohio. Topography in the glaciated portion of Ohio is smooth compared to the highly dissected, unglaciated part of Ohio. The glacial boundary in eastern Ohio is farther north than the boundary in western Ohio because the erosion-resistant bedrock hills in eastern Ohio impeded southward glacial advances. The glacial boundary in central and southwestern Ohio typically represents the maximum advance of Illinoian-age (130,000-300,000 years ago) glaciers. The east-west-oriented boundary in northeastern Ohio represents the maximum advance of Wisconsinan-age (14,000-24,000 years ago) glaciers.

2 Illinoian till areas—Thin till (an unsorted mixture of glacially deposited clay, silt, sand, and cobbles) of Illinoian age is at the surface in a 10- to 40-mile-wide belt between the Illinoian and Wisconsinan maximum advances. Terrain in this belt is typically transitional between the generally flat Wisconsinan till plains to the north and west and the dissected, unglaciated bedrock to the southeast. The surface deposits in this belt are characterized by loess (wind-blown silt) over thin till on ridge tops and thick colluvium (weathered bedrock) on slopes.

3 Ohio's highest elevation—An upland area known as the Bellefontaine Outlier covers portions of Champaign, Logan, and Union Counties in westcentral Ohio. The outlier is an crossional remnant of Devonian-age limestone, dolomite, and shale that lies 25 miles west of the main outcrop belt of Devonian-age rock in Franklin and Delaware Counties in central Ohio. The outlier is mantled by up to 160 feet of till, which adds to the outlier's height. Campbell Hill, the highest elevation in Ohio at 1,549 feet above sea level, is on the outlier. The higher, more resistant bedrock of the out-

lier impeded the southward-advancing glaciers, causing them to split into two lobes, the Miami Lobe on the west and the Scioto Lobe on the cast. Ridges of thick accumulations of glacial material, called moraines, drape around the outlier and are distinct features on the map. Some moraines in Ohio are more than 200 miles long. Two other glacial lobes, the Killbuck and the Grand River Lobes, are present in the northern and northeastern portions of the state.

4 Eastern Continental Divide—A continental drainage divide extends east-west across northern Ohio. Surface water north of this divide flows northward to Lake Eric, eventually over Niagara Falls into Lake Ontario, and into the Atlantic Ocean. Surface water south of the divide flows south to the Ohio River, the Mississippi River, and eventually into the Gulf of Mexico. The divide follows the creats of glacial moraines in western Ohio. In north-central and northeastern Ohio, the divide follows bedrock-controlled hills and glacial valleys containing thick glacial-lake deposits.


5 Ancient Lake Maumee shoreline-About 14,000 years ago, the last continental ice sheet retreated northward across Ohio. The St. Lawrence Seaway was blocked by glacial ice, and glacial meltwater created lakes in front of the ice. A large lake, called Lake Maumee, formed in the general position of Lake Erie but extended over a much larger portion of northwestern Ohio. Ancient Lake Maumee water levels were about 230 feet higher than modern Lake Erie, and drained westward into the Wabash River system. The shoreline of ancient Lake Maumee had a series of sandy beaches and beach scarps, much like portions of Lake Erie today. The ancient sandy beaches are visible on the map as long, thin ridges on the surrounding flat lake terrain. Other beach ridges formed as the water level receded in stages before rising to its current level of approximately 572 feet above sea level. Lake Erie is the shallowest of the Great Lakes and has three basins: the western (averages 30 feet in depth), central (averages 60 feet in depth), and eastern (not shown on map; averages 80 feet in depth; maximum depth is about 212 feet).

6 Ohio's lowest elevation—The lowest surface elevation in Ohio is about 455 feet above sea level and is located where the Ohio River exits the state at the extreme southwestern corner of Ohio.

7 Teays River valley—The ancient Teays River flowed across Ohio before and during the earliest Ice Age. A north-south-trending remnant of the Teays River valley in south-central Ohio is distinctly visible on this map. From its headwaters in North Carolina, the Teays River flowed northwest across Virginia and West Virginia and entered Ohio in the area of presentday Wheelersburg. The Teays River cut a wide, curving valley as it flowed northward through southern Ohio. This valley, partially filled with clay, silt and sand, contains only a small stream today and remains clearly visible on the map as far as Chillicothe. North of Chillicothe, the valley is buried beneath hundreds of feet of glacial sediment but can be traced using well data to Circleville; the buried valley then turns northwestward, passing beneath Springfield and Grand Lake St. Marys and into eastern Indiana. In parts of western Ohio, the valley lies beneath 700 feet of glacially derived material. The valley commonly is about 200 to 300 feet deep and has steep to near-vertical walls.

8 Allegheny Escarpment—Beyond the glacial boundary, the Allegheny Escarpment of southern Ohio marks a distinct change in topography. The land surface changes abruptly from the flatter, lower terrain in the west, which is underlain by soft carbonate rocks, to the higher, steeper terrain in the east, which is underlain by shale and sandstone. To the north, the escarpment was affected by glaciation, making it a less distinct topographic feature. The Allegheny Escarpment corresponds to a slight increase in the dip (tilt) of the rock layers as they descend eastward into the Appalachian Basin.

9 Surface lineament-A west-northwest-trending lineament (a linear topographic feature on the Earth's surface) across east-central Ohio is distinctly visible on the map. The Walhonding River and a portion of the Muskingum River flow in portions of this linear topographic depression. Although poorly understood, this feature, which is referred to as the Coshocton Fracture Zone, has been attributed to fractures in the surface bedrock that are possibly related to faults present deeper in the subsurface. 10 Flushing Divide-A sharp, north-northeast-trending, ridgelike feature in eastern Ohio is the Flushing Drainuge Divide, named after the Belmont County village of Flushing, where it is well developed. Surface water west of the divide flows westward into a series of low-gradient creeks, such as the Sandy, Conotton, and Stillwater, and then to the Tuscarawas River. Surface water east of the divide flows castward into a series of high-gradient, rapidly down-cutting creeks that flow into the Ohio River. The ridge is at an elevation of about 1,260 to 1,280 feet above sea level and separates two old Teays-era drainage basins.

Elevation in feet above sea level

Recommended citation: Ohio Division of Geological Survey, 2003, Shaded bedrock-topography map of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map 8G-3, generalized page-size version with taxt, 2 p., scale 1:2,000,000.

SHADED BEDROCK-TOPOGRAPHY MAP OF OHIO

The shaded bedrock-topography map of Ohio depicts the configuration and elevation of the bedrock surface. In southeastern Ohio, the bedrock surface coincides with present-day land-surface topography and is depicted by carth-tone hues to represent elevation intervals. In glaciated western and northern Ohio, the bedrock surface is buried under mainly glacial sediments that can be several-hundred-feet thick. The land surface in this region was smoothed by glaciation (figure 1) and masks a complexly dissected, underlying bedrock surface. This dissected bedrock surface is the result of erosion before, during, and after glaciation. Spectral hues depict elevation intervals on the buriedbedrock surface and show the bedrock surface as if the overlying glacial sediment were removed.

Prior to and during glaciation, the north-flowing Teays River system dominated surface-water drainage patterns in western and southern Ohio (figure 2). Water flow direction in the main Teays valley was north from Wheelersburg (Scioto County) to Circleville (Pickaway County) and then northwest to Mercer County where the Teays Valley exited the state. Remnants of the Teays Valley are distinct on the present land surface in southern Ohio and form a continuous valley on the buriedbedrock surface across western Ohio. Modern rivers and streams still occupy portions of this valley system. Water flow in the Teays River system was disrupted by early glaciations as southward-advancing glaciers blocked outlets of the north-flowing river system. Drainageways, both large and small, were abandoned or filled with sediment as ice advanced and retreated.

In northwestern Ohio, the generally smooth buried-bedrock surface is the result of repeated scouring by glacial ice advancing westward out of the Lake Erie basin. Another distinctly scoured bedrock surface is in the Grand River Lobe (figure 2) in northeastern Ohio where smooth north-south trending valleys mirror ice-flow direction. South of the scour-dominated surface of northern Ohio, the bedrock surface has been sculpted by water to create a distinct drainage pattern (figure 2). Large volumes of glacial moltwater eroded the bedrock surface, widening and deepening existing valleys of the Teays system and creating new valleys. Some modern rivers and creaks flow in unusually wide valleys; evidence that far greater volumes of water generated from melting glaciers once flowed in these valleys. Flow direction in other valleys has been reversed as glacial ice or glacial sediments blocked formerly northward and westward flowing streams. Southeastern Ohio is unglaciated and devoid of ice-deposited sediment (glacial till). However, many river valleys in southeast Ohio did carry glacial meltwater away from the ice front and toward the Ohio River. In the process, many of these valleys were at times made deeper by the erosive force of fast-flowing meltwater streams, and at other times partially filled with sediment. Some valleys in unglaciated Ohio contain thick deposits of clay and silt that accumulated on the bottoms of lakes that formed when glacial ice blocked the flow of rivers or when rapidly accumulating meltwater sediments blocked the mouths of rivers.

This map is one of the results of a 7-year effort by the ODNR, Division of Geological Survey to map the bedrock geology of Ohio. Bedrock-topography maps are essential to producing accurate bedrockgeology maps of glaciated Ohio and of partially buried valleys beyond the glacial limit. Bedrock-topography maps were created for all 788 7.5-minute topographic quadrangles in the state and are available from the Division's Geologic Records Center. Some pre-existing county bedrock-topography maps (1:62,500 scale) and data were photographically enlarged to 1:24,000 scale, revised, and utilized in the compilation of 1:24,000-scale, bedrock-topography maps. Data concentration and contour intervals on the original maps vary widely across the state in response to changing geologic and topographic conditions. Data consists mainly of water-well logs on file at the ODNR, Division of Water, supplemented by outcrop data, Ohio Department of Transportation bridge-boring data, and oil-and-gas-well data.

Elevation contours and over 158,000 data points from the 788 bedrock-topography maps were digitized and compiled for the glaciated portions of the state and for the major valleys beyond the glacial boundary containing significant accumulations of sediment deposited during and after glaciation. The bedrock-topography contours were digitally converted in the ARC GIS environment into a continuous grid model (60 meter grid spacing). This surface was shaded from the northwest slightly above the horizon to produce the appearance of a three-dimensional surface.

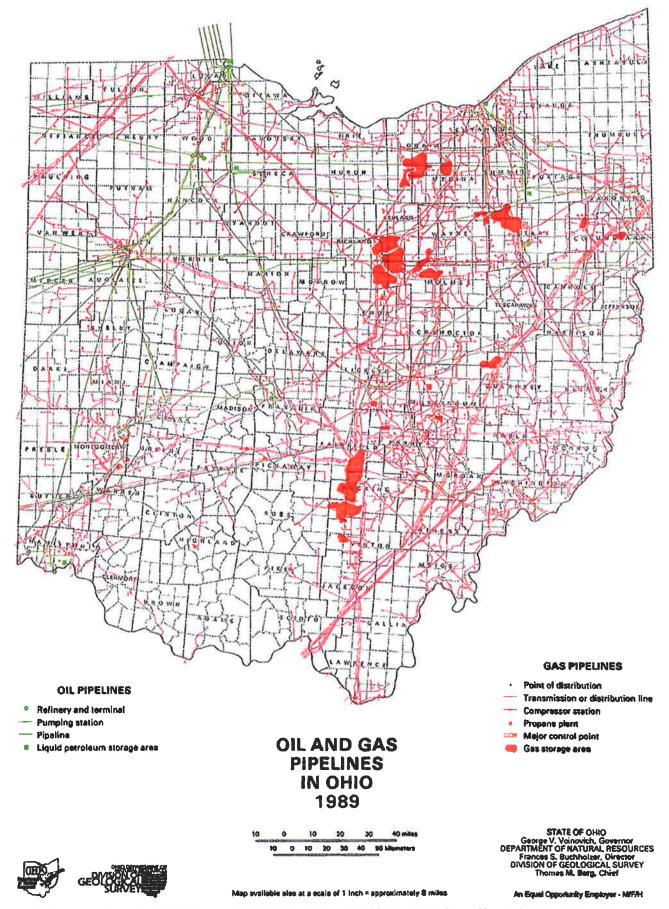

The land surface represents the topography of the bedrock surface in southeastern Ohio (excluding valleys beyond the glacial boundary) and in some glaciated areas near the glacial limit where meltwater sediments are thin or absent. Land-surface topography is based largely on data derived from the U.S. Geological Survey's National Elevation Dataset (30 meter grid spacing).

FIGURE 1.--Shaded elevation map of Ohio with the glacial boundary. Note the smooth landscape of glaciated northern and western Ohio compared to the high-relief landscape of unglaciated southeastern Ohio.

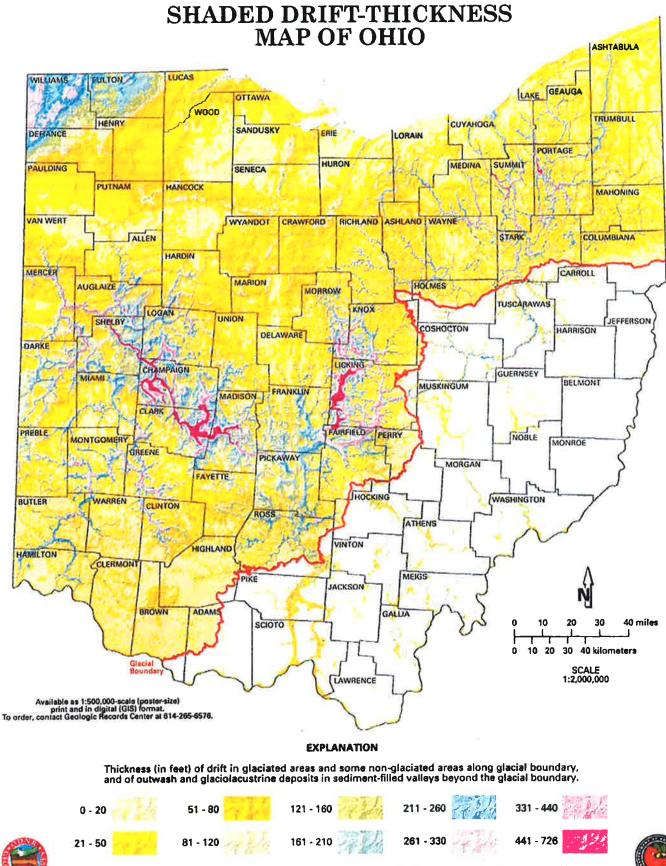


FIGURE 2.—Bedrock-topography map of Ohio showing the extent of the main Teays valley, the unglaciated portion of the state, and the ice-scoured and watereroded portions of glaciated Ohio (C = Circleville, W = Wheelersburg).

Recommended citation: Ohio Division of Geological Survey, 1989, Oil and gas pipelines in Ohio: Ohio Department of Natural Resources, Division of Geological Survey, page-size map, 1 p., scala 1:1,900,000.

STATE OF OHIO Ted Strickland, Governor DIVISION OF GEOLOGICAL SURVEY Lawrence H. Wickstrom, Chief

Recommended citation: Ohlo Division of Geological Survey, 2004, Shaded drift-thickness map of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map SG-3, generalized page-size version with text, 3 p., scale 1:2,000,000.

SHADED DRIFT-THICKNESS MAP OF OHIO

INTRODUCTION

The drift-thickness map of Ohio depicts the thickness and distribution of glacially derived sediments (called drift) and post-glacial stream sediments overlying the buried bedrock surface. This map was produced by subtracting bedrock-surface elevations from land-surface elevations to produce a residual map of drift thickness. Colors portray thickness intervals of glacial and modern sediments, which can range up to several hundred feet.

Prior to the onset of continental glaciation in the Early Pleistocene Epoch, approximately 1.8 million years before present, the Ohio landscape was dominated by rolling hills and deeply incised, mature rivers and streams. A reduced version of the Division of Geological Survey's Shaded-Bedrock Topography map of Ohio (fig. 1) reveals some aspects of this old land surface. Erosion and deposition by Ice-Age continental glaciers advancing into northern and western Ohio produced a low-relief land surface compared to the unglaciated, high-relief land surface of southeastern Ohio (fig. 2). Comparing the shaded elevation map (fig. 2) with the shaded bedrock-topography map (fig. 1) reveals the dramatic impact of glaciation on the state's current landscape.

Drift thickness in western and northern Ohio (fig. 3) is highly variable, a consequence of numerous geologic factors acting in combination or alone. In some areas, drift has been deposited on a relatively flat bedrock surface and changes in drift thickness are primarily the result of variations in the amount of glacial material deposited. In other areas, drift has infilled a deeply incised buriedbedrock surface, and changes in drift thickness are primarily the result of variations in bedrock-surface elevation. In still other instances, the drift surface parallels the underlying bedrock surface to produce areas of relatively uniform drift thickness.

Distinct, narrow linear patterns of thick drift in western and central Ohio are the result of deep incisions in the underlying limestone and dolomite bedrock by a large, northwest flowing drainage system, the Teays Valley system, that existed prior to and during early glaciations (fig. 1). The main Teays Valley entered the state at Wheelersburg (Scioto County), where remnants of the Teays Valley are still evident on the modern land surface. At Chillicothe (Ross County), the valley disappears under glacial sediments which cover western Ohio. However, the valley continues north, below the surface, to Circleville (Pickaway County) and then northwest to Mercer County where the valley exits the state into Indiana. Early southward-advancing glaciers blocked the north-flowing river system of the Teays and created immense lakes in southeastern Ohio.

In northeastern Ohio, narrow thick-drift areas south of Lake Erie were also preglacial bedrock valleys. These valleys were partially filled with thick deposits of till and glaciolacustrine (glacial lake) sediment and then re-excavated by later northward-flowing rivers such as the Cuyahoga River and the East Branch of Rocky River.

In northwestern Ohio, repeated scouring of the relatively soft bedrock surface by glacial ice flowing southwestward from the Lake Erie Basin destroyed most pre-existing drainage systems. In this part of Ohio, the bedrock surface is smooth and the upper surface of the drift has been planed off by wave action and deposition by a post-glacial, high-level ancestral Lake Eric. In the extreme northwest corner of Ohio, in Williams County and portions of Defiance County, drift thickens considerably because of numerous moraines that formed along the northwestern edge of the Erie Lobe.

In western Ohio, draping linear features of thick drift, called ridge moraines, formed along the temporarily stationary ice-front as glacial sediment was released from the ice. These ribbons of thick drift define the lateral dimensions of glacial ice lobes, particularly those of the last Wisconsinan ice sheet (figure 4). Many ridge moraines in western and northeastern Ohio have a draped appearance because south-flowing ice, impeded by bedrock highlands, moved more easily along major lowlands. The numerous resistant bedrock highlands in northeastern Ohio caused ridge moraines to be especially arcuate and closely stacked.

RE-EXCAVATED MIREA DEBADOT SMODULI ALEAN TAXS VALEY VALEY HIDELOTATED

FIGURE 1.—Shaded bedrock-topography map of Ohio showing the sculpted bedrock surface that lies beneath glacial drift in northern and western Ohio and the land surface in unglaciated southeastern Ohio. Note the surface expression of the Teays Valley System south of the glacial boundary (arrow), the location of the main Teays Valley (between yellow dashed lines), the area of smooth bedrock topography, and the area of re-excavated preglacial bedrock valleys in northeastern Ohio. (W = Wheelersburg, C = Circleville, CH = Chillicothe) (modified from Ohio Division of Geological Survey, 2003).

Southeastern Ohio is unglaciated and devoid of ice-deposited sediment (glacial till). Many southcast Ohio valleys, however, carried

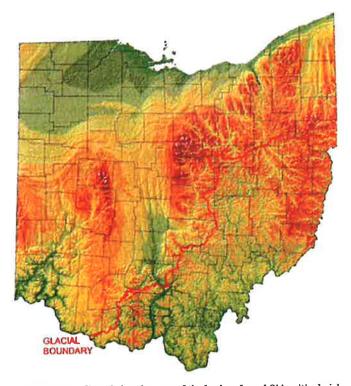
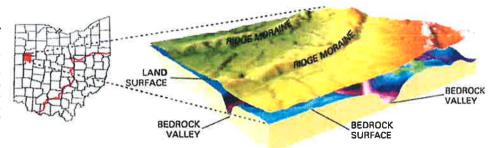



FIGURE 2.—Shaded elevation map of the land surface of Ohio with glacial boundary. Note the smooth landscape of glaciated northern and western Ohio compared to the high-relief landscape of unglaciated southeastern Ohio (modified from Powers, Laine, and Pavey, 2002).

FIGURE 3.---Schematic cross section of glacial drift overlying the hedrock surface. Note areas where drift thickness is controlled by thickening of glacial sediment over a relatively flat bedrock surface, by drift infilling bedrock valleys, or by fluctuations in both the land surface and the bedrock surface. Also note areas where valleys in the buried-bedrock surface are not evident on the land surface (illustration by Donovan M. Powers).

huge volumes of glacial meltwater away from the ice front and toward the Ohio River. In the process, many of these valleys were at times made deeper by the erosive force of fast-flowing meltwater streams, and at other times were partially filled with sediment. Some valleys in unglaciated Ohio contain thick deposits of clay and silt that accumulated on the bottoms of lakes that formed when glacial ice blocked the flow of rivers or when rapidly accumulating meltwater sediments blocked the mouths of smaller tributaries.

METHODS

Two digital data layers are required to generate the drift-thickness map: the surface-elevation layer and the bedrock-topography layer. Drift thickness is calculated by subtracting the bedrock-topography elevation from the land surface elevation. The bedrock-topography component is one of the products resulting from a multi-year effort by the ODNR, Division of Geological Survey to map the bedrock geology of Ohio. Bedrock-topography maps are required to determine the relief on the bedrock surface beneath thick layers of glacial drift. Bedrocktopography maps were created by the Division of Geological Survey for all 788 71/2. minute topographic quadrangles in the state as part of a process to produce accurate bedrock-geology maps for glaciated portions of Ohio and for those areas beyond the glacial boundary where valleys are infilled with sediment. Data concentration and contour intervals on the original, hand-drawn bedrock-topography maps vary widely across the state in response to changing geologic and topographic conditions. These data consist mainly of water-well logs on file at the ODNR, Division of Water, supplemented by outcrop data, Ohio Department of Transportation bridge-boring data, and oil-and-gas-well data. During the course of mapping, over 162,000 data points were interpreted for bedrock-surface elevation and in some cases drift thickness. These points were plotted on maps and used as control for the bedrocktopography lines. Individual 24,000-scale bedrock-topography maps are available from the Division's Geologic Records Center.

Elevation contours and data points from the 788 bedrock-topography maps were digitized and compiled for the glaciated portions of the state and for the valleys beyond the glacial boundary containing significant accumulations of sediment deposited during and after glaciation. The bedrock-topography contours were digitally converted in an ArcGIS environment to create a continuous grid model (60 meter grid spacing). A statewide compilation map and digital dataset of the bedrock topography of Ohio (modified from Ohio Division of Geological Survey, 2003) are available from the Division of Geological Survey.

Uncolored areas of southeastern Ohio represent extensive portions of unglaciated Ohio where the land surface and the bedrock surface are essentially the same. On the original maps in these areas, bedrocktopography lines were restricted to the buried-valley portions of the map and were not drawn in upland portions.

The second component needed to create the drift-thickness map, the land-surface topography, is based largely on data derived from the U.S. Geological Survey's National Elevation Dataset (30 meter grid spacing). These data have been modified extensively by the Ohio Division of Geological Survey to replace some anomalous errors that are inherent in portions of the National Elevation Dataset. A statewide compilation map and digital dataset of the shaded elevation of Ohio (modified from Powers, Laine, and Pavey, 2002) are available from the Division of Geological Survey.

A grid of the digitized bedrock-topography contours was subtracted from a grid of the land-surface Digital Elevation Model to derive a third grid (60 meter grid spacing) representing the thickness of the drift. This grid surface was shaded from the northwest, slightly above the horizon, to produce the appearance of a three-dimensional surface.

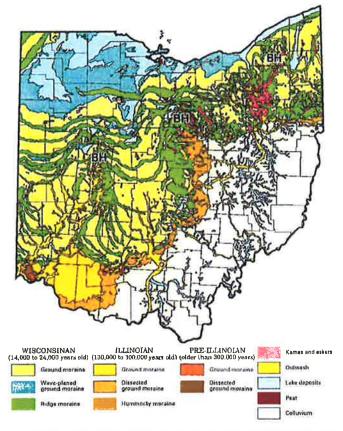
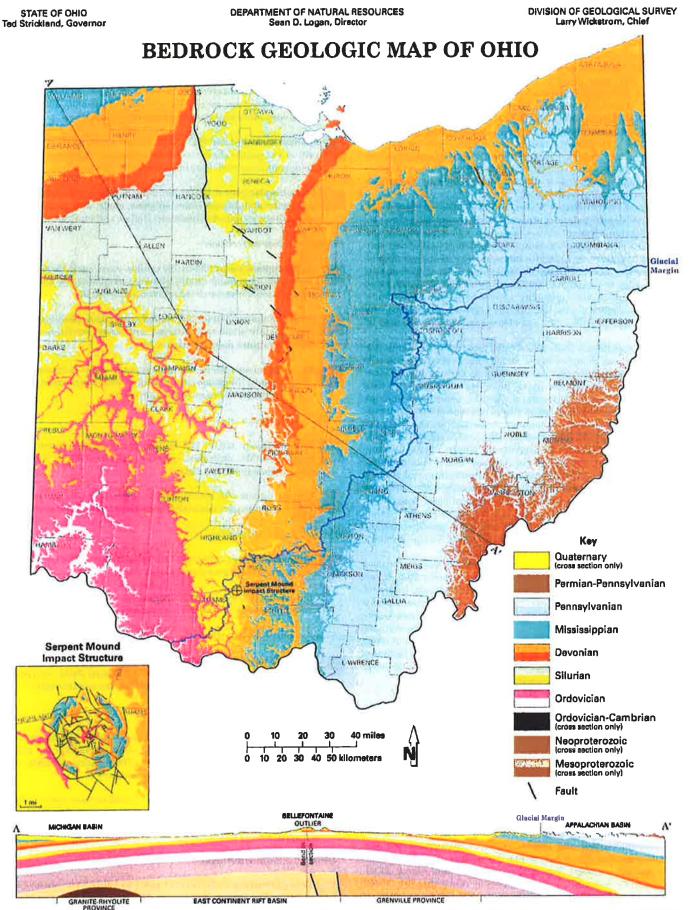



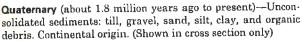
FIGURE 4.—Glacial map of Ohio showing the distribution of glacial sediments and their relative ages. Note glaciated northern and western Ohio, unglaciated southeastern Ohio, and the position of ridge moraines and the lake deposits and wave-plancd ground moraine of the Lake Erie Basin. Bedrock highlands (BH) impeded the southward advance of glacial ice causing the moraines to form a lobate configuration (illustration by Lisa Van Doren; modified from Pavey and others, 1999).

REFERENCES

- Ohio Division of Geological Survey, 2003 (revised 2004), Shaded bedrocktopography of Ohio (ver. 1.1): Ohio Division of Geological Survey, Map BG-3, scale 1:500,000.
- Pavey, R. R., Goldthwait, R. P., Brockman, C. S., Hull, D. N., Swinford, E. M., and Van Horn, R. G., 1999, Quaternary Geology of Ohio: Ohio Division of Geological Survey Map 2, scale 1:500,000.
- Powers, D. M., Laine, J. F., and Pavey, R. R., 2002 (revised 2003), Shaded elevation map of Ohio: Ohio Division of Geological Survey MG-1, scale 1:500,000.

Recommended effectives (Child Division of Geological Burvey, 2006, Bedrock geologic map of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map BC-1, generalized page-size version with taxt, 2 p., scale 1:2,000,000.

This map is a generalization of the Bedrock Geologic Map of Ohio (Slucher and others, 2006)-the first statewide 1:500,000-scale bedrock-geology map compiled by the Ohio Division of Geological Survey since 1920 and the first to properly portray the bedrock geology that exists beneath the extensive deposits of Quaternary sediments that cover much of the bedrock in the state. Overall, the hedrock geology of Ohio consists of flat lying to gently dipping carbonate, siliciclastic, evaporite, and organoclastic strata of sedimentary origin that range in age from Upper Ordovician to Upper Carboniferous-Lower Permian. At depth, as illustrated in the cross section, older sedimentary, igneous, and metamorphic rocks that range from Lower Ordovician to Mesoproterozoic in age occur. At the surface, an irregular veneer of mainly unconsolidated Quaternary sediments conceal most bedrock units occurring northward and westward of the glacial margin.


Strata of the Ordovician System are the oldest exposed rocks in Ohio and consist mainly of alternating shale and limestone sequences. Silurian System strata are mostly dolomites with lesser amounts of shale. Rocks of the Devonian System consist of two contrasting types. Lower and Middle Devonian-age strata are mainly carbonate rocks whereas Upper Devonian-age rocks consist mostly of clastic rocks. In Champaign and Logan Counties, Devonian rocks occur on a small erosional remnant referred to as the Bellefontaine Outlier by geologists. Coincidentally, the highest topographic point in Ohio (Campbell Hill-1,549 feet above sea level) occurs also in this area.

The Carboniferous System is divided into two Subsystems, the Mississippian and Pennsylvanian. Mississippian strata are mostly shales and sandstones that occur locally in various proportions. Pennsylvanian strata consist mainly of a diverse array of alternating sandstones, siltstones, shales, mudstones, limestones, and underclays; economic coal beds occur also in portions of this sequence. The youngest interval of sedimentary rocks in Ohio, the Dunkard Group, occurs only in southeastern Ohio and consists of strata similar in composition to the underlying Upper Pennsylvanianage rocks; however, the age of the Dunkard Group has been debated since the late 1800s. Dunkard strata contain a well-studied late Pennsylvanian-age assemblage of plant fossils with infrequent early Permian-age forms. Yet, fossil plant spores found in coal beds in the interval only support a late, but not latest Pennsylvanian age. Thus, until more definitive fossils are found, geologist are unable to determine the exact age of the Dunkard Group beyond a combined Permian-Pennsylvanian age assignment.

In west-central Ohio, the ancient Teays River system extended across much of Ohio during the late Neogene to early Quaternary Periods and sculptured an extensive network of deeply dissected valleys into the bedrock surface. The spatial configuration of many geologic units on this map clearly reflects the major channel networks of these former drainage systems. Also, four major regional structural geology elements affect the spatial distribution of rocks in Ohio: the Appalachian and Michigan basins, and the Cincinnati and Findlay arches which occur between the two basins. Locally, several high-angle normal faults displace rocks in the state.

The Serpent Mound Impact Structure in southern Ohio is a circular area of deformed and broken rocks that is approximately four and one-half miles in diameter. Recent investigations indicate the feature is the result of a meteorite impact believed to have occurred between 256 and 330 million years ago.

Cross section A-A' traverses Ohio from the northwest to the southeast and intersects the southern portion of the Michigan Basin, the area between the Cincinnati and Findlay arches, and the western Appalachian Basin, respectively. The stratigraphic units shown in this profile illustrate the broad, arching geometric distortion to the bedrock in Ohio created mainly by periods of tectonic subsidence within these regional structural basins. For specific details on the various rock units, economic commodities, and geologic hazards within Ohio, see either the printed or digital version of the Bedrock Geologic Map of Ohio (Slucher and others, 2006). Both products are available for purchase by contacting the ODNR Geologic Records Center by calling 614-265-6576 or emailing: geo.survey@dnr.state.oh.us.

Period of widespread erosion

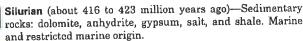
Permian and Pennsylvanian (about 298 to 302 million years ago)-Sedimentary rocks: mainly shale, sandstone, siltstone, mudstone, and minor coal. Continental origin.

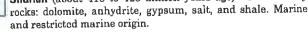
Pennsylvanian (about 302 to 307 million years ago) Sedimentary rocks: mainly shale, sandstone, siltstone, mudstone, limestone, and some coal. Continental and marine origin.

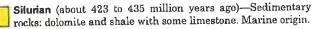
Pennsylvanian (about 307 to 318 million years ago)-Sedimentary rocks: mainly sandstone, siltstone, shale, and conglomerate, with some coal and limestone. Deltaic and marine origin.

Period of widespread erosion

Mississippian (about 322 to 359 million years ago)-Sedimentary rocks: sandstone, shale, siltstone, conglomerate, and minor limestone. Marine to marginal marine origin.

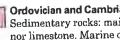



Devonian (about 359 to 385 million years ago)-Sedimentary rocks: mainly shale and siltstone with some sandstone. Marine to marginal marine origin.



Devonian (about 385 to 407 million years ago)-Sedimentary rocks: mainly limestone and dolomite with some shale, and minor sandstone. Marine and eolian origin.

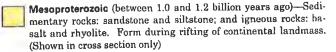
Period of widespread erosion


Period of widespread erosion

Ordovician (about 446 to 450 million years ago)-Sedimentary rocks: shale and limestone. Marine origin.

Ordovician (about 450 to 460 million years ago)-Sedimentary rocks: limestone and shale. Marine origin.

Period of widespread erosion



Ordovician and Cambrian (about 486 to 510 million years ago)----Sedimentary rocks: mainly dolomite, sandstone, shale, with minor limestone. Marine origin. (Shown in cross section only)

Period of widespread erosion

Neoproterozoic (between 900 million and 1 billion years ago)-Metamorphic rocks: gneiss, schist, amphibolite, and marble; and igneous rocks: granite. Form during collision of tectonic plates. (Shown in cross section only)

Period of widespread erosion

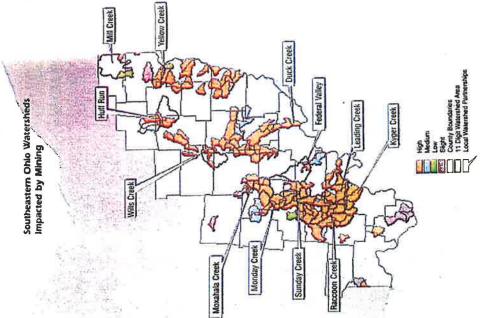
Mesoproterozoic (between 1.45 and 1.52 billion years ago)—Igneous rocks: granite and rhyolite. Formed during crustal evolution and differentiation. (Shown in cross section only)

Program Funding

The Abandoned Mine Land Program is funded by a federal severance tax on mined coal. On an annual basis, the Division of Mineral Resources Management (DMRM) applies to the Office of Surface Mining Reclamation and Enforcement for funds to investigate, design and construct corrective measures for the highest priority abandoned mine land (AML) problems.

Problem Eligibility and Selection for Reclamation Funding Any problem qualifies for funding if it meets the following conditions: The problem was caused by surface mining that took place before August 3, 1977 or underground mining that occurred before September 1, 1982;

• There is no existing reclamation bond on the mined site responsible for the problem; and

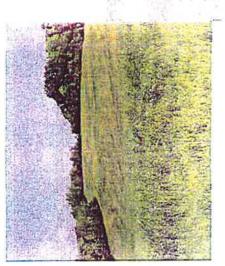

 The problem meets a priority health and safety or environmental designation. Through observations, past records, and any documentation the landowner can provide, division experts determine whether the problem is eligible for funding and how serious the problem is.

Problems are classified in three categories:

 Emergency Health and Safety: An immediate and substantial threat to the safety of the public;

 Non-cmergency Health and Safety: A high risk of personal injury or significant property damage; or

 Land and Water Restoration: Environmental problems associated with degradation of soil, water, recreational resources and agricultural productivity. The Abandoned Mine Land Program cannot pay for channelizing streams or repairing structures damaged by mine-related flooding, landslides or subsidence. Further, AML sites that have been developed for residential or commercial uses are not eligible for reclamation funding, should mine-related problems occur.



An abandoned deep mire entry in Vinton County, considered a non-entergency health and safety problem, is closed in a manner that prevents human access without restricting movement of the éndangered Indiana bat.

Polluted residential water supplies replaced 272 supplies 382 entries 150 arres 52 miles 457 acres 294 shafts 19 miles Abandoned strip mine land reclaimed 8,035 acres 353 acres MAJOR ACCOMPLISTIMENTS OF FEDERAL AML PROCRAM Deep mine entries sealed or gated Sediment-choked streams restored Deep mine subsidence stabilized Dangerous highwalt safeguarded Coal refuse reclaimed Landslides stabilized Mine shafts sealed

Effects of Unregulated Mining

existence in Ohio left impacts on the environment and the social fabric of its citizens. By 1972 the problems Poorly regulated mining during its first 150 years of included:

- 1,300 miles of streams polluted by acid mine drainage,
 - 500 miles of streams affected by sediment deposition, · Nearly 119,000 acres of land in need of major
 - Hundreds of acres of land prone to deep mine reclamation clions,
 - Polluted domestic water supplies, and subsidence,

mining, it created an abandoned mine land program to Hundreds of acres of landslides, among other problems address the highest priority public health and safety, and environmental problems associated with mining that occurred prior to August 3, 1977. reclamation law of 1972 for the regulation of active In recognition of these abandoned mine land prob-Mining Control and Reclamation Act of 1977, Not lems, the federal government passed the Surface only did this legislation mirror Ohio's effective

the responsible development of Ohio's safe, environmentally sound manner. DMRM MISSION: To provide for energy and mineral resources in a

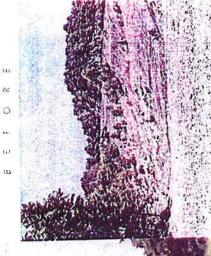
Abundoned Mine Land Program

Cambridge, OH 43725-886 2050 E. Wheeling Avenue 1 REGIONAL OFFICES: 240439.9079

Jackson, OH 45640-1622 34 Portsmouth Street 740-286-6411

New Philadelphia, OH 44663-3333 2207 Reiser Avenue SE 330-339-2207

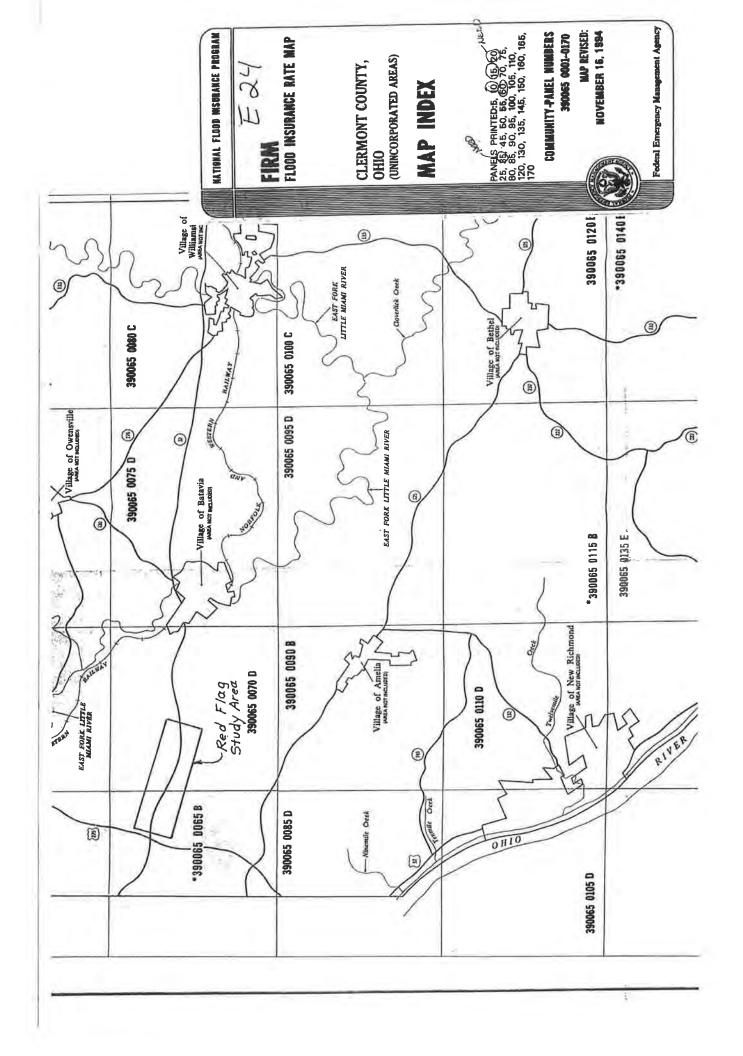
3601 Newgarden Road Salem, OH 44460-957 330-222-1527


2045 Morse Road, Blog. H2 CENTRAL OFFICE:

Columbus, OH 43229-6605 614-265-6633 COMP. PICTO: Esablished grassing of a Gatu prevents providen of sopies of County recisioned ship milate r' the principality part

Division of Mincral Resources Management Ohio Department of Natural Resources

בננה / 202



from Ohio's coal-bearing region since 1800. played a large part in fueling the nations As a result, the state was left with nearly 450,000 acres of land that were surface 1972 reclamation law and 6,000 underbillion tons of coal have been extracted mined for coal prior to Ohio's stringent industrial development. More than 3.6 Ohios rich 200-year old mining legacy ground coal mines that exist below 600,000 acres of land. Ohios Abandoned Mine Land Program was safety effects of past mining as well as to created to abate the priority health and provide environmental restoration of degraded aleas.

BEFORE AND AFTER PHOTOS.

County reduced erosion of sediment that caused flooding and environmentally degraded stream habitat Reclamation of an unreclaimed strip mine in Noble

Appendix 8 FEMA Flood Insurance Map

Ū.

Appendix 9 Ohio Mineral Industries STATE OF OHIO Ted Strickland, Governor DEPARTMENT OF NATURAL RESOURCES Sean D. Logan, Director

DIVISION OF GEOLOGICAL SURVEY Lawrence H. Wickstrom, Chief

DIVISION OF GEOLOGICAL SURVEY 2045 MORSE RD., BLDG. C-1 COLUMBUS, OHIO 43229-6693 (814) 265-6576 (614) 447-1918 (FAX) e-mail: geo.survey@dnr.state.oh.us World Wide Web: http://www.ohiodnr.com/geosurvey/

2007 Report on Ohio Mineral Industries: An Annual Summary of the State's Economic Geology

WITH

DIRECTORIES OF REPORTING COAL AND INDUSTRIAL MINERAL OPERATORS

compiled by

Mark E. Wolfe

Database design and data retrieval: Joseph G. Wells Interactive mineral industries map/digital cartography: Donovan M. Powers Typesetting and layout: Lisa Van Doren

> Columbus 2008

				Lime	stone	S	ind	nber of Sand	stone		-	-		-			
County	Total	То	tal²	a	nd	a	nd avel	a	ad merate	C	ay	Sh	ale	S	alt		tiple odities
	employees ^z	Pioduc- tion	Non prixtuc- tion	Produc- tion	Non produc- tion	Production	Non produc- tion	Produc- tion	Non produc- tion	Produc- tion	Non produc- tion	Produc- tion	Non produc- tion	Produc- tion	Non preduc- tion	Produc- tion	Non produc tion
Adams Allen Ashland Ashtabula Athens	33 39 19 25 11	26 23 15 16 8	7 16 4 9 3	26 20	7 15	3 15 11 4	1 4 4 1									5 4	5 2
Luglaize Selmont Srown Sutler Carroll	29 22 30 91 9	23 16 24 61 7	4 6 30 2	19 2 21	4 1 6	5 2 61 4	0 2 30 2	a	. 0	1.	Ø					12 3	3 0
Champaign Clark Clermont Clinton Columbiana	22 45 14 36 56	17 31 8 35 35	5 14 6 21 21	35	2.1	17 31 8 15	5 14 6 10					5	2			4	0 9
Coshocton Crawford Cuyahoga Darke Defiance	53 19 217 15 4	99 18 123 11 3	20 1 94 4 1	18 11	1.	18	13	13	6	3	í	4	30	117	71	2 2	1
Delaware Grie Saisfield Sayette Syette	52 153 12 11 202	47 128 7 8 167	5 25 5 3 95	47 117 8 110	5 24 3 20	7 57	5 15	u	Ĭ.								
^t ulton Jallia Jeauga Freene Juernsey	13 19 77 73 11	10 10 32 47 5	3 9 45 26 6	14 5	11 6	10 10 9 23	3 9 1 12	23	-14	3	T					1 8	02
Tamilton Tancock Tardin Tarvison Tighland	141 24 14 28 62	85 22 1) 21 40	56 2 3 7 22	22 11 11 37	2 3 6 22	77	65 0					10	Ţ			8	1
locking lolmes luron lackson leffeison	17 29 4 24 5	10 16 2 17 4	7 13 2 7 1	1 10 4	1 4 1	10 16	7 13	r	-1	,	2					6	ı
Cnox Jake Jowrence Jicking Logan	47 193 3 38 58	33 111 1 28 40	14 82 2 10 16	32	14	20 5 1 21 8	12 8 2 7 2	12 2	1 2	3	1	1 3	l í	104 1	72		
lorain Alcas Iadison Iahoning Iarion	9 59 6 70 37	7 40 4 51 27	2 19 2 19 10	37 4 12 20	17 2 9 7	1	1	7 .1	2	2	3 1	4	t			35	8
Aedina Aeigs Aercer Aiami Aonroc	38 51 11 80 6	30 44 9 60 4	8 7 2 20 2	9 51 4	2 17 2	30 44 9	8 7 3										
Aontgamery Aorgan Aorrow Auekingum Yoble	116 3 10 122 11	76 2 7 94 9	40 1 3 28 2	51 70 9	23 22 2	26 2 7 11	17 1 3 4			3	4	2	i.			7	2
Ditawa Paukliny Perry Pickaway Piko	106 89 51 56 66	85 50 42 48 39	21 39 9 8 27	85 42 28 23	21 11 5 15	20 10	3	38 6	7	2	1					8 2	28 1

TABLE 12.-2007 Employment at Ohio industrial mineral operations, by county and commodity

SAND AND GRAVEL

Sand and gravel were sold or produced by 188 companies at 276 operations in 62 Ohio counties during 2007. Sales⁶ of sand and gravel totaled 37,194,186 tons (-20.8 percent from 2006). Sand accounted for 20,828,690 tons of the total sand and gravel sold, and gravel accounted for 16,365,496 tons. Portage, Hamilton, Stark, Butler, and Franklin Counties led in sales, accounting for 45.4 percent of the total. Reported known production⁶ of sand and gravel totaled 37,122,652 tons in 2007. Ohio ranks 7th nationally in the production of construction sand and gravel out of 50 producing states and Puerto Rico. The states leading Ohio, in descending order of production, are California, Texas, Arizona, Colorado, Washington, and Utah. Ohio ranks 9th nationally in the production of industrial sand and gravel out of 34 states. The states leading Ohio in the production of industrial sand and gravel, in descending order, are Illinois, Florida, Georgia, Wisconsin, Texas, California, Oklahoma, and Minnesota. Ohio ranks 6th nationally in the production of aggregates, including crushed stone. The states leading Ohio in the production of aggregates are California, Texas, Florida, Pennsylvania, and Illinois.7

A total of 41,500 tons of sand was reported dredged from Lake Erie in 2007. The Maumee Bay and Maumee River areas are no longer producing sand or gravel.

The total values of sand and gravel sold in 2007 was \$217,295,856. Average price per ton was \$5.84.

An annual average of 1,030 employees worked an average of 148 days in 2007 to produce sand and gravel. Total wages of \$65,887,583 were paid to a total of 1,493 employees (1,030 production employees and 463 nonproduction employees). The average annual wage, based on those employees for whom wages were reported, was \$44,131. An additional 59 people (42 production employees and 17 nonproduction employees) were employed by operations mining sand and gravel along with one or more other mineral commodities.

Building, portland cement concrete, asphaltic concrete, and road construction/resurfacing were the major uses for Ohio sand and gravel in 2007.

*Sales and production figures for sand include material dredged from Lake Erie. Information from U.S. Geological Survey.

FIGURE 6.-Sales of sand and gravel in Ohio in 2007, by county.

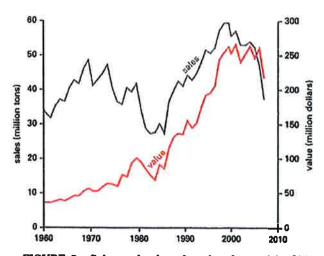


FIGURE 7.-Sales and value of sand and gravel in Ohio. Sales and values from 1984 to 2006 include Lake Erie dredged material.

^{*}Includes reported and estimated values. See footnote 1, p. 1.

	pecified	Gravel	2,658	318	17,000	6.733	11	160'9	35,541 12,373		11,308 82,429	307,044 153,595		4,429 5.451	6,030	13 680			29,066
	Other/unspecified	Sund	4.053	200	15,000	363,858		12.1.12	13.007	10,113	1,645 1,632 1 225	320 531,644 203,046		2,533 1,873	15,680	1 345 42,255		2,331	268,054
		sand							10,000 10,861									NOC NO	20,000
	Foundr	sand																	
		Gravel		27,526		32,921		115.01	37,380		10,000		18,744	7.75		10,000			23,396
	Fultration	Sand	1,825	8.933		15,205		116'17	5,000		10.000 335		24,634	5,000 18,491		15.000 2.006			12.000
	ruction/ cing	Gravel	386	7,200	5,000	146,016	68.024	116.21	25,000		22,000 70,000	250 60,000 356,237	550 8,322	4,594	53,650	75,000		4.925	70,000
	Road construction/ resurfacing	Sand	2173	30,334	5,000	200,000	51,036	101,500	27,361		70.000	297,300		9,116 107,519	35,650	90.000		75,000	150.000
Tons sold	oncrete	Gravel				62,281	1,000	23,598	20,000		22,000 349,919	53,376 341,989	23,644	36,551	100,000	000,68			130,018
1	Asphaltic concrete	Sand	7,350	1,658		268,022	1,000	1016'02	66,959		70,000 453,265	50,265 224,520		50,008 122,575	77,000	150,000	23, 339		194.453
	cement ete	Gravel				159,585	1,000	24,402	30.000		22.000 156,000	59.664 71.530		2,600 27 007		70,000			211.643
	Portland cement concrete	Sand	15,201		11,531	420,783	1,600	101.151	9,311		70,000 801.000	51,7-14 197,996	24,684	10,000 93.180	121,000	282,000 4,054		000 826	254,792
	ling	Gravel	005- 010 211	53,900	19.008 3,444	601.008	129,948	100-121	77.795 72,365 64	28,832	26,058 547,995	20.901 233,923 798,863	3.783	10,532	78,317	153.700 63.575	87,653	1.100	108,412
	Building	Sand	1,790		1.995		116.376	hana'nar	41,700	43.247	842 74,243 252,070 107,673 3,231	20,000 38,694 1,000,344		52,014 13,922	122,485	161.300 37.927 6.037	16,783	121 000	178.418
	Total	Staves	3,444		41,003	1	200,043		175.716 220,664 64	28,832	260 1.216,343	21.161 714,007 1,722,2141	550 55,493	58,706 299,267	237,997	411,380	\$7,638	1,100 4,925 981,000	572,535
	Toral	PHINS	31,052	93.452	13,526	2,009,817	169.412 169.412	10,910	273,889	10 113	1,102 842 260 390267286,858 103,376 3,570,967 1,216,343 108,900 105,900 3,616 3,616	20.320 672,347 1.923,206	419,368	138.671 357,560	2,200 374.815 1,500	1,345 740,555 43,987 43,987 6,037	40,127	1,000 2,331 491,000	-
	Total sand	TANK S MIL	34,496 395,887	182.396	16,970	_	369.455	802'h6	282,095 494,553	10,113	2.787,310 108,900 108,900	and the second se	550 103,859	197,377 656.827	612,812 1,500	1,151,935 105,247 005,247	127,785	2.100 7.256 772 000	
	County 7		Allen Asbland	Ashtabula	Auglaize	Butler	Champaign	Clermont	Columbiana Coshocton Crawford	Cuyahoga Darke	Erie Fairfield Franklin Fulton Gallia	Geauga Greene Hamilton	Hardin Highland	Hocking Holmes	datesou Knox Lake	Lawrence Licking Logan Lorain	Madison	Mahoning Marion Medina	

15

2007 OHIO ALPHABETICAL DIRECTORY OF INDUSTRIAL-MINERAL MINE OPERATORS (cont.)

number, and president/owner/ manager of company	Name of mine	County	Commodity	2007 sales (tons)	2007 production (tons)	State mine number	Mining and reclamation permit number
Evans Gravel, Inc. 4229 Round Bottom Rd. Cincinnati, OH 45244 513-271-1119 Douglas L. Evans, pres.	Evans Gravel, Inc. Evans Gravel, Inc.	Clermont Hamilton	sand & gravel sand & gravel	94,508 43,483	147,929 67,208	Ct-9 Hmn-E	IM-526 IM-2181
Feikert Sand & Gravel, Inc. 6871 Township Road 605 Millersburg, OH 44654 330-674-7245 Lynn O. Feikert, pres.	Feikert Sand & Gravel, Inc.	Holmes	sand & gravel	138,194	138, 194	Hs-511	IM-1048, IM-1240
Fleming Construction Co., Inc. dba Scioto S. & G. P.O. Box 31 Marion, OH 43301.0031 740.494.2177 Sonja E. Fleming, pres.	Pit #1 Pit #2	Marion Marion	sand & grave) sand & grave)	7,256	7,256	Mn-16 Mn-19	1M-171 1M-990
Flesher Sand & Gravel, Inc. 3922 Clark Mill Rd. Norton, OH 44203 330-745-9239 James E. Fisher, Jr., pree.	Flesher Sand & Gravel, Inc.	Summit	sand & gravel			St-52	IM-900
Foureman's Sand & Gravel, Inc. 2791 Wildcat Rd. Greenville, OH 45331 937-548-1718 Gary B. Foureman, pres.	Foureman's Sand & Gravel, Inc.	Darke	sand & gravel	72,079	72,079	Dke-4	IM-433
Lloyd B. Fry P.O. Box 1515 Piqua, OH 45356 937-778-1940 Lloyd B. Fry, owner	Lloyd B. Fry	Miami	sand & gravel	1,935	1,935	мі-т	IM-696
Frye Sand & Gravel, Inc. P.O. Box 3 Dorset, OH 44032-0003 440-858-2627 Harold L. Frye, owner	Frye Sand & Gravel, Inc. Frye Sand & Gravel, Inc.	Ashtabula Ashtabula	sand & gravel aand & gravel	250 518		Asa-F Asa-10	IM-1289 IM-198
JANS Ltd. 800 West Maple St. Hartville, OH 44632 330-877-2525 Ellis Erb, pres.	Gans Ltd dba Brimfield Sand & Soils	Portage	sand & gravel	15,507	3,050	Pe-102	IM-1184
Janges Gravel Co. P.O. Box 638 Mansfield, OH 44901 419-896-3660 Don Daugherty, pros.	Ganges Gravel Co.	Richland	sand & gravel	22,500	22,500	Rd-18	IM-670
ohn I., Garber Materials, Inc. 2745 Gass RdRoute 8 Lexington. OH 44904 419-884-1567 John L. Garber, pres.	John L. Garber Materials, Inc. John L. Garber Materials, Inc.	Richland Richland	sand & gravel sand & gravel	172,328		Rd-14 Rd-G	IM-436 IM-2162
ieneral Motors Power Train 26427 State Route 281 East Defiance, OH 43512 419-782-7010 John Thomas, plant mgr.	GM Powertrain Clay Borrow Area	Defiance	clay	26,870	26,870	De-3	IM-1351
ibson Sand & Gravel Co. 1475 Knorr Rd. Gelion, OH 44833 419-468-5820 John Gibson, owner	Gibson Sand & Gravel Co.	Crawford	sand & gravel clay	160 64	160 64	Cd-G	IM-0693

2007 OHIO ALPHABETICAL DIRECTORY OF INDUSTRIAL-MINERAL MINE OPERATORS (cont.)

Name, address, telephone number, and president/owner/ manager of company	Name of mine	County	Commodity	2007 sales (tons)	2007 production (tons)	State mine number	Mining and reclamation permit number
James Bros. Sand & Gravel Ltd. 3930 Boggs Rd. Zanesville, OH 43701 740-454-1522 Daniel G. James, owner	James Bros. Sand & Gravol Ltd.	Muskingum	sand & gravel	1,520	1,620	Mum-J1	IM-2261
Janson & Sons Corp. 11829 Spencer Park Rd. Hiram, OH 44234 330-274-889 6 Gary Janson, owner	Janson & Sons Corp.	Portage	sand & gravel			Pe-J	IM-2051
Jarrett Sand Co. 6505 Skadden Rd. Sandusky, OH 44870 419-359-1750 James Jarrett, owner	Jarrett Sand Co.	Erie	sand & gravel	592	592	Ee-29	
Jaymar, Inc. 8751 North State Route 7 Cheshire, OH 45620 740-992-6637 Jay Hall, Jr., pres.	Jaymar, Inc. Plant#4 Plant#5	Gallia Meigs Meiga	sand & gravel sand & gravel sand & gravel	849,820	849,820	Ga-J Ma-308 Ma-L	IM-1145 IM-1174 IM-1159
Johnson Stone Products, Inc. 4018 Cleveland Rd East Huron, OH 44839 440-315-3699 Torry A. Johnson, pres.	Kipton Quarry	Lorain	sandstone	10,450	10,450	Ln-J	IM-1300
CCI Sand & Gravel P.O. Box 946 Logan, OH 43138 740-385-6019 Edward Kilbarger, pres.	KCI Sand & Gravel	Hocking	sand & gravel	38,972	72,000	Hg·HA	[M-1320
Geeney Sand & Stone, Inc. 13320 Girdled Rd. Painesville, OH 44077 440-254-4582 Dennis J. Keeney, pres.	Keeney Sand & Stone, Inc.	Lake	sandstone	66, 157	66, 157	Lke-K	IM-859
iniblə Clay & Limestone Co. 3596 State Route 39 NW Dover, OH 44622-9801 330-343-1226 Keith B. Kimble, pres.	Kimble Clay & Limestone Co.	Tuscarawas	limestone sandstone clay shale	210,832 1,587 52,919 111,100	210,832 1,587 52,919 111,100	Ts-1818	IM-9
ing Quarries, Inc. 11820 Parrieh Ridge Caldwell, OH 43724 740-782-2923 Mary King, pres.	King Quarries, Inc.	Noble	limestone	92,135	92,135	Ne-K1	IM-1292
insman Materials, Ltd. P.O. Box 76 Chardon, OH 44024 440-286-4757 Bill Clemson, pres.	Kineman Materiale, Ltd.	Ashtabula	eand & gravel	45,246	45,246	Asa-20	IM-1198
i pp's Gravel Co., Inc. 1 987 State Route 222 Batavia, OH 45102 513-732-1024 Melvin M. Kipp, pres.	Kipp's Gravel Co., Inc.	Clermont	sand & gravel			Ct-7	IM-432
	Kirby's Sand & Gravel, Inc. Kirby's Sand & Gravel, Inc.		sand & gravel sand & gravel	115,992	115,992	Wt-17 Wt-K	IM-604 IM-943

APPENDIX F

National Park Service listing for Clermont County

United States Department of the Interior National Park Service Land & Water Conservation Fund

Detailed Listing of Grants Grouped by County

Today's Date: 7/30/2010

0HIO - 39

Grant ID & Element	Type	Grant Element Title	Grant Sponsor	Amount	Status	Date Approved	Exp. Date	Cong. District
CLE	CLERMONT	I						
305 - XXX	A	STONELICK STATE PARK	DEPT. OF NATURAL RESOURCES	\$198,459.85	C	4/18/1974	12/31/1976	7
502 - XXX	D	SYCAMORE PARK	CLERMONT COUNTY	\$29,650.00	C	1/20/1977	12/31/1979	7
538 - XXX	D	PLUM STREET PARK	VILLAGE OF NEW RICHMOND	\$13,554.00	C	3/22/1977	12/31/1980	2
576 - XXX	C	D/MONROE TOWNSHIP PK	TOWNSHIP OF MONROE	\$18,600.00	C	7/27/1978	12/31/1980	3
665 - XXX	A	D/CROOKED RUN	DEPT. OF NATURAL RESOURCES	\$50,000.00	C	10/17/1978	12/31/1983	7
863 - XXX	U	D/LOVELAND PARK	CITY OF LOVELAND	\$86,769.92	C	2/17/1981	12/31/1986	5
954 - XXX	U	D/RIVERFEST PARK	VILLAGE OF NEW RICHMOND	\$23,915.80	c	6/24/1983	12/31/1988	7
1066 - XXX	D	UNION TOWNSHIP PARK	TOWNSHIP OF UNION	\$66,782.47	C	5/27/1986	12/31/1991	5
1136 - XXX	D	UNION TOWNSHIP PARK	TOWNSHIP OF UNION	\$86,211.00	U	6/1/1989	12/31/1993	3
1165 - XXX	D	PIERCE TOWNSHIP PARK	TOWNSHIP OF PIERCE	\$94,098,40	C	8/19/1991	12/31/1996	2
1184 - XXX	Q	MIAMI TOWNSHIP PARK	TOWNSHIP OF MIAMI	\$29,354.68	U	8/26/1992	12/31/1997	7
1214 - XXX	A	KELLEY NATURE PRESERVE	CLERMONT COUNTY	\$92,402.00	U	3/31/1995	12/31/1999	7
1352 - XXX	Я	STATE OF OHIO - EAST FORK STATE PARK	DEPT. OF NATURAL RESOURCES	\$415,000.00	A	5/3/2010	12/31/2012	7
			CLERMONT County Total:	\$1,204,798.12		County Count:	13	

Page: 8